
Universality of eigenvalue distributions 
of random tensors 

Naoki Sasakura
Yukawa Institute for Theoretical Physics, Kyoto University

Cost Action CaLISTA General Meeting 2025
Cartan, Generalised and Noncommutative Geometries, Lie Theory and Integrable Systems 

Meet Vision and Physical Models, Septemgber 14 - 22, 2025

Mainly based on N. Delporte, G. La Scala, NS, R. Toriumi, in preparation 

September 20, 2025



 §Introduction
Eigenvalue distributions of random matrices play important roles in 
various applications 

Mab vb = ζ va

ρ

ζ

 : eigenvaluesζ

An important property of them is the universalities in .  N → ∞

There are various types of universalities known.

Ex. Universality of Wigner’s semicircle law
Laszlo Erdos, Universality of Wigner random matrices: 
a Survey of Recent Results, arXiv:1004.0861 

The most basic would be 
The eigenvalue distributions of real, complex, quartanion 
Gaussian random matrices (GOE,GUE,GSE) lead to the 
semi-circle law.

 : Random matrixM



In this talk we want to show a result which may be the corresponding 
basic statement of the eigenvalue distributions of random tensors

We obtain the eigenvalue distributions of the Gaussian random 
tensors of various types (real/complex, symmetric/anti-symmetric/
no-symmetries, etc.)  have the universal form in N → ∞

ρ(z) ∼ eN B hp(z2
c /z2)

 : Universal functionhp( ⋅ )
 : Total dimensions of eigenvectorsN B

 : Phase transition point of QFTzc

 : Tensor eigenvaluez



§ Tensor eigenvalues/vectors
Qi, Lim, 2005, Cartwright-Sturmfels 2013

Terminologies

Tensor : Ta1a2⋯ap ai = 1,2,⋯, N

 : orderp

 : dimensionN

For simplicity, all  have common ai N

Real tensor : Ta1a2⋯ap
∈ ℝ

Complex tensor : Ta1a2⋯ap
∈ ℂ

Symmetric tensor : Ta1a2⋯ap
= Tσ(a1a2⋯ap)  : permutations of σ ai

Anti-symmetric tensor : Ta1a2⋯ap
= sgn(σ) Tσ(a1a2⋯ap)



Simplest example of eigenvalue/vector equation

Tabcwbwc = z wa

Real eigenpair equation of real symmetric tensor of order p = 3

 : Eigenvaluez ∈ ℝ
 ,  : Eigenvectorw ∈ ℝN |w | = 1

T ∈ sym (ℝN ⊗ ℝN ⊗ ℝN)

Because of non-linearity (unlike for matrix), we may instead 
consider an eigenvector equation by absorbing  to eigenvectorz

Tabcvbvc = va v ∈ ℝN (v =
1
z

w)

This is more convenient to treat, and practically equivalent. 

Eigenvalue z = |v |−1



Perturbations in gravitational dynamics
i
dαn

dt
= Tnmkl ᾱmαkαl

O.Evnin, 2104.09797

Susy/D-brane dynamics

W = Ta1a2⋯ap
ϕa1ϕa2⋯ϕap

Biggs, Maldacena, Narovlansky, 2309.08818

Quantum information theory

|Ψ⟩ = Ta1a2⋯ap
|a1⟩1 ⊗ |a2⟩2⋯ ⊗ |ap⟩p

Spin glasses (p-spin spherical model)

H = Ta1a2⋯ap
wa1

wa2
⋯wap

, |w | = 1

Artificial intelligence, Data analysis, ….

Crisanti, Sommers, 1992

c.f. Book of Qui, Chen, Chen

: Multi-partite states

Examples of applications



Computing eigenvalues/vectors of tensors is NP-hard. 

The number of eigenvalues is   ∼ econst. N ≫ N
Cartwright-Sturmfels 2013

Hillar-Lim 2009

Look similar to matrix eigen equations, but properties are 
largely different

Varieties of eigenvalue/vector equations. More distinct than 
matrices

real/complex, symmetric/anti-symmetric/no-symmetries, etc. 



§ Various tensor eigenvector equations
• Real eigenvector of real symmetric tensor

Ta1a2⋯ap
va2

va3
⋯vap

= va1

• Real eigenvectors of real tensor with independent indices

Ta1a2⋯ap
v(2)

a2
v(3)

a3
⋯v(p)

ap
= v(1)

a1

Ta1a2⋯ap
v(1)

a1
v(3)

a3
⋯v(p)

ap
= v(2)

a2

⋮
Ta1a2⋯ap

v(1)
a1

v(2)
a2

⋯v(p−1)
ap−1

= v(p)
ap

There are  eigenvectors, one for each index.p

z = |v(i) |2−p

Consistency requires  have the same size .v(i) |v(i) | = |v( j) |

Eigenvalue : z = |v |2−p



• Real eigenvectors of real anti-symmetric tensor

There exist  real eigenvectors. Consistency requires eigenvectors 
are orthogonal and have the same size , 

p
v(i) ⋅ v( j) = 0 |v(i) | = |v( j) |

1
(p − 1)!

ϵi1i2⋯ipTa1a2⋯ap
v(i2)

a2
v(i3)

a3
⋯v (ip)

ap
= v(i1)

a1 z = |v(i) |2−p

N. Delporte, G. La Scala, NS, R. Toriumi, in preparation

• Complex eigenvector of complex symmetric tensor

Ta1a2⋯ap
va2

va3
⋯vap

= v*a1

 : complex conjugation*

There is also a holomorphic version

S. Majumder, NS, PTEP 2024 (2024) 9, 093A01, 2408.01030 [hep-th]

Ta1a2⋯ap
va2

va3
⋯vap

= va1

z = |v |2−p



• Complex eigenvectors of complex tensor with independent indices

Ta1a2⋯ap
v(2)

a2
v(3)

a3
⋯v(p)

ap
= v(1)*

a1

Ta1a2⋯ap
v(1)

a1
v(3)

a3
⋯v(p)

ap
= v(2)*

a2

⋮

Ta1a2⋯ap
v(1)

a1
v(2)

a2
⋯v(p−1)

ap−1
= v(p)*

ap

z = |v(i) |2−p

There are  complex eigenvectors, one for each index.
Consistency requires eigenvectors have the same size

p
|v(i) | = |v( j) |

NS, PTEP 2024 (2024) 5, 053A04, arXiv:2404.03385 [hep-th]

This case is important for quantum information theory

|Ψ⟩ = Ta1a2⋯ap
|a1⟩1 ⊗ |a2⟩2⋯ ⊗ |ap⟩p : Multipartite states



§ Eigenvector distributions of random tensors

We rewrite distributions of eigenvectors of random tensors into 
partition functions of quantum field theories

Then we use techniques of quantum field theories to compute 
distributions 

The QFT method is powerful, intuitive, and general, and reveals 
properties of random tensors which have not been known.



fi(v, T ) = 0 (i = 1,2,…, m)

The eigenvector equations are generally 

 : Eigenvectorsv
 : TensorT

Then the distribution of the eigenvectors of a tensor  isT

ρ(v, T ) =
#sol

∑
α=1

δ (v − vα(T ))

= | det J(v, T ) |
m

∏
i=1

δ( fi(v, T ))

J(v, T)ai =
∂fi(v, T)

∂va
: Jacobian for change of variables of 
  the delta functions

Linear in T

QFT methods

vα(T ) : Solutions of eigenvector 
equations for  
            

T



Then the distribution for Gaussian random tensor is

ρ(v) =
1
𝒩 ∫ dT e−α |T|2

ρ(v, T ) 𝒩 = ∫ dT e−α|T|2

=
1
𝒩 ∫ dT e−α |T|2

| det J(v, T ) |
m

∏
i=1

δ( fi(v, T ))

Distinct treatments of  lead to two kinds of distributions| det J(v, T ) |

δ(x) =
1

2π ∫ dλ eiλx

| det J(v, T ) | → det J(v, T ) = ∫ dψ̄dψ e ψ̄ J(v,T) ψ

•  : Signed distribution. Easier to compute. Not positive def.ρsigned(v)

•  : Genuine distribution. Harder but genuine ρgenuine(v)

 :Fermionsψ̄, ψ

| det J(v, T ) | = lim
ϵ→+0

det(JTJ + ϵI)
det(JTJ + ϵI)

Fermions
Bosons



ρsigned(v) =
1
𝒩 ∫ dTdλdψ̄dψ eSsigned

Ssigned = − α |T |2 + i λj fj(v, T ) + ψ̄a
∂fi(v, T )

∂va
ψi (+SGF)

QFT expressions

ρgenuine(v) =
1
𝒩 ∫ dTdλdϕdψ̄dψ eSgenuine

Sgenuine = − α |T |2 + i λj fj(v, T )

+ψ̄, ψ, ϕ quadratically coupled with 
∂fi(v, T )

∂va

(+SGF)
(Gauge-fixing  needed for complex or anti-symmetric case) SGF



§ Computing  QFT expressions
Because the eigenvector equations  are linear in , the 
integration over  are Gaussian, and can be done explicitly.  

fi(v, T ) = 0 T
T, λ

Then we obtain

ρsigned( |v | ) = g( |v | ) ZF( |v | )

ρgenuine( |v | ) = g( |v | ) ZBF( |v | )

(Maybe overall minus sign)

Partition function of QFT of fermions with four-fermi interactions. 
Coupling ∝ |v |2(p−2)

  ZF( |v | ) = ∫ dψ̄dψ eSF

Partition function of qft of bosons and fermions with four-body 
interactions. Coupling ∝ |v |2(p−2)

 ZBF( |v | ) = ∫ dψ̄dψdϕ eSBF



SF =
3

∑
i=1

(ψ̄1
i ⋅ ψ1

i + ψ̄2
i ⋅ ψ2

i ) +
|v |2

α

3

∑
i<j

(ψ̄1
i ⊗ ψ2

j + ψ̄1
j ⊗ ψ2

i ) ⋅ (ψ̄2
i ⊗ ψ1

j + ψ̄2
j ⊗ ψ1

i )

Ex. Complex random tensor of order  and dimension p = 3 N

 :  dimensional fermionsψ̄ i
j, ψ i

j N − 1

By expanding  in terms of four-fermi interactions, one can always 
explicitly compute  :

SF
ZF

ρsigned( |v | ) = g( |v | ) ⋅ (Polynomial fn. of x = |v |2(p−2)  of finite order)

0.1 0.2 0.3 0.4

-20

-15

-10

-5

{3, 2, 2}

Comparisons with Monte Carlo 
simulations give good crosschecks



On the other hand, computing  for  seems challenging for 
finite , because of presence of bosons. (Except real symmetric case)

ZBF ρgenuine
N

There is partial susy, but still seems difficult to compute.

In the large-  limit, however, one can rely on some saddle point 
approximations.

N

(iii) Both  and  have a phase transition point 
at the same value  , separating the weak&strong 
coupling regimes

ZF( |v | ) ZBF( |v | )
|v | = |v |c

(i) A method based on Schwinger-Dyson equations is powerful. 

(ii) Picard-Lefschetz theory gives a rigid method. 



Illustration of Schwinger-Dyson method

Seff(Q) = ⟨SF⟩ − N log Q ∼ N (Q − g̃Q2 − log Q)

 : working assumption⟨ψ̄aψb⟩ = Q δab

g̃ = gN

∂Seff(Q*)
∂Q*

= 0 ZF ∼ eN Seff(Q*) Q* =
1 − 1 − 8g

4g

Phase transition at g =
1
8

       SF = ψ̄ ⋅ ψ − g(ψ̄ ⋅ ψ)2 g ∝ |v |2(p−2)



In  we found a universal form across various random tensors 
(complex/real, symmetric/anti-symmetric/no symmetries) 

N → ∞

N. Delporte, G.L. Scala, NS, R. Toriumi, in preparation

ρsigned(z) ∼ Re [eN B hp(z2
c /z2)]

ρgenuine(z) ∼ eN B Re[hp(z2
c /z2)]

hp(x) =
1
2

log(p − 1) +
1
x (−1 +

2
p

− 1 − x) +
1
2

log x − log(1 − 1 − x)

 : Total dimensions of eigenvectorsN B

Phase transition point of 
QFT of each case

 and  are not universal, dependent on each tensor eigen 
problem.  
N B zc

 is universal, only depends on the order  of tensor (#indices)hp( ⋅ ) p

 : Eigenvalue z = |v |2−p

 :zc



Types of tensor

Real symmetric

Real, indep indices 

Real anti-symmetric

Complex, indep indices

Complex symmetric

N B z2
c

N 2N(p − 1)/(αp)

N p 2N/(αp(p − 2)!)

2 N p 4N(p − 1)/α

2 N

N p 2N(p − 1)/α

List of non-universal parameters

4N(p − 1)/(αp)



Eigenvalue distributions of random tensors can explicitly be 
computed by QFT methods. QFT is powerful and general. 

§Summary and future problems

We have found a universal expression of the eigenvalue 
distributions of Gaussian random tensors across various types of 
tensors.

This would be a starting point toward showing universalities of 
random tensor eigenvalue distributions. 

A next question would be to study non-Gaussian random tensors.


