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Introduction

Introduction

• This work originates from the constructive field theory method known as
the Loop Vertex Expansion (LVE).

• The LVE is a constructive approach for quartic matrix models, designed to
provide bounds that are uniform with respect to the matrix size.

• We review an extension of the LVE known under Loop Vertex
Representation and the corresponding work with Krajewski and Sazonov.
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Constructive Quantum Field Theory and LVE

The BKAR Forest Formula

Let f be a smooth function of n(n − 1)/2 line variables x` ∈ [0, 1], ` = (i , j),
1 ≤ i < j ≤ n. The forest formula states

f (1, · · · , 1) =
∑
F

{ ∏
`∈F

[

∫ 1

0

dw`]
}{ ∏

`∈F

∂

∂x`
f
}

[XF (wF )], where

• the sum over F is over all forests over n vertices,

• the “weakening parameter” XFij (wF )] is 0 if i and j dont belong to the
same connected component of F ; otherwise it is the minimum of the w`′
for `′ running over the unique path from i to j in F .

• Furthermore the real symmetric matrix XFij (wF )] (completed by 1 on the
diagonal i = j) is positive.
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Constructive Quantum Field Theory and LVE

Constructive Quantum Field Theory, I

• Cluster expansion = Taylor-Lagrange expansion of the functional integral:

F = 1 + H, H = −λ
∫ 1

0

dt

∫ +∞

−∞
x4e−λtx

4−x2/2 dx√
2π

(in the case of an interaction of type x4).

• Mayer expansion: define Hi = −λ
∫ 1

0
dt
∫ +∞
−∞ x4e−λtx

4−x2/2 dx√
2π

= H ∀i ,
εij = 0 ∀i , j and write

F = 1 + H =
∞∑
n=0

n∏
i=1

Hi (λ)
∏

1≤i<j≤n

εij

To prove this, let us define ηij = −1, εij = 1 + ηij = 1 + xijηij |xij=1 and
apply the forest formula.
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Constructive Quantum Field Theory and LVE

Constructive Quantum Field Theory, II

•

F =
∞∑
n=0

1

n!

∑
F

n∏
i=1

Hi (λ)

{∏
`∈F

[

∫ 1

0

dw`]η`

}∏
`/∈F

[1 + η`x
F
` (w)]

The logarithm of the forest formula is simply a tree BKAR formula. Then
defining G = log F ,

G =
∞∑
n=0

1

n!

∑
T

n∏
i=1

Hi (λ)

{∏
`∈T

[

∫ 1

0

dw`]η`

}∏
`/∈T

[1 + η`x
F
` (w)]

where the sum is over trees!

• The convergence is easy because each Hi contains a different “copy”
∫
dxi

of functional integration, ad |1 + η`x
F
` (w)| ≤ 1.

• Borel summability now easily follows from the Borel summability of H.

• It generalizes well to the case of lattice statistical mechanics (d > 0).

• However the link with Feynman graphs is somewhat lost, and furthermore
il may be not optimal for curved or random space-time geometries.
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Constructive Quantum Field Theory and LVE

Loop Vertex Expansion, I

Intermediate field representation

F =

∫ +∞

−∞
e−λx

4−x2/2 dx√
2π

=

∫ +∞

−∞

∫ +∞

−∞
e−i
√

2λσx2−x2/2−σ2/2 dx√
2π

dσ√
2π

=

∫ +∞

−∞
e−

1
2

log[1+2i
√

2λσ]−σ2/2 dσ√
2π

=

∫ +∞

−∞

∞∑
n=0

V n

n!
dµ(σ)

Let us apply the forest formula, but using ”replicas” of the intermediate field:

V n(σ)→
n∏

i=1

Vi (σi ), dµ(σ)→ dµC ({σi}),

Cij = 1n = xij |xij=1, where 1n is the n × n matrix with entries one everywhere.

Vincent Rivasseau (IJCLab) Variational Loop Vertex Expansion for Cumulants September 20, 2025 8 / 23



Constructive Quantum Field Theory and LVE

Loop Vertex Expansion, II

F =
∞∑
n=0

1

n!

∑
F

{∏
`∈F

[

∫ 1

0

dw`]

}∫ {∏
`∈F

∂

∂σi(`)

∂

∂σj(`)

n∏
i=1

V (σi )

}
dµCF

where CFij = xF` ({w}) if i < j , CFii = 1.

G =
∞∑
n=0

1

n!

∑
T

{∏
`∈T

[

∫ 1

0

dw`]

}∫ {∏
`∈T

∂

∂σi(`)

∂

∂σj(`)

n∏
i=1

V (σi )

}
dµCT

where the second sum runs over trees !

Link with Feynman graphs can be recovered, and the conclusion is that the
LVE should be better adapted for general background geometries, such as
curved geometries, random geometries... → in short, to quantum gravity.
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The work of [Gurau-Krajewski,2014]

The work of [Gurau-Krajewski,2014]

[Gurau-Krajewski,2014] combines the LVE with cumulants (in the physics
language they are usually called connected Dyson-Schwinger functions).

• They define ordinary cumulants which are based on ordinary Feynman
graphs and amplitudes. Then they define scalar cumulants for the
topological expansion in the genus of the combinatorial maps. An essential
part of their article is devoted to the Weingarten calculus [Collins,2003].

• They prove that any ordinary cumulant is an analytic function inside a
cardioid domain in the complex plane. They prove also that any cumulant
is Borel summable at the origin.

1
4

Reλ

Imλ

Figure: Analyticity domain in the complex λ plane
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The work of [Gurau-Krajewski,2014]

The work of [Gurau-Krajewski,2014]

For scalar cumulants regarded as functions of λ with N considered as a
parameter, the domain of analyticity is reduced by a factor 1/4:

1
4

Cλc

1
12

C̃
Reλ

Imλ

Figure: Analyticity domain of the topological expansion

Their work is essential piece for those seriously interested in the subject of
cumulants, even up to today. Presently I work in their footsteps.
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Loop Vertex Representation and [Krajewski-R.-Sazonov]

Loop Vertex Representation

• It would be nice to generalize the LVE to interactions of order higher than
4, but progress in this direction has been slow. The first attempts were
based on oscillating Gaussian integral representations [Lionni,R.,2016].

• I discovered the right extension for taking absolute values in the integrand
in 2017, and I called it Loop Vertex Representation or LVR. I find that the
key concept of LVR is to force integration of exactly one particular field
per vertex of the initial action.

• I have proved it only a particular simple example, the λ(φ̄φ)p zero
dimensional theory, since it contains the core of the problem. But I think
it applies to stable Bosonic field theories with polynomial interactions of
arbitrarily large order.

• I find also that Fuss-Catalan functions are shown rather easily to have
bounded derivatives of all orders; that is the second feature which allows
the LVR to work.

• Fuss-Catalan functions of order p also govern the leading term in the
N →∞ limit of random tensor models of rank p [Bonzom et all, 2011].
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Loop Vertex Representation and [Krajewski-R.-Sazonov]

The work of [Krajewski-R.-Sazonov,2019]

• The aim is to fuse the LVR [R.,2017] with that of ordinary cumulants
[Gurau-Krajewski,2014] for a complex matrix M with no symmetry.

• We apply the idea of reparametrization invariance to monomial
interactions of arbitrarily high even order.

• The key notion is to use the Fuss-Catalan function Tp defined to be the
solution analytic at the origin of the algebraic equation

zT p
p (z)− Tp(z) + 1 = 0 .

For any square matrix X we define the matrix-valued function

A(λ,X ) := XTp(−λX p−1)

and also an Nl by Nl square matrix Xl and an Nr by Nr square matrix Xr

through

Xl := MM†, Xr := M†M.
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Loop Vertex Representation and [Krajewski-R.-Sazonov]

A lemma of [Krajewski-R.-Sazonov,2019]

Lemma

In the sense of formal power series in λ

Z(λ,Nl ,Nr ) =

∫
dMdM† exp{−NrTrlXl + S(Xl ,Xr )}

where S, the loop vertex action is

S(Xl ,Xr ) = −Trlr log
[
1lr + λ

p−1∑
k=0

Ak(Xl)⊗lr A
p−1−k(Xr )

]
.

The Nl by Nl matrix Ak(Xl) acts on the left index of Hlr and the Nr by Nr

matrix Ap−1−k(Xr ) acts on the right index of Hlr , where Hl is the Hilbert space
with dimHl = Nl and Hr is the Hilbert space with dimHr = Nr .

This Lemma is proved by a change of variables M → P and we define P(M)
(up to unitary conjugation) through the implicit function formal power series
equation:

Yl := PP†, Yr := P†P, Xl := A(Yl), Xr := A(Yr ).
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Loop Vertex Representation and [Krajewski-R.-Sazonov]

The key result of [Krajewski-R.-Sazonov,2019]

Theorem
For any ε > 0 there exists η small enough such that the expansion defined by
F (λ,N) =

∑∞
n=1

1
n!

∑
T ∈Tn

AT is absolutely convergent and defines an analytic
function of λ, uniformly bounded in N, in the “pacman domain”

P(ε, η) := {0 < |λ| < η, | arg λ| < π − ε},

a domain which is uniform in N. Here absolutely convergent and uniformly
bounded in N means that for fixed ε and η as above there exists a constant K
independent of N such that for λ ∈ P(ε, η)

∞∑
n=1

1

n!

∑
T ∈Tn

|AT | ≤ K <∞.

where T is a LVR tree, AT is the corresponding amplitude and Tn is the set of
LVR trees with n vertices.

But it applies only to the simplest matrix with interaction λ(M̄M)p. We
thought that to deduce the case of Hermitian or symmetric matrices would be
relatively easy. In fact, it took us two years to understand and write down the
corresponding article!
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Loop Vertex Representation and [Krajewski-R.-Sazonov]

The work of [Krajewski-R.-Sazonov,2021]

• In [Krajewski-R.-Sazonov,2021] we extend the LVR to Hermitian matrices
and real symmetric matrices.

• Since this paper is a sequel to [Krajewski-R.-Sazonov,2019] we would like
to stress that the improved method introduced in this paper is both
simpler and more powerful. The basic formalism is still the LVR, joined to
Cauchy holomorphic matrix calculus as in [Krajewski-R.-Sazonov,2019].
But when [Krajewski-R.-Sazonov,2019] used contour integral parameters
attached to every vertex of the loop representation, this paper introduces
more contour integrals, one for each loop vertex corner. This results in
simpler bounds for the norm of the corner operators.

• For the Hermitian case it uses the one-to-one change of variables (not
singular for λ real positive)

K := H
√

1 + λp−1H2p−2, K 2 = H2 + λp−1H2p.
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Loop Vertex Representation and [Krajewski-R.-Sazonov]

The key result of [Krajewski-R.-Sazonov,2021]

Theorem

For any ε > 0 there exists η small enough such that the expansion in LVR trees
is absolutely convergent and defines an analytic function of λ, uniformly
bounded in N, in the uniform in N in a “pacman domain”

P(ε, η) :=

{
0 < |λ| < η, | arg λ| < π

2
+

π

p − 1
− ε
}
,

More precisely, for fixed ε and η as above there exists a constant O(1),
independent of N such that for λ ∈ P(ε, η)

∞∑
n=1

1

n!

∑
T ∈Tn

|AT | ≤ O(1) <∞ .

where T is again a LVR tree, AT is the corresponding amplitude, and Tn is the
set of LVR trees with n vertices.
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Outlook Actual work of R.

Actual work of R.

• In 2024 I submitted my paper entitled “Loop Vertex Representation for
Cumulants” to JMP. In 2025 the referee of JMP advised me to do two
papers instead of one.

• His advice is to construct first the free energy with sources (which is
logZ(λ,N, J) with an interaction λ(MM†)p for random matrix models),
then to write a paper on topological expansion by Weingarten calculus.

• So I followed the referee’s advice. My present aim is to publish first that
logZ(λ,N, J), the generated function of the cumulants, is an analytic
function inside a cardioid domain in the complex plane, In addition I want
to prove the Borel-LeRoy summability at the origin of the coupling
constant uniformly in the appropriate norm of |JJ†|.
• In a second time, I aim at constructing scalar cumulants by Weingarten

calculus and obtain explicit and convergent expansions for these scalar
cumulants, so as to prove their analyticity and Borel summability, again in
the appropriate norm of |JJ†| uniformly when N →∞.
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Outlook In the future

Variational LVE for Cumulants

I actually work with Vasily Sazonov to combines the LVE, the calculus of
variation of a very simple form (in the form of a mass renormalisation) and the
idea the cumulants.

• Applying the idea of choosing the initial approximation depending on the
coupling constant, we construct the analytic continuation of the
cumulants of the quartic matrix model beyond the standard LVE cardioid
over the branch cut and for arbitrary large couplings.

• It is non-trivial extension because of the sources J̄, J created some
difficulties. It maybe perhaps solved by using different colors, as in the
tensors.

• We want to extend the simple model to Hermitian matrices, the group
being U(N), symmetric matrices O(N), symplectic matrices Sp(N), or to
the ten different Gaussian random-matrix ensembles of
[Altland-Zirnbauer,2001].
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Outlook In the future

In the more distant future

For the more distant future I want to concentrate in hard problems and to do a
list of some seven or eight unsolved problems in constructive field theory or
constructive condensed matter...

Thanks for your attention!
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