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Problem:  To formulate physics on quantum spacetimes we need 
variational calculus
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to connect the path integral to Hamilton quantisation

at classical level: derive Euler-Lagrance eqm and Noether charges 

Solved Today:  for a scalar field on a lattice / discrete Abelian 
group as spacetime

Exactly conserved charges, the lattice is not merely an approx but a 
discrete NCG could even be finite

For example on  if  obeys the discrete wave equation
   then                                          is constant 

ℤ ϕ
(Δℤ + m2)ϕ = 0
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A, where E is a vector bundle. We focus on the case where the latter is trivial with
real sections A⌦R, so that the jet bundle has sections J1 over A as in [20]. Next,
we suppose that the jet bundle itself is trivial and that the fibre is classical, so there
is an algebra which we denote C(J1) := A ⌦ C(R1) where C(R1) is a suitable
class of functions (we will use polynomials in an infinite number of variables). In
the classical case A = C1(M) for a smooth manifold M but we will also allow
that M could be discrete and in this case we just write C(M) for a suitable class
of functions, such as with compact support. In such cases one has an actual space
J1 = M ⇥ R1 where the R1 encodes the higher tangents as the jet bundle fibre.
This will be our main case in the present work, with noncommutative A considered
elsewhere. We still need A to be equipped with a space of di↵erential forms ⌦1(A) as
common to all main approaches to noncommutative di↵erential geometry including
[7] (where it is derived from a Dirac operator), but for the discrete case this exactly
means a graph structure on M , where the 1-forms are labelled by the arrows.

Secondly, which is the main result at a technical level, we need to construct
a noncommutative exterior algebra which we denote ⌦(J1) on C(J1) in such a
way as to form a double complex with vertical and horizontal exterior derivatives
matching the classical case. This then allows us to follow the ideas of Anderson,
Zuckerman [1, 27] and others in the classical theory of variational calculus to write
down Euler-Lagrange equations of motion associated to a choice of Lagrangian for-
mulated in terms of ⌦(J1), and (here we have only partial results) a Noether’s
theorem associated to symmetries. Our constructions are necessarily quite mathe-
matical but our final results are self-contained and explicit. As far as we know even
our conserved energy

E[�] = �1

2
(@+�)(@��) +

m2

2
�2

of a free scalar field of mass m on a lattice line Z appears to be new (this is the
simplest case of Corollary 4.3). Here, (@±�)(i) = �(i ± 1) � �(i) and the claim is
that E[�] is constant on Z if � obeys the discrete wave equation (�Z +m2)� = 0,
where �Z� = @+ + @� is the usual discrete Laplacian. On a literature search, we
noted [6], which does not appear to have an exactly conserved stress tensor.

An outline of the paper is as follows. Since the paper involves a number of
less familiar methods, including the variational double complex, we will build up
the theory in several layers starting with a preliminary Section 2 explaining in
detail how everything proceeds in the case of classical field theory on a classical
manifold M . Section 3 then gives the discrete version where M is replaced by
a lattice line Z, as the easiest case of our theory. Section 4 then covers Zm and
Z1,m�1 (i.e. Euclidean and Minkowski lattice cases) and more generally for the
‘spacetime’ any discrete group G provided we can construct the jet bundle (this
includes all Abelian groups but in principle also some nonAbelian groups such as
the group S3 of permutations of three elements [20]). Section 5 looks at scalar fields
with a general metric and/or U(1) gauge field on the lattice as background, using
methods of quantum Riemannian geometry[2] and lattice gauge theory[21]. We end
with some concluding remarks in Section 6 about further work.

2. Algebraic classical variational calculus on M .

In this preliminary section, we will recap how the abstract theory of calculus of
variations appears in the case of a classical manifold. This theory is known cf[1, 27]



I Graphs as quantum differential geometry

df = ∑
x→y

( f(y) − f(x))ex→y

Ω1 = spanℂ{ex→y} f . ex→y = f(x)ex→y, ex→y . f = ex→y f(y)

e*x→y = − ey→x

metric g = ∑
x→y

gx→yex→y ⊗ ey→x ∈ Ω1 ⊗A Ω1; gx→y ∈ ℝ∖{0}

edge symmetric if gx→y = gy→x  real `square-length’ on each edge

Propn: X a set,  ,        A = ℂ(X) Ω1, * bidirected graph 
with vertices X

Path algebra, in degree i   TAΩ1 = Ω1⊗Ai = {ex1→x2
⊗ ex2→x3

⋯ ⊗ exi−1→xi
}

 =  relations  Ωmin TAΩ1/ ∑
y:p→y→q

ep→y ∧ ey→q = 0 ∀p, q

may take further relations eg for Cayley graph on a discrete group



Cayley graph on discrete group X=G generated by 𝒞 ⊆ G∖{e}

Arrows =  {x → xa, a ∈ 𝒞}  for basic 1-forms (`tetrad’)Ω1 = ℂ(X){ea}

ea = ∑
x→xa

δxdδxa,
eaf = Ra( f )ea, Ra( f )(x) = f(xa)

df = ∂a f )ea, ∂a = Ra − id

g = ∑
a

gaea ⊗ ea−1(a)                  (b)Ω = ℂ(G)Λ

Grassmann algebra on 
  if G abelian
Λ =
{ea} metric tensor forced to be `antidiagonal’

For example on ,  , ℤ Ω1 = ℂ(ℤ){e±}
e±f = (R± f )e±

(R± f )(i) = f(i ± 1)
(∂± f )(i) = f(i ± 1) − f(i))Flat metric g = e+ ⊗ e− + e− ⊗ e+

Laplacian   Δℤ = −
1
2

( , )∇d∇e± = 0

(Δℤ f )(i) = f(i + 1) + f(i − 1) − 2f(i)

= (∂+ + ∂−)f

QRG fully worked out for any edge-symmetric metric on , zero curvature
iff  a geometric sequence              [SM Class. Quantum Grav 36 (2019)]

ℤ
g+(i) = αi



II Recap of jet bundles and classical varcalc on M

Space of fields ,     sections of jet bundleϕ ∈ F = C∞(M) j∞ : F → 𝒥∞

QUANTUM VARIATIONAL CALCULUS ON A LATTICE 3

but we need to recall it in an algebraic form that we can then ‘quantize’. This
also identifies all the geometric ingredients that we need, some of which (notably
Lie derivative and interior products) are less clear for a general noncommutative
geometry, but clear enough in a variety of examples. Another feature is that we
work at the polynomial level at the level of the jet bundle coordinates.

2.1. Jet bundle and variational bicomplex. We focus on E = M ⇥R ! M as
the bundle for matter fields so that �(E) = C1(M) = F is the ‘space of matter
fields’ as a linear space, where a function f 2 F is viewed as a map M ! E
sending x 7! (x,�(x)). The jet bundle here is trivial and this allows us to write jet
prolongation map j1 : F ! �(J1) explicitly as

J1 = M ⇥ RN = {(x, u, ui, uij , · · · )},

j1(�)(x) = (x,�(x), @i�(x), @i@j�(x), · · · ) = {(x, @I�)}
where the indices i run over the dimension of M , I = {i1, · · · , in} are multi-indices
and @I = @i1 · · · @in . We also regard xi, uI tautologically as coordinates on J1 so
that uI(j1(�)(x)) = (@I�)(x). We define the evaluation map

e1 : M ⇥ F ! J1, (x,�) 7! j1(�)(x)

which we assume in an appropriate context is surjective and smooth, so that we
get a pull-back inclusion at the level of the exterior algebra ⌦,

e⇤1 : ⌦(J1),!⌦(M)⌦⌦(F ).

The key idea here is that the right-hand side, as a graded tensor product, is auto-
matically a double complex with usual horizontal and vertical di↵erentials dM , dF ,
respectively, which then induces a double complex structure on ⌦(J1) with dH , dV
corresponding to these.

To see what this looks like, we assume that ⌦1(J1) = C1(J1){dxi, duI} and
that dH , dV are induced as

e⇤1(�) = �(j1(·)(·)), e⇤1(dH�) = dMe⇤1(�), e⇤1(dV �) = dF e
⇤
1(�)

for � 2 C1(J1), so in particular

e⇤1(dH�) = @i
�
�(j1(·)(·))

�
dxi =

✓
(@i�) (j1(·)(·)) +

✓
@�

@uI

◆
(j1(·)(·))@iI(·)(·)

◆
dxi

where we evaluated at f 2 F and use the chain rule. However, we can compute

e⇤1(dxi) = de⇤1(xi) = dxi, e⇤1(duI) = d@I(·)(·) = (@iI(·))(·)dxi + dF@I(·)(·).
Then

e⇤1
�
(@i�)dx

i
�
= e⇤1 (@i�) dx

i = @i�(j1(·)(·))dxi,

e⇤1

✓
@�

@uI

uiIdx
i

◆
=

@�

@uI

(j1(·)(·))@iI(·)(·)dxi.

Comparing with the above, we see that

dH� = (Di�)dx
i, Di� := @i�+

X

I

@�

@uI

uiI .

Similarly,

e⇤1(dV �) = dF�(j1(·)(·)) = @�

@uI

(j1(·)(·))dF@I(·)(·) = e⇤1

✓✓
@�

@uI

◆
(duI � uiIdx

i)

◆
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J⋯⋯⋯

0 0

d

d

dh

dh dh dh
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Anderson variational bicomplex
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e.g.
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matically a double complex with usual horizontal and vertical di↵erentials dM , dF ,
respectively, which then induces a double complex structure on ⌦(J1) with dH , dV
corresponding to these.

To see what this looks like, we assume that ⌦1(J1) = C1(J1){dxi, duI} and
that dH , dV are induced as

e⇤1(�) = �(j1(·)(·)), e⇤1(dH�) = dMe⇤1(�), e⇤1(dV �) = dF e
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for � 2 C1(J1), so in particular
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where we evaluated at f 2 F and use the chain rule. However, we can compute
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Then
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Comparing with the above, we see that
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but we need to recall it in an algebraic form that we can then ‘quantize’. This
also identifies all the geometric ingredients that we need, some of which (notably
Lie derivative and interior products) are less clear for a general noncommutative
geometry, but clear enough in a variety of examples. Another feature is that we
work at the polynomial level at the level of the jet bundle coordinates.

2.1. Jet bundle and variational bicomplex. We focus on E = M ⇥R ! M as
the bundle for matter fields so that �(E) = C1(M) = F is the ‘space of matter
fields’ as a linear space, where a function f 2 F is viewed as a map M ! E
sending x 7! (x,�(x)). The jet bundle here is trivial and this allows us to write jet
prolongation map j1 : F ! �(J1) explicitly as

J1 = M ⇥ RN = {(x, u, ui, uij , · · · )},

j1(�)(x) = (x,�(x), @i�(x), @i@j�(x), · · · ) = {(x, @I�)}
where the indices i run over the dimension of M , I = {i1, · · · , in} are multi-indices
and @I = @i1 · · · @in . We also regard xi, uI tautologically as coordinates on J1 so
that uI(j1(�)(x)) = (@I�)(x). We define the evaluation map

e1 : M ⇥ F ! J1, (x,�) 7! j1(�)(x)

which we assume in an appropriate context is surjective and smooth, so that we
get a pull-back inclusion at the level of the exterior algebra ⌦,

e⇤1 : ⌦(J1),!⌦(M)⌦⌦(F ).

The key idea here is that the right-hand side, as a graded tensor product, is auto-
matically a double complex with usual horizontal and vertical di↵erentials dM , dF ,
respectively, which then induces a double complex structure on ⌦(J1) with dH , dV
corresponding to these.

To see what this looks like, we assume that ⌦1(J1) = C1(J1){dxi, duI} and
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for � 2 C1(J1), so in particular
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�
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where we evaluated at f 2 F and use the chain rule. However, we can compute

e⇤1(dxi) = de⇤1(xi) = dxi, e⇤1(duI) = d@I(·)(·) = (@iI(·))(·)dxi + dF@I(·)(·).
Then
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so that

dV � =
X

I
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@uI

(duI � uiIdx
i).

As a check, we see that d = dH+dV holds on C1(J1). This induces a factorisation
of the deRham complex into a double complex

⌦(J1) =
M

p,q�0

⌦p,q(J1)

where p, q are the horizontal and vertical degrees respectively and elements of degree
p, q are of the form

X
�0(dH�1) · · · (dH�p) ^ (dV  1) ^ · · · ^ (dV  q)

for �i, i 2 C1(J1).
Note that it does not matter too much what dF@I is as it cancels in the calcula-

tion, but we can let � =
R
�y�ydy be an expansion in a delta-function �y(x) basis

and coordinatize F by the pointwise values {�y | y 2 R}. Then if  2 C1(F ),
dF =

R
dy @ 

@�y d�y and hence in particular,

e⇤1(duI) = (@iI(·))(·)dxi+

Z
dy

✓
@

@�y
@I(·)

◆
(·)d�y = (@iI(·))(·)dxi+

Z
dy(@I�y)d�

y

where we assume the �y functions have been smoothed so that we can di↵erentiate
them as functions of x. The second term is constant on F and we have also sup-
pressed that it is a function on M . We do not have to chose a �-function basis and
more reasonable here would be a plane-wave basis i.e. to coordinatize � 2 F by its
Fourier coe�cients. These matters can be made more precise by usual methods in
mathematical physics but this is not needed for our purposes.

2.2. Euler-Lagrange equations. In order to use the above setting to derive the
Euler-Lagrange (EL) equations, let LVol 2 ⌦top,0(J1), where L is a first-order
Lagrangian L = L(u, ui) 2 C1(J1). The action is then defined as

S[�] :=

Z

M

e⇤1(LVol)(x,�)

and its variation reads

dFS[�] =

Z

M

e⇤1(dV L ^Vol)(x,�).

Computing the RHS gives dV L ^ Vol = EL � dh⇥ for EL 2 ⌦top,1(J1) the EL
form and ⇥ 2 ⌦top�1,1(J1) the boundary term. Explicitly, we have

dV L ^Vol =
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dV u+
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but dHdV u = �dV dHu = �dV u ^ dxi. Setting Voli := ◆@i
Vol, we write
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✓
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✓
@L

@ui

◆
dV u ^Voli

=

✓
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✓
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but we need to recall it in an algebraic form that we can then ‘quantize’. This
also identifies all the geometric ingredients that we need, some of which (notably
Lie derivative and interior products) are less clear for a general noncommutative
geometry, but clear enough in a variety of examples. Another feature is that we
work at the polynomial level at the level of the jet bundle coordinates.

2.1. Jet bundle and variational bicomplex. We focus on E = M ⇥R ! M as
the bundle for matter fields so that �(E) = C1(M) = F is the ‘space of matter
fields’ as a linear space, where a function f 2 F is viewed as a map M ! E
sending x 7! (x,�(x)). The jet bundle here is trivial and this allows us to write jet
prolongation map j1 : F ! �(J1) explicitly as

J1 = M ⇥ RN = {(x, u, ui, uij , · · · )},

j1(�)(x) = (x,�(x), @i�(x), @i@j�(x), · · · ) = {(x, @I�)}
where the indices i run over the dimension of M , I = {i1, · · · , in} are multi-indices
and @I = @i1 · · · @in . We also regard xi, uI tautologically as coordinates on J1 so
that uI(j1(�)(x)) = (@I�)(x). We define the evaluation map

e1 : M ⇥ F ! J1, (x,�) 7! j1(�)(x)

which we assume in an appropriate context is surjective and smooth, so that we
get a pull-back inclusion at the level of the exterior algebra ⌦,

e⇤1 : ⌦(J1),!⌦(M)⌦⌦(F ).

The key idea here is that the right-hand side, as a graded tensor product, is auto-
matically a double complex with usual horizontal and vertical di↵erentials dM , dF ,
respectively, which then induces a double complex structure on ⌦(J1) with dH , dV
corresponding to these.

To see what this looks like, we assume that ⌦1(J1) = C1(J1){dxi, duI} and
that dH , dV are induced as

e⇤1(�) = �(j1(·)(·)), e⇤1(dH�) = dMe⇤1(�), e⇤1(dV �) = dF e
⇤
1(�)

for � 2 C1(J1), so in particular

e⇤1(dH�) = @i
�
�(j1(·)(·))

�
dxi =

✓
(@i�) (j1(·)(·)) +

✓
@�

@uI

◆
(j1(·)(·))@iI(·)(·)

◆
dxi

where we evaluated at f 2 F and use the chain rule. However, we can compute

e⇤1(dxi) = de⇤1(xi) = dxi, e⇤1(duI) = d@I(·)(·) = (@iI(·))(·)dxi + dF@I(·)(·).
Then

e⇤1
�
(@i�)dx

i
�
= e⇤1 (@i�) dx

i = @i�(j1(·)(·))dxi,

e⇤1

✓
@�

@uI

uiIdx
i

◆
=

@�

@uI

(j1(·)(·))@iI(·)(·)dxi.

Comparing with the above, we see that

dH� = (Di�)dx
i, Di� := @i�+

X

I

@�

@uI

uiI .

Similarly,

e⇤1(dV �) = dF�(j1(·)(·)) = @�

@uI

(j1(·)(·))dF@I(·)(·) = e⇤1

✓✓
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@uI

◆
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◆
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but we need to recall it in an algebraic form that we can then ‘quantize’. This
also identifies all the geometric ingredients that we need, some of which (notably
Lie derivative and interior products) are less clear for a general noncommutative
geometry, but clear enough in a variety of examples. Another feature is that we
work at the polynomial level at the level of the jet bundle coordinates.

2.1. Jet bundle and variational bicomplex. We focus on E = M ⇥R ! M as
the bundle for matter fields so that �(E) = C1(M) = F is the ‘space of matter
fields’ as a linear space, where a function f 2 F is viewed as a map M ! E
sending x 7! (x,�(x)). The jet bundle here is trivial and this allows us to write jet
prolongation map j1 : F ! �(J1) explicitly as

J1 = M ⇥ RN = {(x, u, ui, uij , · · · )},

j1(�)(x) = (x,�(x), @i�(x), @i@j�(x), · · · ) = {(x, @I�)}
where the indices i run over the dimension of M , I = {i1, · · · , in} are multi-indices
and @I = @i1 · · · @in . We also regard xi, uI tautologically as coordinates on J1 so
that uI(j1(�)(x)) = (@I�)(x). We define the evaluation map

e1 : M ⇥ F ! J1, (x,�) 7! j1(�)(x)

which we assume in an appropriate context is surjective and smooth, so that we
get a pull-back inclusion at the level of the exterior algebra ⌦,

e⇤1 : ⌦(J1),!⌦(M)⌦⌦(F ).

The key idea here is that the right-hand side, as a graded tensor product, is auto-
matically a double complex with usual horizontal and vertical di↵erentials dM , dF ,
respectively, which then induces a double complex structure on ⌦(J1) with dH , dV
corresponding to these.

To see what this looks like, we assume that ⌦1(J1) = C1(J1){dxi, duI} and
that dH , dV are induced as

e⇤1(�) = �(j1(·)(·)), e⇤1(dH�) = dMe⇤1(�), e⇤1(dV �) = dF e
⇤
1(�)

for � 2 C1(J1), so in particular

e⇤1(dH�) = @i
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�(j1(·)(·))

�
dxi =

✓
(@i�) (j1(·)(·)) +
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where we evaluated at f 2 F and use the chain rule. However, we can compute

e⇤1(dxi) = de⇤1(xi) = dxi, e⇤1(duI) = d@I(·)(·) = (@iI(·))(·)dxi + dF@I(·)(·).
Then

e⇤1
�
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(j1(·)(·))@iI(·)(·)dxi.

Comparing with the above, we see that

dH� = (Di�)dx
i, Di� := @i�+
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Similarly,

e⇤1(dV �) = dF�(j1(·)(·)) = @�
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so that

dV � =
X

I

@�

@uI

(duI � uiIdx
i).

As a check, we see that d = dH+dV holds on C1(J1). This induces a factorisation
of the deRham complex into a double complex

⌦(J1) =
M

p,q�0

⌦p,q(J1)

where p, q are the horizontal and vertical degrees respectively and elements of degree
p, q are of the form

X
�0(dH�1) · · · (dH�p) ^ (dV  1) ^ · · · ^ (dV  q)

for �i, i 2 C1(J1).
Note that it does not matter too much what dF@I is as it cancels in the calcula-

tion, but we can let � =
R
�y�ydy be an expansion in a delta-function �y(x) basis

and coordinatize F by the pointwise values {�y | y 2 R}. Then if  2 C1(F ),
dF =

R
dy @ 

@�y d�y and hence in particular,

e⇤1(duI) = (@iI(·))(·)dxi+

Z
dy

✓
@

@�y
@I(·)

◆
(·)d�y = (@iI(·))(·)dxi+

Z
dy(@I�y)d�

y

where we assume the �y functions have been smoothed so that we can di↵erentiate
them as functions of x. The second term is constant on F and we have also sup-
pressed that it is a function on M . We do not have to chose a �-function basis and
more reasonable here would be a plane-wave basis i.e. to coordinatize � 2 F by its
Fourier coe�cients. These matters can be made more precise by usual methods in
mathematical physics but this is not needed for our purposes.

2.2. Euler-Lagrange equations. In order to use the above setting to derive the
Euler-Lagrange (EL) equations, let LVol 2 ⌦top,0(J1), where L is a first-order
Lagrangian L = L(u, ui) 2 C1(J1). The action is then defined as

S[�] :=

Z

M

e⇤1(LVol)(x,�)

and its variation reads

dFS[�] =

Z

M

e⇤1(dV L ^Vol)(x,�).

Computing the RHS gives dV L ^ Vol = EL � dh⇥ for EL 2 ⌦top,1(J1) the EL
form and ⇥ 2 ⌦top�1,1(J1) the boundary term. Explicitly, we have

dV L ^Vol =

✓
@L

@u
dV u+

@L

@ui

dV ui

◆
^Vol

but dHdV u = �dV dHu = �dV u ^ dxi. Setting Voli := ◆@i
Vol, we write

dV L ^Vol =
@L

@u
dV u ^Vol� @L

@u1
dHdV u ^Voli

=
@L

@u
dV u ^Vol� dH

✓
@L

@ui

dV u ^Voli

◆
+ dH

✓
@L

@ui

◆
dV u ^Voli

=

✓
@L

@u
�Di

✓
@L

@ui

◆◆
dV u ^Vol� dH

✓
@L

@ui

dV u ^Voli

◆
.
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As a check, we see that d = dH+dV holds on C1(J1). This induces a factorisation
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where p, q are the horizontal and vertical degrees respectively and elements of degree
p, q are of the form

X
�0(dH�1) · · · (dH�p) ^ (dV  1) ^ · · · ^ (dV  q)

for �i, i 2 C1(J1).
Note that it does not matter too much what dF@I is as it cancels in the calcula-

tion, but we can let � =
R
�y�ydy be an expansion in a delta-function �y(x) basis

and coordinatize F by the pointwise values {�y | y 2 R}. Then if  2 C1(F ),
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where we assume the �y functions have been smoothed so that we can di↵erentiate
them as functions of x. The second term is constant on F and we have also sup-
pressed that it is a function on M . We do not have to chose a �-function basis and
more reasonable here would be a plane-wave basis i.e. to coordinatize � 2 F by its
Fourier coe�cients. These matters can be made more precise by usual methods in
mathematical physics but this is not needed for our purposes.

2.2. Euler-Lagrange equations. In order to use the above setting to derive the
Euler-Lagrange (EL) equations, let LVol 2 ⌦top,0(J1), where L is a first-order
Lagrangian L = L(u, ui) 2 C1(J1). The action is then defined as

S[�] :=

Z
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and its variation reads

dFS[�] =

Z
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e⇤1(dV L ^Vol)(x,�).

Computing the RHS gives dV L ^ Vol = EL � dh⇥ for EL 2 ⌦top,1(J1) the EL
form and ⇥ 2 ⌦top�1,1(J1) the boundary term. Explicitly, we have

dV L ^Vol =

✓
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◆
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but dHdV u = �dV dHu = �dV u ^ dxi. Setting Voli := ◆@i
Vol, we write

dV L ^Vol =
@L

@u
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As a check, we see that d = dH+dV holds on C1(J1). This induces a factorisation
of the deRham complex into a double complex

⌦(J1) =
M

p,q�0

⌦p,q(J1)

where p, q are the horizontal and vertical degrees respectively and elements of degree
p, q are of the form

X
�0(dH�1) · · · (dH�p) ^ (dV  1) ^ · · · ^ (dV  q)

for �i, i 2 C1(J1).
Note that it does not matter too much what dF@I is as it cancels in the calcula-

tion, but we can let � =
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�y�ydy be an expansion in a delta-function �y(x) basis
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where we assume the �y functions have been smoothed so that we can di↵erentiate
them as functions of x. The second term is constant on F and we have also sup-
pressed that it is a function on M . We do not have to chose a �-function basis and
more reasonable here would be a plane-wave basis i.e. to coordinatize � 2 F by its
Fourier coe�cients. These matters can be made more precise by usual methods in
mathematical physics but this is not needed for our purposes.

2.2. Euler-Lagrange equations. In order to use the above setting to derive the
Euler-Lagrange (EL) equations, let LVol 2 ⌦top,0(J1), where L is a first-order
Lagrangian L = L(u, ui) 2 C1(J1). The action is then defined as
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Computing the RHS gives dV L ^ Vol = EL � dh⇥ for EL 2 ⌦top,1(J1) the EL
form and ⇥ 2 ⌦top�1,1(J1) the boundary term. Explicitly, we have
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so that

dV � =
X

I

@�

@uI

(duI � uiIdx
i).

As a check, we see that d = dH+dV holds on C1(J1). This induces a factorisation
of the deRham complex into a double complex

⌦(J1) =
M

p,q�0

⌦p,q(J1)

where p, q are the horizontal and vertical degrees respectively and elements of degree
p, q are of the form

X
�0(dH�1) · · · (dH�p) ^ (dV  1) ^ · · · ^ (dV  q)

for �i, i 2 C1(J1).
Note that it does not matter too much what dF@I is as it cancels in the calcula-

tion, but we can let � =
R
�y�ydy be an expansion in a delta-function �y(x) basis

and coordinatize F by the pointwise values {�y | y 2 R}. Then if  2 C1(F ),
dF =

R
dy @ 

@�y d�y and hence in particular,

e⇤1(duI) = (@iI(·))(·)dxi+

Z
dy

✓
@

@�y
@I(·)

◆
(·)d�y = (@iI(·))(·)dxi+

Z
dy(@I�y)d�

y

where we assume the �y functions have been smoothed so that we can di↵erentiate
them as functions of x. The second term is constant on F and we have also sup-
pressed that it is a function on M . We do not have to chose a �-function basis and
more reasonable here would be a plane-wave basis i.e. to coordinatize � 2 F by its
Fourier coe�cients. These matters can be made more precise by usual methods in
mathematical physics but this is not needed for our purposes.

2.2. Euler-Lagrange equations. In order to use the above setting to derive the
Euler-Lagrange (EL) equations, let LVol 2 ⌦top,0(J1), where L is a first-order
Lagrangian L = L(u, ui) 2 C1(J1). The action is then defined as
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Z
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and its variation reads

dFS[�] =

Z
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e⇤1(dV L ^Vol)(x,�).

Computing the RHS gives dV L ^ Vol = EL � dh⇥ for EL 2 ⌦top,1(J1) the EL
form and ⇥ 2 ⌦top�1,1(J1) the boundary term. Explicitly, we have

dV L ^Vol =
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dV u+
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dV ui

◆
^Vol

but dHdV u = �dV dHu = �dV u ^ dxi. Setting Voli := ◆@i
Vol, we write

dV L ^Vol =
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dV u ^Vol� @L

@u1
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✓
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+ dH

✓
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dV u ^Voli

=

✓
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✓
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boundary formzero var EL = 0
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and we find the EL and boundary term to be

(1) EL =

✓
@L

@u
�Di

✓
@L

@ui

◆◆
dV u ^Vol, ⇥ =

@L

@ui

dV u ^Voli.

This result can be generalised to Lagrangians including higher derivative terms uI

[1], but 1st order Lagrangians that are functions of one derivative are su�cient for
us.

Example 2.1. We consider (non-relativistic) classical mechanics in 1 spatial di-
mension by taking the base M = R as the time dimension. The fibre R of the
bundle R ⇥ R then represents the space dimension and a particle trajectory is a
section of this as specified by a function � = q : R ! R. The action is

S[q] =

Z ⇣m
2
q̇2 � V (q)

⌘
dt

with q̇ := @tq and V (q) a potential term, resulting in the Lagrangian L = m
2

2 u2
t
�

V (u). The EL form is

EL =

✓
�@V (u)

@u
�mutt

◆
dV u ^ dt,

which recovers Newton’s equation for a particle in a potential

mq̈ = �@V (q)

@q
.

The boundary form is ⇥ = mutdV u.

Example 2.2. Consider free scalar field theory on baseM = Rn with the Euclidean
metric or M = R1,n�1 with the Minkowski metric, both denoted by g, then the
action is

S[�] =
1

2

Z
(gij@i�@j��m2�2)dnx

corresponding to L = 1
2 (g

ijuiuj � m2u2). The EL form is EL = �(m2u +
gijuij)dV u ^ dnx which recovers the Klein-Gordon equation (gij@i@j + m2)� = 0
for the metrics in question. The boundary form is ⇥ = gijujdV u ^Voli.

2.3. Symmetries and Noether’s Theorem. We start with some general back-
ground following [1] for a classical manifold as base M and E ! M a vector bundle.
Symmetries at the infinitesimal level are given by a vector field on the total space
of E, in local coordinates

XE = Xi@i +Xa
@

@ua

where the index a runs over the fiber dimension in E. Such vector fields have a
canonical prolongation to vector field on J1 [1] given by

X1 = Xi@i +Xa

I

@

@ua

I

, Xa

I
= DI(X

a �Xiua

i
) +Xiua

iI
.

This can be split into horizontal and vertical components X1 = XH + XV with
respect to the contact structure,

XH = XiDi, XV = DI(X
a �Xiua

i
)

@

@ua

I

,
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dV ui
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Vol, we write

dV L ^Vol =
@L

@u
dV u ^Vol� @L

@u1
dHdV u ^Voli

=
@L

@u
dV u ^Vol� dH

✓
@L

@ui

dV u ^Voli

◆
+ dH

✓
@L

@ui

◆
dV u ^Voli

=

✓
@L

@u
�Di

✓
@L

@ui

◆◆
dV u ^Vol� dH

✓
@L

@ui
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◆
.

Symmetry

E = M × ℝ → MXE = Xi∂i + X
∂
∂u

Any vector field on extends to 

X∞ = Xi∂i + XI ∂
∂uI

= XH + XV

iff 

on   J∞
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such that [◆XH
, dV ] = [◆XV

, dH ] = 0 and

◆XH
dxi = Xi, ◆XV

dxi = 0, ◆XH
dua

I
= 0, ◆XV

dV u
a

I
= DI(X

a �Xiua

i
).

Following [8, Chap. 2.6], one says that XE is a symmetry if there is a form �X 2
⌦top�1,0(J1) such that

LX1(LVol) = dH�X .

Then Noether’s theorem states that

Theorem 2.3. cf. [8, Chap. 2.6] Given a symmetry (XE ,�X), there is an associ-

ated (on-shell) conserved current jX := �X � ◆XH
(LVol) � ◆XV

⇥ 2 ⌦top�1,0(J1).
Then

dHjX = ◆XV
EL.

Proof. This is not new but as a model for later, we recall that the proof is to
compute

dHjX = LX1(LVol)� LXH
(LVol)� ◆XV

dH⇥ = LXV
(LVol)� ◆XV

dH⇥ = ◆XV
EL

where we have used [◆XH
, dV ] = [◆XV

, dH ] = 0, LX = LXH
+LXV

and LXV
(LVol) =

◆XV
dV (LVol) = ◆XV

EL� ◆XV
dH⇥. ⇤

For charges that are conserved in a time direction, consider M = R ⇥ ⌃ for
some codimension 1 submanifold ⌃ without boundary, with R denoting the time
direction. In this setting, the coordinate on R will be denoted with the index 0 and
the coordinates on ⌃ with the index i, so we write jX = j0

X
Vol0 +

Pdim⌃
i=1 ji

X
Voli.

We continue to focus on the Euclidean and Minkowski signatures and identify Vol⌃
with the volume form on ⌃.

Corollary 2.4. The quantity Q =
R
⌃ e⇤1(·,�)(j0

X
)Vol⌃ is conserved in time in the

sense that @0Q vanishes on-shell. Q is called a conserved charge.

Proof. We have dHjX = (D0j0X+
Pdim⌃

i=1 DijiX)Vol. Thus on-shell, we can compute

@0Q = �
Z

⌃
e⇤1(·,�)(Dij

i

X
)Vol⌃ = �

Z

⌃
@i(e

⇤
1(·,�)ji

X
)Vol⌃ = 0

as ⌃ does not have a boundary. ⇤

After these general remarks, we now return to the example of the trivial bundle
E = M ⇥ R ! M to see how Noether’s theorem and conserved charges work for a
simple choice of Lagrangian.

Example 2.5. For (non-relativistic) classical mechanics as in Example 2.1, we
have M = R (meaning that ⌃ is a point). Here, the system is translation invariant,
which can be encoded as ◆X1(dt) = 1, ◆X1(dut) = 0 so that ◆XV

(dV u) = �ut,
◆XV

(dV ut) = �utt, etc. This results in

�X = 0, ◆XH
(L dt) =

m

2
u2
t
� V (u), ◆XV

⇥ = �mu2
t
,

leading to the conserved current jX = m

2 u
2
t
+ V (u). The associated conserved

charge then corresponds to the energy Q = E = m

2 q̇
2 + V (q).

Noether thm
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⌦top�1,0(J1) such that

LX1(LVol) = dH�X .
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For charges that are conserved in a time direction, consider M = R ⇥ ⌃ for
some codimension 1 submanifold ⌃ without boundary, with R denoting the time
direction. In this setting, the coordinate on R will be denoted with the index 0 and
the coordinates on ⌃ with the index i, so we write jX = j0

X
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Pdim⌃
i=1 ji

X
Voli.

We continue to focus on the Euclidean and Minkowski signatures and identify Vol⌃
with the volume form on ⌃.

Corollary 2.4. The quantity Q =
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X
)Vol⌃ is conserved in time in the
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as ⌃ does not have a boundary. ⇤

After these general remarks, we now return to the example of the trivial bundle
E = M ⇥ R ! M to see how Noether’s theorem and conserved charges work for a
simple choice of Lagrangian.

Example 2.5. For (non-relativistic) classical mechanics as in Example 2.1, we
have M = R (meaning that ⌃ is a point). Here, the system is translation invariant,
which can be encoded as ◆X1(dt) = 1, ◆X1(dut) = 0 so that ◆XV
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see [5, 18, 4, 2], as an example of a general analysis for di↵erentials on quantum
groups [25]. In our case, there is also a flat torsion-free connection r : ⌦1 !
⌦1 ⌦C(Z) ⌦1 characterised by re± = 0 (it is the QLC for the constant metric in
the lattice in the sense of [2].) Notice that ⌦1(Z) is 2-dimensional over the algebra
because @± are linearly independent as operators. For the same reason the top
‘volume’ form Vol := e+ ^ e� is a 2-form. We fix the above calculus ⌦(Z) and our
first task is to extend it to a calculus ⌦(J1).

3.1. Construction of the double complex ⌦(J1). We start by considering
Z⇥R ! Z, which in analogy to Example 2.1 represents a classical particle moving
in one spacial dimension, where time is discretised. This is treated as a toy-model
and later generalised to scalar field theory on the lattices Zm and Z1,m�1 in Section
4. The matter fields are sections of Z⇥R ! Z that send i 7! (i,�(i)) for real-valued
functions � 2 C(Z) = F the field space. The symmetric tensors ⌦S are of the form

⌦S = C(Z){1, uae
a, ua1a2e

a1 ⌦ ea2 , · · · } = C(Z){uIe
I}

where ua1a2 is symmetric and in the general case I stands for (a1, · · · , an) with
the ua1···an

totally symmetric tensors in the ai indices. When n = 0 we just write
u. These are specified by their values on on indices taken in (say) lexicographical
ordering, for example in degree 2 we can specify u++, u+�, u��. To be fully explicit,
we let I denote such an ordered set of indices, so the uI form a basis of such tensors
(this is equivalent to saying there is a basis eI of symmetrized tensor products
which in degree 2 say is e+ ⌦ e+, e+ ⌦ e� + e� ⌦ e+, e� ⌦ e�). We take the {uI}
as coordinates on the fibre, so

J1 = Z⇥ R1 = Z⇥ R⇥ R2 ⇥ R3 ⇥ ...

with coordinates (i, uI). The jet prolongation map is

j1(�) = �+ @a�e
a + · · · =

X

I

@I� e
I

regarded as a function on M = Z, i.e. the section itself sends i to (i, (@I�)(i)) =:
e1(�)(i) where e1 : Z ⇥ F ! J1 as before and pull back on this set map to
(assumed an inclusion) ⌦(J1) ⇢ ⌦(Z)⌦⌦(F ).

The first thing that goes wrong is that one can no longer take a tensor product
calculus ⌦(J1) = ⌦(Z)⌦⌦(R1) with respect to which e1 is di↵erentiable in the
sense that the pullback e⇤1 commutes with the di↵erentials (this worked before
due to everything having the same default di↵erentiable structure on each copy
of R.) However, since C(J1) = C(Z)[uI ] where we adjoin commuting generators
{uI} (i.e. tensor with the polynomial algebra C(R1) with these generators), is a
subalgebra of C(Z ⇥ F ) via e⇤1, we can still define ⌦(J1) as generated by this
subalgebra and its inherited di↵erentials, i.e. we must obtain a calculus just with
certain noncommutation rules to be determined. In degrees 0,1 we have

e⇤1(�)(i,�) = �(i, (@I�)(i)), e⇤1(e±) =
X

i

e⇤1(�id�i±1) = e±

for � 2 C(J1), by the same arguments as before that if � =  ⌦ 1 for  2 C(Z)
then e⇤1(�)(i,�) = ( ⌦ 1)(i, @I�) =  (i) so e⇤1(�jd�j+1) = �jd�j+1 now viewed in
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‘volume’ form Vol := e+ ^ e� is a 2-form. We fix the above calculus ⌦(Z) and our
first task is to extend it to a calculus ⌦(J1).

3.1. Construction of the double complex ⌦(J1). We start by considering
Z⇥R ! Z, which in analogy to Example 2.1 represents a classical particle moving
in one spacial dimension, where time is discretised. This is treated as a toy-model
and later generalised to scalar field theory on the lattices Zm and Z1,m�1 in Section
4. The matter fields are sections of Z⇥R ! Z that send i 7! (i,�(i)) for real-valued
functions � 2 C(Z) = F the field space. The symmetric tensors ⌦S are of the form

⌦S = C(Z){1, uae
a, ua1a2e

a1 ⌦ ea2 , · · · } = C(Z){uIe
I}

where ua1a2 is symmetric and in the general case I stands for (a1, · · · , an) with
the ua1···an

totally symmetric tensors in the ai indices. When n = 0 we just write
u. These are specified by their values on on indices taken in (say) lexicographical
ordering, for example in degree 2 we can specify u++, u+�, u��. To be fully explicit,
we let I denote such an ordered set of indices, so the uI form a basis of such tensors
(this is equivalent to saying there is a basis eI of symmetrized tensor products
which in degree 2 say is e+ ⌦ e+, e+ ⌦ e� + e� ⌦ e+, e� ⌦ e�). We take the {uI}
as coordinates on the fibre, so

J1 = Z⇥ R1 = Z⇥ R⇥ R2 ⇥ R3 ⇥ ...

with coordinates (i, uI). The jet prolongation map is

j1(�) = �+ @a�e
a + · · · =

X

I

@I� e
I

regarded as a function on M = Z, i.e. the section itself sends i to (i, (@I�)(i)) =:
e1(�)(i) where e1 : Z ⇥ F ! J1 as before and pull back on this set map to
(assumed an inclusion) ⌦(J1) ⇢ ⌦(Z)⌦⌦(F ).

The first thing that goes wrong is that one can no longer take a tensor product
calculus ⌦(J1) = ⌦(Z)⌦⌦(R1) with respect to which e1 is di↵erentiable in the
sense that the pullback e⇤1 commutes with the di↵erentials (this worked before
due to everything having the same default di↵erentiable structure on each copy
of R.) However, since C(J1) = C(Z)[uI ] where we adjoin commuting generators
{uI} (i.e. tensor with the polynomial algebra C(R1) with these generators), is a
subalgebra of C(Z ⇥ F ) via e⇤1, we can still define ⌦(J1) as generated by this
subalgebra and its inherited di↵erentials, i.e. we must obtain a calculus just with
certain noncommutation rules to be determined. In degrees 0,1 we have

e⇤1(�)(i,�) = �(i, (@I�)(i)), e⇤1(e±) =
X

i

e⇤1(�id�i±1) = e±

for � 2 C(J1), by the same arguments as before that if � =  ⌦ 1 for  2 C(Z)
then e⇤1(�)(i,�) = ( ⌦ 1)(i, @I�) =  (i) so e⇤1(�jd�j+1) = �jd�j+1 now viewed in

e*∞ :

For

12 SHAHN MAJID AND FRANCISCO SIMÃO

The relations including duI can also be characterised in terms of vertical di↵eren-

tials obeying

[dV uI ,�] = 0, {ea, dV uI}+ dV uaI ^ ea = 0, {dV uI , dV uJ} = 0

for all � 2 C1(J1) and horizontal di↵erential dH = [✓, } with ✓ =
P

a
ea.

Proof. The degree 1 commutation relations were obtained as (6), (8) and (9) but
one can also check directly that they give a first-order calculus on C(J1). We
then apply d to the degree 1 relations as explained and necessarily get an exterior
algebra (the canonical maximal prolongation[2] modulo further relations in ⌦(Z)).
We also explained natural decomposition to dH + dV such that dH remains inner
so that duI =

P
a
uaIea + dV uI . In this case,

[dV uI ,�] = [duI ,�]�
X

a

uaI [e
a,�] = [duI ,�]�

X

a

uaI(@a�)e
a = 0

[dV uI , uJ ] = [duI , uJ ]�
X

a

uaI [e
a, uJ ] = 0

using the commutation relations of ea with � 2 C(Z) and with uJ . Hence dV uI are
central as claimed. Similarly substituting duI gives the {ea, dV uI} relation. We
then use these results on expanding out both sides of the {duI , duJ} relation in
terms of dV uI and ea etc., to eventually obtain the last relation. ⇤

This is the natural quadratic extension of the degree 1 relations and splitting of d
that keeps dH inner. We see that ea, dV uI together generate a closed algebra, which
we denote ⇤J1 (over the field) and that the relations allow everything to be ordered
with functions to the left so that this algebra provides a natural basis over C(J1)
in each degree. The dV uI are, moreover, a central basis as well as form as well as
anticommute among themselves. We do not exclude the possibility of additional
relations in higher degree beyond ones implied by these degree 2 relations, but we
do not appear to need them.

3.2. Euler-Lagrange equations. We proceed in a similar manner as the classical
case, now with LVol, for L = L(u, ua) a first-order Lagrangian and Vol = e+ ^ e�.
For the following calculations it is useful to define the operators

Ra : ⌦
k(J1) ! ⌦k(J1) Da : ⌦

k(J1) ! ⌦k(J1)

via
ea! = (�1)|!|Ra(!)e

a, dH! = (�1)|!|Da(!)e
a,

as specified by the commutation relations in Section 3.1. These are related as
Da = Ra � id and have the following properties

(12) Ra(! ^ ⌘) = Ra(!) ^Ra(⌘) Da(! ^ ⌘) = Da(!) ^Ra⌘ + ! ^Da(⌘).

Note that in degree 0, Ra(uI) = uI+uaI , Da(uI) = uaI . These operations commute
with each other and satisfy the following identities

RaRa�1 = id, DaRa�1 = Ra�1Da = �Da�1 , DaDa�1 = �Da �Da�1 ,

so that for example uaa�1 = Da�1Dau = �ua � ua�1 . Equations (8)-(9) can now
be combined as

[du,�] =
X

a

uaI(Da�)e
a
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ω ∈ Ω(J∞)
defines Da
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see [5, 18, 4, 2], as an example of a general analysis for di↵erentials on quantum
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⌦1 ⌦C(Z) ⌦1 characterised by re± = 0 (it is the QLC for the constant metric in
the lattice in the sense of [2].) Notice that ⌦1(Z) is 2-dimensional over the algebra
because @± are linearly independent as operators. For the same reason the top
‘volume’ form Vol := e+ ^ e� is a 2-form. We fix the above calculus ⌦(Z) and our
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subalgebra and its inherited di↵erentials, i.e. we must obtain a calculus just with
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⌦(Z⇥ F ). So we can identify the ⌦(Z) factors on the two sides. Next,

e⇤1(uI)(i,�) = uI(i, (@I�)(i)) = (@I�)(i),

e⇤1(duI)(i,�) = (de⇤1(uI))(i,�) = (@a@I�)(i)e
a + (dF@I)(�)(i).

It is not necessary but to be explicit, we can chose a basis {�j} of F so that
� =

P
j
�j�j gives coordinates {�j} on F . Then  2 C1(F ) means functions

 (�j) and d =
P

j

@ 
@�j d�j . Then

e⇤1(duI) = (@aI(·))(·)ea +
X

j

(@I�j)d�
j

where the dots indicate first to insert � 2 F then an element in Z. Instead of
proceeding with the chain rule as in the classical M case, we work directly with the
finite di↵erences:

e⇤1(dH�) = dM�(j1(·)(·)) =
X

a

(ea�(·, @I(·))(·))� �(·, @I(·)(·))ea)

= e⇤1

 
X

a

(ea�� �ea)
!

where sum over a, so

(4) dH� = [✓,�],

which is generally 6= dZ� precisely because � has R1 dependence and this is not
the tensor product calculus. We see that dH = dZ on C(Z). Doing the same
calculation for dV � gives

e⇤1(dV �) = dF�(·, j1(·)(·)) = @�

@uI

(·, @I(·)(·))
X

j

@I�jd�
j

where we keep i fixed and vary f in the �j direction for the coe�cient of dfj .
Combining this with the above we can write this as

(5) dV � =
X

I

@�

@uI

dV uI , dV uI = duI � [✓, uI ].

We see that dV = 0 on C(Z).
It remains to find commutation relations for working in ⌦(J1). We calculate

e⇤1(eauI) = ea@I(·)(·) =
�
(@aI)(·)(·) + @I(·)(·)

�
ea = e⇤1(uaI + uI)e

a

so

(6) eauI = (uI + uaI)e
a

where aI denotes the standard lexicographic form of the indices with an extra a.
For example, if I = +� then +I = ++� and �I = +��. From this we conclude
(summing a) that

(7) dHuI = [✓, uI ] =
X

a

uaIe
a.

Similarly, if � 2 C(Z) ⇢ C(J1) (i.e. constant on R1) then

e⇤1(�duI) = �@aI(·)(·)ea + �
X

j

(@I�j)d�
j ,

Φ ∈
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For example, if I = +� then +I = ++� and �I = +��. From this we conclude
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j ,

θ := e+ + e−
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e⇤1(duI�) =
X

a

@aI(·)(·)ea�+
X

j

(@I�j)d�
j� =

X

a

@aI(·)(·)Ra(�)e
a+�

X

j

(@I�j) d�
j

so we conclude that

(8) (duI)� = �duI +
X

a

(@a�)uaIe
a

which indeed necessarily holds on applying d to [uI ,�] = 0. Similarly expanding

e⇤1((duI)uJ) =
X

a

@aI(·)(·)ea@J(·)(·) =
X

a

@aI(·)(·)Ra@J(·)(·)ea

= e⇤1(uJduI) +
X

a

@aI(·)(·)@aJ(·)(·)ea

and we recognising the last term, we obtain

(9) (duI)uJ = uJduI +
X

a

uaIuaJe
a.

We see that the uI do not inherit their classical commutative calculus, again due
to ea not being central in the tensor product algebra.

The higher exterior algebra then follows. By applying d to the degree 1 relations,
we have, using dea = 0,
(10)

{ea, duI}+duaI^ea = 0, {d�, duI}+
X

a

(@a�)duaI^ea+
X

a,b

(@b@a�)uaIe
b^ea = 0,

where the second relation is redundant i.e. can be proved by application of the
other relations. We used that the ea anticommute to obtain it in this form. Next,
using (7) and assuming dH is a derivation as it should be as inherited from ⌦(Z⇥F )
and that dHea = dea = 0, we have

dHdHuI = dH

 
X

a

uaIe
a

!
=
X

a,b

ubae
b ^ ea = 0

by anticommutativity of the ea. Hence these assumptions seem reasonable. Next,
to impose dV dH + dHdV = 0, as should also be inherited, is equivalent given the
above to imposing ddH + dHd = 0, which on uI using (10) and (7) reduces to
imposing

(11) {✓, duI} = dHduI

where { , } denotes anticommutator. This seems reasonable and is consistent with
dH = [✓, } being inner. This then implies that d2

V
= 0 on uI . The dV , dH then

extend by the graded-derivation rules to all ⌦(Z⇥R1) as one can check. Thus, we
arrive at the following ⌦(J1).

Theorem 3.1. C(J1) generated by functions on Z and {uI} as above extends to

an exterior algebra ⌦(J1) generated by ⌦(Z) and additional generators duI with

relations

[ea, uI ] = uaIe
a, [duI ,�] =

X

a

uaI(@a�)e
a, [duI , uJ ] =

X

a

uaIuaJe
a

{ea, duI}+ duaI ^ ea = 0, {duI , duJ}+
X

a

(uaIduaJ + (duaI)uaJ) ^ ea = 0.

Thm noncommutative double complex  with  Ω⋅,⋅(J∞)
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then apply d to the degree 1 relations as explained and necessarily get an exterior
algebra (the canonical maximal prolongation[2] modulo further relations in ⌦(Z)).
We also explained natural decomposition to dH + dV such that dH remains inner
so that duI =

P
a
uaIea + dV uI . In this case,

[dV uI ,�] = [duI ,�]�
X

a

uaI [e
a,�] = [duI ,�]�

X

a

uaI(@a�)e
a = 0

[dV uI , uJ ] = [duI , uJ ]�
X

a

uaI [e
a, uJ ] = 0

using the commutation relations of ea with � 2 C(Z) and with uJ . Hence dV uI are
central as claimed. Similarly substituting duI gives the {ea, dV uI} relation. We
then use these results on expanding out both sides of the {duI , duJ} relation in
terms of dV uI and ea etc., to eventually obtain the last relation. ⇤

This is the natural quadratic extension of the degree 1 relations and splitting of d
that keeps dH inner. We see that ea, dV uI together generate a closed algebra, which
we denote ⇤J1 (over the field) and that the relations allow everything to be ordered
with functions to the left so that this algebra provides a natural basis over C(J1)
in each degree. The dV uI are, moreover, a central basis as well as form as well as
anticommute among themselves. We do not exclude the possibility of additional
relations in higher degree beyond ones implied by these degree 2 relations, but we
do not appear to need them.

3.2. Euler-Lagrange equations. We proceed in a similar manner as the classical
case, now with LVol, for L = L(u, ua) a first-order Lagrangian and Vol = e+ ^ e�.
For the following calculations it is useful to define the operators

Ra : ⌦
k(J1) ! ⌦k(J1) Da : ⌦

k(J1) ! ⌦k(J1)

via
ea! = (�1)|!|Ra(!)e

a, dH! = (�1)|!|Da(!)e
a,

as specified by the commutation relations in Section 3.1. These are related as
Da = Ra � id and have the following properties

(12) Ra(! ^ ⌘) = Ra(!) ^Ra(⌘) Da(! ^ ⌘) = Da(!) ^Ra⌘ + ! ^Da(⌘).

Note that in degree 0, Ra(uI) = uI+uaI , Da(uI) = uaI . These operations commute
with each other and satisfy the following identities

RaRa�1 = id, DaRa�1 = Ra�1Da = �Da�1 , DaDa�1 = �Da �Da�1 ,

so that for example uaa�1 = Da�1Dau = �ua � ua�1 . Equations (8)-(9) can now
be combined as

[du,�] =
X

a

uaI(Da�)e
a
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for all � 2 C(J1). We also choose elements Vola such that Vol = ea ^ Vola (no
sum) (in our example, we will let Vol+ = e�, Vol� = �e+).

Theorem 3.2. For L = L(u, ua) we define (with sums over a),

EL =

✓
@L

@u
+Da�1

✓
@L

@ua

◆◆
dV u ^Vol, ⇥ = Ra�1

✓
@L

@ua

◆
dV u ^Vola.

Then dV (LVol) = EL� dH⇥.

Proof. This is a matter of computation. We start with

dV (LVol) =

✓
@L

@u
dV u+

@L

@ua

dV ua

◆
^Vol =

✓
@L

@u
dV u+

@L

@ua

DadV u

◆
^Vol

where in the last equality we have used dHdV u = {✓, dV u} = �dV ua ^ ea and thus
DadV u = dV ua. Using now the Leibniz rule for Da (12)

=

✓
@L

@u
dV u+Da

✓
@L

@ua

dV u

◆
�Da

✓
@L

@ua

◆
RadV u

◆
^Vol

=

✓
@L

@u
dV u+Da

✓
@L

@ua

dV u

◆
+Ra

✓
Da�1

✓
@L

@ua

◆
dV u

◆◆
^Vol

where in the second line we have used �Da = RaDa�1 and the property (12) for
Ra. Writing now Ra = Da + id results in

=

✓
@L

@u
dV u+Da

✓
@L

@ua

dV u

◆
+Da

✓
Da�1

✓
@L

@ua

◆
dV u

◆
+Da�1

✓
@L

@ua

◆
dV u

◆
^Vol.

Since Da�1 = Ra�1 � id the third term will cancellation of the second term in the
expression

=

✓
@L

@u
dV u+Da

✓
Ra�1

✓
@L

@ua

◆
dV u

◆
+Da�1

✓
@L

@ua

◆
dV u

◆
^Vol.

The last step is to use dH(fVola) =
P

b
Db(f)eb ^ Vola = Da(f)Vol due to the

definition of Vola. Applying this to the second term of the above expression results
in

dV (LVol) =

✓
@L

@u
+Da�1

✓
@L

@ua

◆◆
dV u ^Vol� dH

✓
Ra�1

✓
@L

@ua

◆
dV u ^Vola

◆
.

⇤

In the continuum limit, where we approximate Z to R with coordinate t, we
expect D+ and D� to correspond to the positive and negative total derivatives
in the t direction ±D1, and hence we recover the classical EL form in Equation
(1). Similarly we expect the shift operation Ra to correspond to the identity in the
limit, recovering the boundary form in (1). Note that the relation Da = Ra�id now
needs to be scaled so that the finite di↵erence becomes a usual derivative, which
then also enters Rau.

As the bundle Z⇥R ! Z models a point particle on R evolving in discrete time,
we want to reproduce Example 2.1 in this setting, starting with a free particle
q = � : Z ! R with V (q) = 0. Let (ea, eb) = gab = �a,b

�1

represent the inverse

Thm
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(1). Similarly we expect the shift operation Ra to correspond to the identity in the
limit, recovering the boundary form in (1). Note that the relation Da = Ra�id now
needs to be scaled so that the finite di↵erence becomes a usual derivative, which
then also enters Rau.
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In the continuum limit, where we approximate Z to R with coordinate t, we
expect D+ and D� to correspond to the positive and negative total derivatives
in the t direction ±D1, and hence we recover the classical EL form in Equation
(1). Similarly we expect the shift operation Ra to correspond to the identity in the
limit, recovering the boundary form in (1). Note that the relation Da = Ra�id now
needs to be scaled so that the finite di↵erence becomes a usual derivative, which
then also enters Rau.

As the bundle Z⇥R ! Z models a point particle on R evolving in discrete time,
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represent the inverse
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Euclidean metric on Z, and define the integral on Z as
R
Z fVol =

P
i
fi. Then in

analogy to Example 2.1 we set the action to be

S[q] = �m

4

Z

Z
(dq, dq)Vol = �m

4

Z

Z

X

a,b

(@aq)(Ra@bq)(e
a, eb)Vol

=
m

4

Z

Z

�
(@+q)

2 + (@�q)
2
�
Vol

Where we have used Ra@a�1 = �@a. Note the prefactor �m

4 instead of m

2 . The
minus sign comes from the overall minus sign that appears in (dq, dq), and the
extra 1

2 is introduced to ensure that the continuum limit is correct, since in the
limit Z ! R we expect @±q to correspond to ±@t�, and therefore (@+q)2 + (@�q)2

to 2(@tq)2. The Lagrangian is then L = m

4

P
a
u2
a
, with EL and boundary forms

given by

EL =
m

2

X

a

uaa�1dV u ^Vol, ⇥ = �m

2

X

a

ua�1dV u ^Vola.

In the continuum limit, we expect
P

a
uaa�1 and ua�1 to correspond to �2utt and

�ut respectively, thus recovering the results of Example 2.1. Using now uaa�1 =
�ua � ua�1 , we find the EL equation, or Newton’s equation, in discrete time to be

m

2

X

a

@a@a�1q = �m
X

a

@aq = 0.

We can also add a potential term V (q) to the action as

S[q] =

Z

Z

⇣
�m

4
(dq, dq)� V (q)

⌘
Vol

so that the Lagrangian is now L = m

4

P
a
u2
a
� V (u). The corresponding EL form

and EL equations are now

EL =

 
m

2

X

a

uaa�1 � @V (u)

@u

!
dV u ^Vol, m

X

a

@aq = �@V (q)

@q

with the boundary term is left unchanged.

3.3. Noether current and conserved energy for classical mechanics Z⇥R !
Z. Rather than a general Noether’s theorem we will look in the Z case at the obvious
‘time translation’ symmetry. We continue with the application to (non-relativistic)
classical mechanics with discrete time where we write q = � : Z ! R for the field
(the classical field theory interpretation will be covered in Section 4).

From the general discussion we take the key requirement of an interior product
along a suitable vector field enconding the translation symmetry and we specify this
directly as a map ◆✏ : ⌦•(J1) ! ⌦•�1(J1) by defining it on ⇤J1 and extending
as a left module map to ⌦(J1) = C(J1)⇤J1 . Following the treatment for M in
Example 2.6, we let

◆✏(e
a) = ✏a, ◆✏(dV uI) = �

X

a

✏auaI

on the generators, for some parameters ✏a. Moreover, we split this as ◆✏ = ◆H + ◆V
where

◆Hea = ✏a, ◆V dV uI = �
X

a

✏auaIinterior product   on ıH + ıV Ω(J∞)
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and ◆HdV uI = ◆V ea = 0. We then extend ◆V to the ⇤J1 as a graded-derivation.
We similarly extend ◆H to the Grassmann subalgebra ⇤Z generated by {ea} as a
graded derivation. We do not need ◆H beyond this but one can, for example, extend
it as commuting with right-multiplication by dV uI .

Lemma 3.3. ◆H , ◆V as specified are well-defined, and graded-derivations on ⇤Z,
⇤J1 respectively.

Proof. We need to verify that on this subalgebra ◆✏ is well-defined for the quadratic
relations between these. It is easy to see that ◆✏({ea, eb}) = 0 and ◆✏({dV uI , dV uJ}) =
0 just because ✏a are numbers and dV uI are central. This applies to both ◆H , ◆V
parts. For the cross-relation, we check using the graded derivation property that

◆V ({ea, dV uI}) = ea
X

b

✏bubI �
X

b

✏bubIe
a =

X

b

✏b[ea, ubI ]

=
X

b

✏buabIe
a =

X

b

✏bubaIe
a = �◆V (dV uaIe

a)

so ◆V extends to a graded derivation as claimed. For ◆H , we cannot impose that it is
a full derivation as this would imply ◆H(!dV uI) = ◆H(!)dV uI and ◆H((dV uI)!) =
�(dV uI)◆H(!) and hence ◆H({ea, dV uI}) = 0, whereas the value on the other side
would be ✏adV uaI . But we can impose just the first of these (for example) to fully
specify it, using the commutation rules to put all dV uI factors to the right and take
them out. ⇤

In particular, since ◆H is a graded derivation on ⇤Z, we have

(13) iH(Vol) = iH(e+ ^ e�) = ✏+e� � e+✏� =
X

a

✏aVola

Focusing now on a free classical particle with the Lagrangian L = m

4

P
a
u2
a
we

define the ‘naive Noether current’ as

j0 = � � ◆H(LVol)� ◆V ⇥ = �
X

a,b

✏b
⇣m
2
ua�1ub + �a

b
L
⌘
Vola

where we copied the classical case by setting � = 0, used the left module map
property of ◆✏ and (13). It turns out that this current is not conserved, but close
enough that it can be corrected.

Proposition 3.4. The current

j = �
X

a,b

✏b
✓
m

2

✓
ua�1 +

1

2
ua�1b

◆
ub + �a

b
L

◆
Vola

is conserved when the EL equations hold for the Lagrangian L(u, ua) =
m

4

P
a
u2
a
.

Proof. Start with the naive current j0, we have

dHj0 = �
X

a,b

✏bdH
⇣⇣m

2
ua�1ub + �a

b
L
⌘
Vola

⌘
= �

X

a,b

✏b
⇣m
2
Da(ua�1ub) +DbL

⌘
Vol.

Using the Leibniz rule for Da and noting Db(u2
a
) = u2

ab
+ 2uauab, we find

dHj0 = �m

4

X

a,b

✏b
�
2uaa�1(ub + uab) + 2ua�1uab + u2

ab
+ 2uauab

�
Vol.

naive Noether current almost works
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We see directly that the continuum limit is expected to correspond to the one in
Example 2.2. Using uaa�1 = �ua � ua�1 the EL equations for the field � are then

 
X

a2C
@a +m2

!
� = 0.

Here

� =
X

a2C
@a = �1

2
( , )rd

is the standard graph or lattice Laplacian with the Euclidean (constant) metric on
edges and r(dea) = 0, cf[2]. We thus recover the Klein-Gordon equation (� +
m2)� = 0 for this case. The 1/2 relates to the doubling of derivatives.

Translation symmetry can be set up as in Section 3.3, by defining the interior
product ◆✏ through ◆✏(ea) = ✏a, ◆✏(dV uI) = �

P
a2C ✏

auaI and extending it as in
Lemma 3.3. The ‘naive Noether current’ is then

j0 = � � ◆H(LVol)� ◆V ⇥ = �
X

a,b2C
✏b
✓
1

2
ua�1ub + �a

b
L

◆
Vola

where we copied the classical case from Example 2.6 with � = 0, used the left
module map property and (13). Again this current is not conserved but close
enough to be corrected.

Proposition 4.1. The current

j = �
X

a,b2C
✏b
✓
1

2

✓
ua�1 +

1

2
uba�1

◆
ub + �a

b
L

◆
Vola

is conserved when the EL equations hold for the Lagrangian L = 1
4

P
a2C u

2
a
�

1
2m

2u2
.

Proof. Start with the naive current j0, we have

dHj0 = �
X

a,b2C
✏bdH

✓✓
1

2
ua�1ub + �a

b
L

◆
Vola

◆
= �

X

b2C
✏b
 
1

2

X

a2C
Da(ua�1ub) +DbL

!
Vol.

Using the Leibniz rule for Da and noting Db(u2) = u2
b
+2uub, similarly for Db(u2

a
),

we find

dHj0 = �1

2

X

b2C
✏b
 
X

a2C

✓
uaa�1(ub + uab) + ua�1uab +

1

2
(u2

ab
+ 2uauab)

◆
�m2(u2

b
+ 2uub)

!
Vol.

Using ua�1 = �Ra�1ua = �(ua + uaa�1) this simplifies to

dHj0 = �
X

b2C
✏b
  

1

2

X

a2C
uaa�1 �m2u

!
ub +

1

4

X

a2C
u2
ab

� 1

2
m2u2

b

!
Vol

Propn for free particle Lagrangian
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where we copied the classical case from Example 2.6 with � = 0, used the left
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enough to be corrected.
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we find
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We see directly that the continuum limit is expected to correspond to the one in
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� = 0.

Here

� =
X

a2C
@a = �1

2
( , )rd

is the standard graph or lattice Laplacian with the Euclidean (constant) metric on
edges and r(dea) = 0, cf[2]. We thus recover the Klein-Gordon equation (� +
m2)� = 0 for this case. The 1/2 relates to the doubling of derivatives.

Translation symmetry can be set up as in Section 3.3, by defining the interior
product ◆✏ through ◆✏(ea) = ✏a, ◆✏(dV uI) = �

P
a2C ✏

auaI and extending it as in
Lemma 3.3. The ‘naive Noether current’ is then

j0 = � � ◆H(LVol)� ◆V ⇥ = �
X

a,b2C
✏b
✓
1

2
ua�1ub + �a

b
L

◆
Vola

where we copied the classical case from Example 2.6 with � = 0, used the left
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extra term

is conserved on shell
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where we recognise the first term as the EL term. For the other terms, note that
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where in the last line we used
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The first and second terms vanish when the EL equations are fulfilled, and the last
can be written as �

P
a,b2C

1
2dH(ua�1bub)Vola), so that the current

j = j0 +
X

a,b2C

1

4
(ua�1bub)Vola

is conserved when the EL equations hold. ⇤

Constructing the stress-energy tensor works in the same way, by setting j =P
a,b2C ✏

bT a

b
Vola and lowering indices with the metric such that Tab = T a

�1

b. Then
dHj = 0 (on-shell) implies

P
a
Da�1Tab = 0 (on-shell) for all b. For free Euclidean

scalar field theory we can read o↵

Tab = �
✓
1

2
uaub +

1

4
uabub + �a

�1

b
L

◆

Note that again this stress-energy tensor is not symmetric as Tab�Tba = 1
2uab(ua�

ub). Similar to Corollary 3.5 we find

Corollary 4.2. The divergence free condition for the stress-energy tensor
P

a
Da�1Tab =

0 for all b encodes |C|/2 independent equations.

Proof. To see this we want to relate the divergence free condition for b and b�1.
Comparing the expression for dHj from Proposition 4.1 and j =

P
a,b2C ✏

bTabVola�1

we can relate the divergence of the stress-energy tensor to an expression which
depends on the EL equations. From there we compute

X

a2C
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2

X
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2
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2

X

a2C
uaa�1 �m2u
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!
.

Similar to the Z case in Corollary 3.5, the last term in the brackets can be related to
the expression for b�1, meaning that the two conditions depend on one another. ⇤

dH j = 0

is conserved on shell 
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Similar to the Z case in Corollary 3.5, the last term in the brackets can be related to
the expression for b�1, meaning that the two conditions depend on one another. ⇤
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Since this is a new formalism, we check this claim explicitly. Using the modified
Leibniz rule for finite di↵erences,

@+((@+q)(@�q)) = (@2
+q)R+(@�q) + (@+q)(@+@�q)

= R+((@+@�q))@+q + (@+q)(@+@�q)

where we used R+@� = �@+ for the second equality. We see that the EL term
appears in both summands, making it manifestly zero if q obeys the equations of
motion.

Corollary 3.6. The current from Proposition 3.4 is conserved when a quadractic

potential V (q) = µq2 is included in the Lagrangian such that L(u, ua) =
m

4

P
a
u2
a
�

V (u).

Proof. Following the calculations from Proposition 3.4, we now find

dHj = �m

4

X

a,b

✏b (2uaa�1ub +Db(uaa�1)ub) +
X

b

✏b(DbV (u))Vol.

for V (u) = µu2. Using the identity DbV (u) = @V (u)
@u

+ 1
2Db

@V (u)
@u

for the quadratic
potential the above reduces to

dHj = �
X

a,b

✏b
✓✓

m

2
uaa�1 � @V (u)

@u

◆
+

1

2
Db

✓
m

2
uaa�1 � @V (u)

@u

◆
ub

◆
Vol

which vanishes when the EL equations are satisfied. ⇤
Repeating the analysis with the stress-energy tensor, the conserved charge now

corresponds to the total energy

E[q] = �m

2
(@+q)(@�q) + V (q).

It is not clear how to extend this result to higher order potentials.

4. Conserved stress-energy tensor on Abelian groups and Zm

lattices.

We next observe that it is immediate to replace Z by any Abelian group G as
base in order to consider the fibre bundle G ⇥ R ! G, as a model for scalar field
theory on G. Translation-invariant calculi are of the form ⌦(G) = C(G)⇤G where
the invariant forms ⇤G again provide a basis over the algebra and are generated
by a set of invariant 1-forms {ea}. Here a 2 C can be viewed as labelling group
elements in a subset C ✓ G \ {e}, where e is group identity and for a connected
calculus (which we assume) we need that C generates the group, and for existence
of a metric we also need that C is closed under group inversion. The set C generates
a Cayley graph on G, where we take the set of vertices to be G with arrows given by
right multiplication as x ! xa. We define Ra(f)(x) = f(xa) if we denote the group
multiplicatively, @a = Ra � id and df =

P
a
(@af)ea much as before. We also have

d = [✓, } for ✓ =
P

a
ea. In the Abelian case ⇤G is again the Grassmann algebra

on the {ea} and dea = 0 (the nonAbelian case is similar but a more complicated
algebra). In the case of Z, the smallest choice is C = {±1} which corresponds to
e± in Section 3.

Proceeding as before, we still have a torsion free flat connection defined by
rea = 0 and since, for G Abelian, the @a commute with each other, the jet bundle
construction in [20] still gives the space of sections J1 built on symmetric tensor
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e± in Section 3.

Proceeding as before, we still have a torsion free flat connection defined by
rea = 0 and since, for G Abelian, the @a commute with each other, the jet bundle
construction in [20] still gives the space of sections J1 built on symmetric tensor

eI = symmetric products of these j∞(ϕ) = ∂I(ϕ)eI
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powers of ea with jet prolongation map j1(f) =
P

I
@IfeI where now the multi-

index I = (a1 · · · · · · am) enumerates over symmetrized indices ai 2 C and @I is the
iterated derivative (and we include I = ; as no derivative in the sum). The index
aI denotes (aa1 · · · am) (it is not necessary but we can also fix everything explicitly
by choosing an ordering on C and taking representatives that are lexicographically
ordered).

We then coordinatize the fibre of J1 by uI corresponding to the coe�cient of eI

and have C(J1) = C(G)[uI ] as before. The evaluation map is e1 : G ⇥ F ! J1

where F is the space of fields (for a rank 1 real bundle it is just another copy
of C(G) up to completions) and pulling back gives e⇤1 : ⌦(J1) ! ⌦(G)⌦⌦(F ).
Assuming (for the purposes of deriving the formulae) that this is an inclusion gives
the same results as Theorem 3.1. The only di↵erence is that Z is replaced by G
and now a 2 C as discussed rather than ± as before.

Next, for the Euler-Lagrange equations, we still have a unique (up to scale) top
form Vol = e1 ^ · · ·^ e|C| and we use this to define Vola as a product of the 1-forms
without ea such that Vol = ea^Vola (no sum). Then the computation of dV (LVol)
and hence of the EL form and boundary form goes as in Theorem 3.2, wielding
the same results, now with a 2 C. Similarly, Section 3.3 can be reproduced up to
the introduction of a Lagrangian and correspondingly the form of the stress-energy
tensor Tab, but the computation of the conserved charges needs extra care, and is
also a little di↵erent when we make the interpretation 1+0 classical field theory.
We will give the results in detail for Zm,Z1,m�1, but the method works in the same
way for any Abelian group of the form Z⇥G or ZN ⇥G, replacing Cm�1 as defined
below by CG.

4.1. EL equations and translation symmetries for X = Zm,Z1,m�1
. We

focus now on scalar field theory on X = Zm with the Euclidean metric, meaning
that (ea, eb) = �a,b

�1

. For the calculus, we take C to be the set of all the positive
and negative directions in Zm

C = {±vi = ±(0, . . . , 0, 1, 0, . . . , 0) 2 Zm|i = 1, . . . ,m}

where the ±1 is in the i-th position. The volume form is then

VolZm = e1+ ^ e1� ^ · · · ^ em+ ^ em�,

where ei± corresponds to the direction ±vi.
Consider now the following action for free scalar field theory on Zm

S[�] =
1

2

Z

Zm

✓
�1

2
(d�, d�)�m2�2

◆
VolZm =

1

2

Z

Zm

 
1

2

X

a2C
(@a�)

2 �m2�2

!
VolZm

where we again introduce the factor � 1
2 in front of the kinetic term in order to

recover the classical action from Example 2.2. Recall that the minus cancels the one
coming from (d�, d�), and the 1

2 is there since every classical direction corresponds
to two directions in C (namely ei±). Given the Lagrangian L = 1

4

P
a2C u

2
a
� 1

2m
2u2

we can use Theorem 3.2 to compute the EL and boundary forms

EL =

 
�m2u+

1

2

X

a2C
uaa�1

!
dV u ^Vol, ⇥ = �1

2

X

a2C
ua�1dV u ^Vola.
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= and then same formulae as in Thm

Lattice case G = ℤm
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We see directly that the continuum limit is expected to correspond to the one in
Example 2.2. Using uaa�1 = �ua � ua�1 the EL equations for the field � are then
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!
� = 0.

Here
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( , )rd

is the standard graph or lattice Laplacian with the Euclidean (constant) metric on
edges and r(dea) = 0, cf[2]. We thus recover the Klein-Gordon equation (� +
m2)� = 0 for this case. The 1/2 relates to the doubling of derivatives.

Translation symmetry can be set up as in Section 3.3, by defining the interior
product ◆✏ through ◆✏(ea) = ✏a, ◆✏(dV uI) = �
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auaI and extending it as in
Lemma 3.3. The ‘naive Noether current’ is then
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where we copied the classical case from Example 2.6 with � = 0, used the left
module map property and (13). Again this current is not conserved but close
enough to be corrected.

Proposition 4.1. The current
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Proof. Start with the naive current j0, we have
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etc.  as before
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To consider conserved charges, we now split Zm = Z⇥Zm�1, with corresponding
generating sets C1 = {t, t�1} and Cm�1 = C\{C1}, where t, t�1 are the positive and
negative Euclidean time directions ±v1. The volume form on Zm�1 is then

VolZm�1 = e2+ ^ e2� ^ · · · ^ em+ ^ em�.

With this split we can define conserved charges in a similar way as in Corollary 2.4.

Corollary 4.3. With the above split, write j = jtVolt+jt
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The associated conserved charge
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is conserved in the sense that @tQ = 0 on-shell.

Proof. First note that the conservation of j is equivalent to

Dtj
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b

vanishing on-shell. Using @ae⇤1(�) = e⇤1(Da�), �DaRa�1 = Da�1 and
R
Zm�1 VolZm�1@b =

0 for b 2 Cm�1, we have
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on-shell. ⇤

For translation symmetries, since ja =
P

b2C ✏
bTa�1b we have |C|/2 conserved

quantities due to 4.2, with the energy corresponding to the t direction and momenta
corresponding to the Zm�1 spatial directions being

E =
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where for the momentum Pb we had to use integration by parts and
R
Zm�1 @b = 0

to arrive to Pb.
Comparing the expressions to what was found in the continuum case in Example

2.6, we see that these are similar. In the classical limit, where we expect @t�, @t�1�
to correspond to ±@0�, and the spatial derivatives @b�, @b�1� to ±@i�, we see that
these expressions recover exactly the classical forms for E and Pi for the Euclidean
metric g00 = gii = 1. The extra 1/2 is there in order to account for the doubling of
the derivatives.
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To consider conserved charges, we now split Zm = Z⇥Zm�1, with corresponding
generating sets C1 = {t, t�1} and Cm�1 = C\{C1}, where t, t�1 are the positive and
negative Euclidean time directions ±v1. The volume form on Zm�1 is then

VolZm�1 = e2+ ^ e2� ^ · · · ^ em+ ^ em�.

With this split we can define conserved charges in a similar way as in Corollary 2.4.

Corollary 4.3. With the above split, write j = jtVolt+jt
�1

Volt�1+
P

b2Cm�1
jbVolb.

The associated conserved charge

Q[�] =

Z

Zm�1

e⇤1(jt �Rt�1jt
�1

)(i,�)VolZm�1

is conserved in the sense that @tQ = 0 on-shell.

Proof. First note that the conservation of j is equivalent to

Dtj
t +Dt�1jt

�1

+
X

b2Cm�1

Dbj
b

vanishing on-shell. Using @ae⇤1(�) = e⇤1(Da�), �DaRa�1 = Da�1 and
R
Zm�1 VolZm�1@b =

0 for b 2 Cm�1, we have

@tQ =

Z

Zm�1

e⇤1(Dtj
t �DtRt�1jt

�1

)(i,�)VolZm�1

= �
X

b2Cm�1

Z

Zm�1

@be
⇤
1(jb)(i,�)VolZm�1 = 0

on-shell. ⇤

For translation symmetries, since ja =
P

b2C ✏
bTa�1b we have |C|/2 conserved

quantities due to 4.2, with the energy corresponding to the t direction and momenta
corresponding to the Zm�1 spatial directions being

E =

Z

Zm�1

(Tt�1t[�]�Rt�1Ttt[�])VolZm�1

= �1

2

Z

Zm�1

0

@(@t�)(@t�1�) +
1

2

X

b2Cm�1

(@b�)
2 �m2

1

AVolZm�1 ,

Pb =

Z

Zm�1

(Tt�1b[�]�Rt�1Ttb[�])VolZm�1

= �1

2

Z

Zm�1

(@t�1�) (@b�� @b�1�)VolZm�1 .

where for the momentum Pb we had to use integration by parts and
R
Zm�1 @b = 0

to arrive to Pb.
Comparing the expressions to what was found in the continuum case in Example

2.6, we see that these are similar. In the classical limit, where we expect @t�, @t�1�
to correspond to ±@0�, and the spatial derivatives @b�, @b�1� to ±@i�, we see that
these expressions recover exactly the classical forms for E and Pi for the Euclidean
metric g00 = gii = 1. The extra 1/2 is there in order to account for the doubling of
the derivatives.

Pb
on shell conserved energy & momentum



VI Next steps and related work

varcalc on any graph: doable but can’t solve for a QLC in general 
to write down actions

varcalc on noncommutative spacetimes like fuzzy sphere, -Minkκ
 (section of jet bundle) not a problem, 

what is analogue of  ? 
𝒥∞
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Flood, Mantegaza, Winther, Selecta (2025)

conserved charges in lattice gauge theory, lattice gravity? 

Physical applications (i) quantum gravity on one placquette 

Class. Quantum Grav. 42 (2025) 04LT01

applied in the case of a bidirected graph, and is distinct from other approaches such as spin
networks [20] or dynamical triangulations [21]. The Gauss–Bonnet theorem making 2D grav-
ity topological does not necessarily apply in noncommutative geometry and indeed the single
plaquette model has dynamical modes. Hence, we believe that we may still obtain qualitative
information about the behavior of this system by instead working with the more computable
(Z2)2 case. As a graph geometry, it has no external legs and hence can be considered as without
boundary.

This approach replaces the functions on a manifold by the algebra A of functions on the set
of vertices, the ‘1-forms’ by a vector space Ω1 with basis {ωx→y} labelled by the arrows, with
exterior derivative d : A→ Ω1 the finite differences df =

∑
x→y( f(y)− f(x))ωx→y. The main

difference from regular lattice theory is that we multiply 1-forms and functions by fωx→y =
f(x)ωx→y and ωx→yf = f(y)ωx→y to have an exact Leibniz rule, but at the price that functions
and one-forms do not generally commute. A metric is a nondegenerate element g ∈ Ω1 ⊗AΩ1

and in the graph case amounts to assigning a non-zero real ‘square length’ to every arrow.
There is no quantisation or deformation parameter in the model as this is simply an exact
finite noncommutative geometry. Instead, the metric values and cutoffs that we will impose on
them will provide physical scales. We further require a notion of symmetry on the metric by
requiring that the square-lengths are the same for arrows in opposite directions. Thus, for the
Lorentzian square [13], the metric data is

with horizontal edges assigned a spacelike or negative value and vertical edges a timelike or
positive one. We labelled the vertices as elements of the group Z2 ×Z2. With respect to the
latter,Ω1 has a two-dimensional basis over A of left-invariant one-forms e1,e2 and g=−ae1 ⊗
e1 + be2 ⊗ e2, with the metric data now appearing as certain positive metric coefficients a,b ∈
A valued as shown. There are also higher differential forms with e1,e2 forming a Grassmann
algebra under the wedge product ∧ and killed by the exterior derivative d.

Given a metric, one then solves for a torsion-free metric-compatible ‘quantum Levi-
Civita’ connection∇ : Ω1 → Ω1 ⊗AΩ1, finding in the present case [13] a one-parameter family
labelled by a phase q= eıθ. (This phase is a ‘purely quantum’ feature of the geometry since
classically the Levi-Civita connection is unique.) Here the left most factor of ∇ can be evalu-
ated against a vector field (in the noncommutative geometry sense) to get a covariant derivative
along it. From ∇, there is a canonical Riemann curvature R∇ = (d⊗ id− id∧∇)∇ as a two-
form-valued operator on one forms. Viewing the two-form-values as antisymmetric tensors,
one can then trace to get the Ricci scalar curvature R. Evaluating the expression for this found
in [13] at the four points gives
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Δ |Rave |2 potential solution to problem
of cosmological constant
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