Geometric Deep Learning meets Quantum Groups

Rita Fioresi, FaBiT, Unibo

September 18, 2025

CaLISTA COST Action

Join CaLISTA CA 21109!

https://site.unibo.it/calista/en

- Working group 1: Cartan Geometry and Representation Theory
- Working group 2: Integrable Systems and Supersymmetry
- Working group 3: Noncommutative Geometry and Quantum Homogeneous Spaces
- Working group 4: Vision
- Working group 5: Dissemination and Public Engagement

https://e-services.cost.eu/action/CA21109/working-groups/applications

Motivation

- Machine Learning, Geometric Deep Learning need a theory of differential operators on graphs (meshes).
- Quantum Geometry shows that quantum differential calculus is the right framework to write geometry on graphs.
- Sheaf Neural Networks show greater "expressibility" because of the use of rings of functions versus just function values.

Directed Graphs as Semisimplicial sets

- Δ_+ : category with objects the ordered sets $[n] = \{0 < \cdots < n\}, n \in \mathbb{N}$, and arrows the injective order preserving maps between them.
- $\Delta_{n,+}$: category with objects the ordered sets $[n] = \{0 < \cdots < n\}$, n fixed.
- ssSets := Fun(Δ^{op}₊, Sets): category of semisimplicial sets.

Example

diGraphs= $\operatorname{Fun}(\Delta_{1,+}^{\operatorname{op}},\operatorname{Sets})$, $\Delta_{1,+}$ has objects $[0]=\{0\}$ and $[1]=\{0<1\}$.

$$G([0]) = V_G$$

[1]
$$\mapsto$$
 $G([1]) = E_G$,

$$[0] \hookrightarrow [1] \quad \mapsto \quad h: E_G \to V_G, \quad t: E_G \to V_G$$

Attention: i is not necessarily injective!

(1)

Topology on Graphs

Definition

For G = (V, E) we define the poset (partially ordered set) structure:

$$x \le y$$
 if and only if $x = y$ or x is a vertex of the edge y .

We define a topology generated by the base of open sets

- $U_v = \{e \in E \mid v \leq e\}$, that is the open star of v, for each vertex $v \in V$,
- $U_e = \{e\}$, i.e. the edge e, without its vertices, for each $e \in E$.

Irreducible open sets:

e

Irreducibles for the dual topology (open are the closed subsets):

Sheaves on Graphs

Theorem (Key Result)

Let X be a topological space. If X has a basis consisting of irreducible open sets, then there is an equivalence between:

presheaves on irreducible open sets in $X \Leftrightarrow sheaves on X$.

Observation

A sheaf of vector spaces on a digraph $G = (E_G, V_G, h_G, t_G)$ for the standard (dual) topology is equivalent to give

- a vector space F(v) for each vertex $v \in V_G$,
- a vector space F(e) for each edge (with its endpoints) $e \in E_G$,
- linear maps (restriction maps) $F_{h_G(e) \le e} : F(e) \to F(h_G(e))$, $F_{t_G(e) \le e} : F(e) \to F(t_G(e))$ for each edge $e \in E_G$, where, we write $v \le e$ to mean that v is a vertex of the edge e.

Observation (Irreducible open sets in the dual standard topology)

This is the topology and the sheaf definition used in Geometric Deep Learning.

Étale coverings

Definition

Let $G \in \operatorname{diGraphs}$. We say that the surjective map $\phi: H \longrightarrow G$ is an étale directed cover if

- H is a disjoint union of graphs in diGraphs_{<1}.
- **③** The arrow $\phi_E: E_H \longrightarrow E_G$ induced by ϕ is bijective when restricted to non self-loops.

Clearly, given ${\it G}$, such ${\it H}$ and ϕ are not unique, but they always exists.

Remark

It is possible to define Grothendieck topologies and étale coverings more general on semisimplicial sets together with their sheaves (sites and topos).

Étale cover in Graph Neural Networks

Heterogeneous Graph Attention Network

Ref: "Heterogeneous Graph Attention Network", https://arxiv.org/pdf/1903.07293

First Order Differential Calculus

Definition

A first order differential calculus (FODC) on an algebra A is (Γ, d), where

- i.) Γ is an A-bimodule.
- ii.) d: $A \rightarrow \Gamma$ is a **k**-linear map satisfying the Leibniz rule

$$d(ab) = d(a)b + ad(b)$$

for all $a, b \in A$.

iii.) $A \otimes A \to \Gamma$, $a^i \otimes b^i \mapsto a^i \mathrm{d}(b^i)$ is a (left A-linear and) surjective map.

Example (Kahler differential, exterior derivative)

Take $A = C^{\infty}(M)$, M differentiable manifold, $\Gamma = \Omega^{1}(M)$.

$$d: C^{\infty}(M) \longrightarrow \Omega^{1}(M), \qquad f \mapsto df$$

In local coordinates:

$$df = \sum \partial_i f^i dx_i$$

First Order Differential Calculus on diGraphs

Let $G = (V, E) \in \operatorname{diGraphs}_{\leq 1}$ (G directed with at most one edge per direction).

$$A := \mathbf{k}[V] = \operatorname{span}\{\delta_x \mid x \in V\},\tag{2}$$

where $\delta_x(y) = 1$ if x = y and zero otherwise.

Definition

We define a FODC (Γ^1, d) , on $A = \mathbf{k}[V]$

$$\Gamma^1 := \mathbf{k}[E] = \operatorname{span}\{\omega_{x \to y} \,|\, (x, y) \in E\}$$

The A-bimodule structure is given by:

$$f\omega_{x\to y} = f(x)\omega_{x\to y}, \quad \omega_{x\to y}f = \omega_{x\to y}f(y), \quad df = \sum_{x\to y\in E} (f(y) - f(x))\omega_{x\to y}$$

We define $d: A \longrightarrow \Gamma^1$ on generators as:

$$d\delta_{x} = \sum_{y:y\to x} \omega_{y\to x} - \sum_{y:x\to y} \omega_{x\to y}, \quad \delta_{x} d\delta_{y} = \begin{cases} -\sum_{z:x\to z} \omega_{x\to z} & x=y\\ \omega_{x\to y} & x\to y\\ 0 & \text{otherwise} \end{cases}$$
(3)

This FODC is **inner**, i.e. $da = [\theta, a]$ for all $a \in A$, where

$$\theta := \sum_{x \to y \in E} \omega_{x \to y}$$

FODC on multi-edge graphs via Étale coverings

We can extend the theory of FODC to the case of multi-edge graphs. We illustrate it by an example.

Example

Consider the graph G and its étale covering

$$f: H = H_1 \coprod H_2 \coprod H_3 \longrightarrow G$$

with $G, H \in diGraphs$ (self-loops are not depicted)

We have that $\Gamma_G^1 := \operatorname{span}\{\omega_{v_1 \to w_1}, \omega_{v_2 \to w_2}, \omega_{w_3 \to v_3}\}$, and

$$d(a) = d_1(f^*(a)_{|V_{H_1}}) + d_2(f^*(a)_{|V_{H_2}}) + d_3(f^*(a)_{|V_{H_3}}) \in \Gamma^1 = \Gamma^1_{H_1} \oplus \Gamma^1_{H_2} \oplus \Gamma^1_{H_3}$$

So, for example, if $a = \delta_{v}$, $d(\delta_{v}) = d_{1}(\delta_{v_{1}}) + d_{2}(\delta_{v_{2}}) + d_{3}(\delta_{v_{3}})$.

Vector bundles and Parallel transport on Graphs

Definition (Braune et al. 2017)

A vector bundle \mathcal{F} of rank n on a set V is an assignment:

$$v\longrightarrow \mathcal{F}_u, \qquad v\in V$$

where \mathcal{F}_v is a vector space of dimension n. We define the **frame bundle** Fr , an assignment:

$$V \ni v \mapsto \{e_i^v\} \subset \mathcal{F}_v$$

where $\{e_i^v\}$ is a basis for \mathcal{F}_v . Moreover we denote with $\mathbbm{1}_{u,v}: \mathcal{F}_u \longrightarrow \mathcal{F}_v$ the linear map $\mathbbm{1}_{u,v}(e_i^u) = e_i^v$.

Definition

Let \mathcal{F} be a vector bundle on V and let $G = (V, E) \in \operatorname{diGraphs}$.

- We define a weak parallel transport a collection of linear maps $\mathcal{R}_{e,u \to v} : \mathcal{F}_v \longrightarrow \mathcal{F}_u$, where e is an edge between u and v.
- If $G \in \operatorname{diGraphs}_{\leq 1}$ is bidirected, we say that a weak parallel transport is a parallel transport if each $\mathcal{R}_{e,u \to v}$ is invertible and $\mathcal{R}_{e,u \to v} = \mathcal{R}_{e',v \to u}^{-1}$.

Connections

Definition (Braune et al. 2017)

We define a **connection** on a digraph G as a collection of linear maps $\Theta_{e,u \to v} := \mathcal{R}_{e,u \to v} - \mathbbm{1}_{v,u}$, on all edges $e \in E$, with $\{\mathcal{R}_{e,u \to v}\}$ a weak parallel transport.

Once a frame bundle is given, we can write:

$$\mathcal{R}_{e,u\to v}: \mathcal{F}_v \longrightarrow \mathcal{F}_u, \qquad e_i^v \mapsto \mathcal{R}_{e,u\to v,i}^j e_j^v$$

Observation

In the differentiable setting the parallel transport for a vector bundle $E \longrightarrow M$ on a differentiable manifold M is a collection of maps:

$$\Gamma(\gamma)_s^t: E_{\gamma(s)} \to E_{\gamma(t)}$$

It allows us to take the derivative of a section V along a curve γ :

$$\nabla_{\dot{\gamma}} V = \lim_{h \to 0} \frac{\Gamma(\gamma)_h^0 V_{\gamma(h)} - V_{\gamma(0)}}{h} = \left. \frac{d}{dt} \Gamma(\gamma)_t^0 V_{\gamma(t)} \right|_{t=0}.$$

Rewrite replacing the curve γ with an edge e between vertices u and v (taking the places of $\gamma(0)$ and $\gamma(h)$) of the graph $G \in Graphs$.

$$V_u \mapsto \mathcal{R}_{e,u \to v} V_v - V_u$$

Curvature and Geometric Deep Learning

Observation

Classically there is a correspondence:

Locally constant sheaves \leftrightarrow vector bundles with a flat connection

In machine learning the invertibility assumption on parallel transport $\mathcal{R}_{x \to y} = \mathcal{R}_{y \to x}^{-1}$ severely restricts the connection, making it a flat one!

Barbero et al. https://arxiv.org/pdf/2206.08702

Metric and Laplacians

Definition

Let (Γ_G^1, d_G) be a FODC on k[V] associated to $G = (V, E) \in \operatorname{diGraphs}$. We define

4 a quantum metric on Γ^1 , a bimodule map

$$(,):\Gamma^1_G\otimes_{A_G}\Gamma^1_G\longrightarrow A_G$$

② A k-linear map $\Delta: A_G \rightarrow A_G$ is a second order Laplacian if

$$\Delta(ab) = (\Delta a)b + a\Delta b + 2(\mathrm{d}a,\mathrm{d}b)$$

Graph laplacians associated to the metric (,) are given by:

$$\Delta_{\theta}(\textbf{\textit{a}}) := 2(\theta, \mathrm{d}\textbf{\textit{a}}) \quad , \quad {}_{\theta}\Delta(\textbf{\textit{a}}) := -2(\mathrm{d}\textbf{\textit{a}}, \theta)$$

where $\theta = \sum \omega_{x \longrightarrow y}$.

Proposition

If we fix the basis $\{\delta_x\}_{x\in V_G}$ for $\mathbf{k}[V_G]$, we identify $\mathbf{k}[V_G]\cong \mathbf{k}^{|V_G|}$, L is a linear operator and one can readily check:

$$L = D - A = (1/2)\Delta_{\theta}$$
, for $\lambda_{v \to w, w \to v} = \lambda_{w \to v, v \to w} = 1$

where D is the degree matrix (diagonal matrix with the degree of vertices on the diagonal) and A is the adjacency matrix of G.

Connection Laplacian

We can extend the definition $\theta \Delta$ when a right connection is given on a vector bundle.

Definition

Assume we have:

- $G \in \operatorname{diGraphs}_{<1}$ and a FODC Γ^1 ,
- M a free rank n right A_G-bimodule,
- ∇ a right connection
- (,) a generalized quantum metric on Γ_G^1 .

Let η be the left A_G -module map $M \otimes_A \Gamma_G^1 \to M \otimes_A \Gamma_G^1 \otimes_A \Gamma_G^1$:

$$\eta(m\otimes\omega_{x\to y})=m\otimes\omega_{x\to y}\otimes\theta$$

Define the connection Laplacian

$$_{\theta}\Delta^{M}:=-2(\mathbb{1}\otimes(,))\circ\eta\circ\nabla:M\to M$$

Observation

We have:

$$_{\theta}\Delta^{M}(e_{i}f^{i}) = -2\sum_{x \to y} \lambda_{x \to y \to x}(\mathcal{R}_{x \to y,i}^{j}f^{i}(y) - f^{i}(x))e_{j}\delta_{x}$$

Sheaf Laplacian in Geometric Deep Learning

Definition (Bodnar et al. 2022)

Let G = (V, E) be a directed graph, $f \in k[V]$. Let \mathcal{F} be a sheaf of vector spaces. We define sheaf Laplacian

$$L_F(f)_x := \sum_{y, x \le x \to y} F_{x \le x \to y}^{-1} (F_{x \le x \to y} f_x - F_{y \le x \leftrightarrow y} f_y)$$
 (4)

Recall that a sheaf of vector spaces on a digraph $G = (E_G, V_G, h_G, t_G)$ for the standard (dual) topology is equivalent to give

- a vector space F(v) for each vertex $v \in V_G$,
- ullet a vector space F(e) for each edge (with its endpoints) $e \in E_G$,
- linear maps (restriction maps) $F_{x \leq x \longrightarrow y} : F(x \longrightarrow y) \to F(x)$, $F_{y \leq x \longrightarrow y} : F(x \longrightarrow y) \to F(y)$ for each edge $x \longrightarrow y \in E_G$, where, we write $v \leq e$ to mean that v is a vertex of the edge e.

where the irreducible open sets in the dual standard topology are

Geometric Deep Learning meets Quantum Geometry

Observation

Vector bundles are locally free sheaves (as in ordinary geometry).

Theorem (F.-Simonetti-Zanchetta 2025)

Assume

- $G \in \operatorname{diGraphs}_{\leq 1}$ is a bidirected graph with (Γ^1, d) , differential calculus
- ullet ${\cal F}$ a vector bundle i.e. a sheaf of vector spaces of rank n on ${\it G}$
- ullet ∇ connection with $\mathcal R$ weak parallel transport,
- M the free right A_G -module associated to the vector bundle \mathcal{F} .
- **1** If \mathcal{R}^F is a parallel transport, then ${}_{\theta}\Delta^M = -L_F$.
- **(a)** If $\mathcal F$ is a sheaf of inner product spaces and $F^*_{v\leq e}=F^{-1}_{v\leq e}$ (i.e. $\mathcal F$ in an $\mathrm O(n)$ -bundle), then

$$\nabla^*\nabla = L_F$$

where we fix isomorphisms $M \cong M^*$ and $\Gamma^1 \cong (\Gamma^1)^*$.

Remark

This theorem can be proven more generally in the context of semisimplicial sets and their homology/cohomology.

References (Graph Theory and Graph Neural Networks)

- Bodnar, C., Di Giovanni, F., Chamberlain, B. P., Lio, P., and Bronstein, M. M.
 Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in GNNs. In ICLR 2022.
- Theo Braune, Yiying Tong, Francois Gay-Balmaz, Mathieu Desbrun, A Discrete Exterior Calculus of Bundle-valued Forms, https://arxiv.org/abs/2406.05383.
 M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geometric Deep Learning going beyond euclidean data, IEEE Signal Processing Magazine 34 (4), 18-42, 2017.
 Sheaves, cosheaves and applications, PhD Thesis, 2014.
 Reinhard Diestel, Graph Theory, Springer GTM 173, 5th edition, 2016.
- R. Fioresi, F. Zanchetta Deep learning and geometric deep learning: An
- introduction for mathe- maticians and physicists, International Journal of Geometric Methods in Modern Physics, 2023, no. 12, Paper No. 2330006.
- C. Godsil, F. G. Royce, Algebraic Graph Theory, GTM, Springer 2001.
- Hansen, J., Ghrist, R. Toward a spectral theory of cellular sheaves. J Appl. and Comput. Topology 3, 315–358 (2019).
- F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfardini, "The Graph Neural Network Model," in IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61-80, 2009.

References: (Quantum) Geometry

- E. J. Beggs, S. Majid Quantum Riemannian Geometry, Springer, 2020.
- A. Dimakis, Folkert Mueller-Hoissen, Discrete differential calculus graphs, topologies and gauge theory J. Math. Phys. 35 (1994) 6703-6735
- U. Görtz, T. Wedhorn, Algebraic geometry I.
- J. Ebert, O. R. Williams, semiSimplicial Sets, 2018.
- A. Grothendieck, Elements de Géométrie algébrique. Grundlehren der Mathematischen Wissenschaften (in French) 166 (2nd ed.), Springer-Verlag 1971.
- S. Majid. Noncommutative Riemannian Geometry on Graphs. Journal of Geometry and Physics, Volumen 69, pages 74-93, 2013.
- C. Voisin, Hodge Theory and Complex Algebraic Geometry, I. Cambridge studies in advanced mathematics 76, 2002.

Theorem (Dimakis 1994, Majid 2013)

We have a fully faithful contravariant functor

$$F: \operatorname{diGraphs}_{<1} \longrightarrow (FODC), \qquad G = (V, E) \mapsto (\Gamma^1, \operatorname{d})$$

realizing an antiequivalence of categories between $\operatorname{diGraphs}_{\leq 1}$ and the category of FODC ($\Gamma^1, \operatorname{d}$) on k-algebras $A = \mathbf{k}[V]$, with V finite set.

We can extend the definition of FODC from ${\rm diGraphs}_{\leq 1}$ to ${\rm diGraphs},$ obtaining still an equivalence of categories.

Theorem (F., Simonetti, Zanchetta 2025)

We have a fully faithful contravariant functor

$$\mathcal{F}: diGraphs \longrightarrow (FODC)_e, \quad \mathcal{G} \mapsto (\Gamma_{\mathcal{G}}^1, d)$$

giving an antiequivalence of categories, where (FODC) $_{\rm e}$ consists of all the FODC ($\Gamma^1, {
m d}$) coming from an étale cover of a given graph.

Theorem (Dimakis 1994, Majid 2013)

We have a fully faithful contravariant functor

$$F: \operatorname{diGraphs}_{<1} \longrightarrow (FODC), \qquad G = (V, E) \mapsto (\Gamma^1, \operatorname{d})$$

realizing an antiequivalence of categories between $\operatorname{diGraphs}_{\leq 1}$ and the category of FODC ($\Gamma^1, \operatorname{d}$) on k-algebras $A = \mathbf{k}[V]$, with V finite set.

We can extend the definition of FODC from ${\rm diGraphs}_{\leq 1}$ to ${\rm diGraphs},$ obtaining still an equivalence of categories.

Theorem (F., Simonetti, Zanchetta 2025)

We have a fully faithful contravariant functor

$$\mathcal{F}: diGraphs \longrightarrow (FODC)_e, \quad \mathcal{G} \mapsto (\Gamma_{\mathcal{G}}^1, d)$$

giving an antiequivalence of categories, where (FODC) $_{\rm e}$ consists of all the FODC ($\Gamma^1, {
m d}$) coming from an étale cover of a given graph.

Theorem (Dimakis 1994, Majid 2013)

We have a fully faithful contravariant functor

$$F: \operatorname{diGraphs}_{\leq 1} \longrightarrow (FODC), \qquad G = (V, E) \mapsto (\Gamma^1, \operatorname{d})$$

realizing an antiequivalence of categories between $\operatorname{diGraphs}_{\leq 1}$ and the category of FODC ($\Gamma^1, \operatorname{d}$) on k-algebras $A = \mathbf{k}[V]$, with V finite set.

We can extend the definition of FODC from $\mathrm{diGraphs}_{\leq 1}$ to $\mathrm{diGraphs},$ obtaining still an equivalence of categories.

Theorem (F., Simonetti, Zanchetta 2025)

We have a fully faithful contravariant functor

$$\mathcal{F}: \operatorname{diGraphs} \longrightarrow (\operatorname{FODC})_{\operatorname{e}}, \quad \mathcal{G} \mapsto (\Gamma^1_{\mathcal{G}}, \operatorname{d})$$

giving an antiequivalence of categories, where (FODC) $_{\rm e}$ consists of all the FODC ($\Gamma^1, {\rm d}$) coming from an étale cover of a given graph.

Triangular Cliques and Second order differential calculus on graphs

Definition

For a given $G \in \mathrm{diGraphs}_{\leq 1}$, we define Γ_G^2 as the vector space freely generated by the triangular cliques:

$$\Gamma_G^2 := \operatorname{span}\{\omega_{x \to y \to z} \mid x \to y, y \to z \in V, x \neq y, y \neq z\}$$
 (5)

 Γ_G^2 is an A_G -bimodule:

$$f\omega_{x\to y\to z} = f(x)\omega_{x\to y\to z}, \quad \omega_{x\to y\to z}f = \omega_{x\to y\to z}f(z), \quad f\in A_G$$

In analogy to the continuous setting, we refer to Γ_G^2 as the space of 2-forms on A_G .

Figure: Triangular cliques

Universal Second Order Differential Calculus for V

Definition

Define Ω_V^2 to be the **k**-vector space freely generated by the triangular cliques of fully connected G on V:

$$\Omega_{V}^{2}:=\operatorname{span}\{\omega_{x\rightarrow y\rightarrow z}\,|\,x,y,z\in V,\,x\neq y,y\neq z\}$$

We define the exterior product as the k-linear map:

$$\Omega_V^1 \times \Omega_V^1 \longrightarrow \Omega_V^2$$
, $(\omega_{x \to y}, \omega_{w \to z}) \mapsto \omega_{x \to y} \wedge \omega_{w \to z} := \delta_{y,w} \omega_{x \to y \to z}$

where $(\Omega_V^1, \mathrm{d}_V^0)$ is the FODC associated with the fully connected graph G.

$$d_V^1: \Omega_V^1 \longrightarrow \Omega_V^2 \qquad d_V^1 \omega_{X \to Y} := d_V^0 \delta_X \wedge d_V^0 \delta_Y$$
 (6)

The map d_V^1 satisfies the Leibniz rule:

$$d_V^1(f\omega_{x\longrightarrow y}) = d_V^0f \wedge \omega_{x\longrightarrow y} + f d_V^1\omega_{x\longrightarrow y}, d_V^1(\omega_{x\longrightarrow y}f) = d_V^1\omega_{x\longrightarrow y}f - \omega_{x\longrightarrow y} \wedge d_V^0f$$

and $\mathrm{d}_V^1 \circ \mathrm{d}_V^0 = 0$. We also have the explicit expression:

$$d\omega_{x \to y} = \sum_{u \in V} (\omega_{u \to x \to y} - \omega_{x \to u \to y} + \omega_{x \to y \to u})$$
 (7)

General Second Order Differential Calculus on G = (V, E)

Let $G = (V, E) \in \operatorname{diGraphs}_{\leq 1}$, we can write the FODC Γ^1_G as a quotient of a **universal calculus** Ω^1 corresponding to the fully connected graph with vertices V:

$$\Gamma_G^1 = \Omega_V^1 / I, \qquad I = \operatorname{span}\{\omega_{x \to y} \mid x \to y \not\in E\}$$

The previous proposition, along with the definition of the wedge product, allows us to see $\Omega^{ullet}_V:=\oplus_{i=0}^2\Omega^i_V$ (where $\Omega^0_V:=\mathbf{k}[V]$) as a differential graded algebra $(\Omega^{ullet}_V,d^{ullet}_V)$ (DGA)

Proposition

Let $G \in \operatorname{diGraphs}_{\leq 1}$. The graded A_G -bimodule $\Gamma_G^{ullet} := \bigoplus_{i=0}^2 \Gamma_G^i$, where

$$\Gamma_G^0 := A_G, \qquad \Gamma_G^1 = \Omega_V^1/I \qquad \Gamma_G^2 \cong \Omega_V^2/\mathrm{d}_V^1(I)$$

has a well defined DGA structure induced by the one of $(\Omega_V^{\bullet}, d_V^{\bullet})$, the bimodule structure being the same.

We notice that any quotient of Γ_G^2 by the span of a subset of the triangular cliques will give a well defined differential.

General Second Order Differential Calculus on G

Definition

Let $G=(V,E)\in\operatorname{diGraphs}_{\leq 1}$ and S a subset of its triangular cliques. We define the pair $(\Gamma_{S}^{\bullet},d_{S}^{\bullet})$ with:

$$\Gamma_S^{\bullet} := \Gamma_G^{\bullet}/\langle S \rangle, \qquad d_S^{\bullet} : \Gamma_S^{\bullet} \longrightarrow \Gamma_S^{\bullet}$$
(8)

a second order differential calculus on $A = \mathbf{k}[V]$, where $\langle S \rangle$ is the A_G -bimodule generated by S and d_S^1 is obtained from d_G^1 , by taking the quotient of Γ_G^2 by $\langle S \rangle$.

Note that if $S=\emptyset$ we get that $(\Gamma_S^{ullet},d_S^{ullet})=(\Gamma_G^{ullet},d_G^{ullet})$. In addition, notice that d_S^1 satisfies the Leibnitz rule and $\mathrm{d}_S^1\circ\mathrm{d}_S^0=0$, where $\mathrm{d}_S^0=\mathrm{d}_G^0$ and $\Gamma_S^i:=\Gamma_G^i$ for i=0,1.

Remark

Let V be a finite set. Our approach could be extended to obtain all differential graded algebras on A as quotients of the universal one $\Omega_V:=\oplus_n\Omega_V^n$. Moreover one could also extend our results to comprehend the case of étale directed covers,

Theorem (Dimakis 1994, Majid 2013)

We have a fully faithful contravariant functor

$$F: \operatorname{diGraphs}_{\leq 1} \longrightarrow (FODC), \qquad G = (V, E) \mapsto (\Gamma^1, \operatorname{d})$$

realizing an antiequivalence of categories between $\operatorname{diGraphs}_{\leq 1}$ and the category of FODC ($\Gamma^1, \operatorname{d}$) on k-algebras $A = \mathbf{k}[V]$, with V finite set.

We can extend the definition of FODC from $\mathrm{diGraphs}_{\leq 1}$ to $\mathrm{diGraphs},$ obtaining still an equivalence of categories.

Theorem (F., Simonetti, Zanchetta 2025)

We have a fully faithful contravariant functor

$$\mathcal{F}: \operatorname{diGraphs} \longrightarrow (\operatorname{FODC})_{\operatorname{e}}, \quad \mathcal{G} \mapsto (\Gamma^1_{\mathcal{G}}, \operatorname{d})$$

giving an antiequivalence of categories, where (FODC) $_{\rm e}$ consists of all the FODC ($\Gamma^1, {\rm d}$) coming from an étale cover of a given graph.

Noncommutative connections

Definition

Let $G = (V, E) \in \operatorname{diGraphs}$, $A = \mathbf{k}[V]$ and (Γ^1, d) the FODC on A. Let M be a free rank n left A-module. We define a left noncommutative connection ∇ on M as a map

$$\nabla: M \longrightarrow \Gamma^1 \otimes M$$

satisfying the Leibniz identity, i.e:

$$\nabla(fm) = \mathrm{d}f \otimes m + f \nabla m, \qquad f \in A, \quad m \in M$$

Analogously, given a free rank n right A-module M, one can define a **right** noncommutative connection ∇ on M as a map

$$\nabla: M \longrightarrow M \otimes \Gamma^1$$

satisfying the Leibniz identity:

$$\nabla(mf) = m \otimes df + (\nabla m)f, \qquad f \in A, \quad m \in M$$

Once a basis $\{e_i\}_{i=1}^n$ for the free *A*-module *M* is chosen, a non commutative right connection amounts to give a map:

$$e_i f^i \mapsto e_i \otimes df^i + e_j \otimes \omega_i^j f^i$$

where ω_i^j is a matrix of 1 forms, i.e. elements of Γ^1

Connections and noncommutive connections on graphs

Observation

There is a bijective correspondence between the two notions:

- A noncommutative right connection on M, a right A-module of rank n, with respect to the FODC given via G on A.
- a A connection on a digraph.
- (2) \rightarrow (1). In fact, consider a vector bundle $\mathcal F$ of rank n on V, a frame bundle

$$V \ni v \mapsto \{e_i^v\}$$

and a free rank n right A-module n with the choice of a basis $\{e_i\}_{i=1}^n$. Then given a connection $\Theta_{e,u \to v} := \mathcal{R}_{e,u \to v} - \mathbbm{1}_{v,u}$ we get:

$$\omega_i^j = \sum_{e, x \to y} [\mathcal{R}_{e, x \to y, i}^j - \delta_{i, j}] \omega_{e, x \to y} \tag{9}$$

$$M\ni e^if_i\mapsto \sum_{e,x\to y}e_j\otimes \left[f^i(y)\mathcal{R}^j_{e,x\to y,i}-f^i(x)\delta_{ij}\right]\omega_{e,x\to y}\in M\otimes\Gamma^1_G\qquad (10)$$

 $(1) \rightarrow (2)$. Conversely given a right connection

$$e_i f^i \mapsto e_i \otimes df^i + \sum_{j=1}^n e_j \otimes \omega_i^j f^i$$

where $\omega_i^j = \sum_{e, \mathbf{x} \to \mathbf{y}} a_{e, \mathbf{x} \to \mathbf{y}, i}^j \omega_{e, \mathbf{x} \to \mathbf{y}}$ (using the basis $\{\omega_{e, \mathbf{x} \to \mathbf{y}}\}$ of Γ_G^1 as a k-vector space), by setting $R_{e, \mathbf{x} \to \mathbf{y}, i}^j := a_{e, \mathbf{x} \to \mathbf{y}, i}^j + \delta_{ij}$ we get a connection.

Definition

Assume we have:

- $G \in \operatorname{diGraphs}_{\leq 1}$, $(\Gamma^1_G, \operatorname{d})$ a FODC on $A = \mathbf{k}[G]$
- S a subset of its triangular cliques
- M a free A bimodule of rank n with basis $\{e_i\}_{i=1}^n$, A = k[G].
- $\nabla: M \to \Gamma^1_G \otimes M$ a noncommutative right connection

We define:

• the curvature of ∇ as $R_{\nabla}: M \to M \otimes \Gamma_G^2$ as the right A module map defined on the basis $\{e_i\}_{i=1}^n$ as follows

$$R_{\nabla}(e_i) = e_j \otimes d\omega_i^j + e_j \otimes \omega_k^j \wedge \omega_i^k$$

• the curvature outside of S of ∇ as:

$$R_{\nabla}^{S} := (\mathbb{1} \otimes \pi_{S}) \circ R_{\nabla} : M \to M \otimes \Gamma_{S}^{2}$$

where $\pi_S: \Gamma_G^2 \to \Gamma_S^2 = \Gamma_G^2/\langle S \rangle$ is the projection morphism.

We say that ∇ is flat outside of S if $R_{\nabla}^S = 0$. We say that ∇ is flat if $R_{\nabla} = 0$.

Curvature and Flat Connections

Observation

We can rewrite R_{∇} in terms the weak parallel transport associated with ∇ as

$$R_{\nabla}(e_i) = \sum_{x \to y \to z \in \text{tri}(G)} (\mathcal{R}_{x \to y, k}^j \mathcal{R}_{y \to z, i}^k - \mathcal{R}_{x \to z, i}^j) e_j \otimes \omega_{x \to y \to z}$$
(11)

tri(G) is the set of all triangular cliques of G.

Proposition

Let be G. M and ∇ as above. Then:

- 1. If ∇ is flat then $\mathcal{R}_{x \to z} = \mathcal{R}_{x \to y} \mathcal{R}_{y \to z}$ for each triangular clique. In particular, we have that $\mathcal{R}_{x \to y} = \mathcal{R}_{y \to x}^{-1}$ for all edges $x \to y \in E_G$ that are part of a triangular clique of the form $x \to y \to x$.
- 2. Assume G to be bidirected. Consider the set of triangular cliques S consisting of all triangular cliques of the form $x \to y \to z$ having $x, y, z \in V_G$ all distinct. Then ∇ is flat outside of S if and only if the weak parallel transport associated to ∇ is a parallel transport i.e.:

$$\mathcal{R}_{x \to y} = \mathcal{R}_{y \to x}^{-1}$$
 for all edges $x \to y \in E_G$

Metric and Laplacians

Definition

Let (Γ_G^1, d_G) be a FODC on k[V] associated to $G = (V, E) \in \operatorname{diGraphs}$. We define

4 a quantum metric on Γ^1 , a bimodule map

$$(,):\Gamma^1_G\otimes_{A_G}\Gamma^1_G\longrightarrow A_G$$

② A k-linear map $\Delta: A_G \rightarrow A_G$ is a second order Laplacian if

$$\Delta(ab) = (\Delta a)b + a\Delta b + 2(\mathrm{d}a,\mathrm{d}b)$$

Graph laplacians associated to the metric (,) are given by:

$$\Delta_{\theta}(\textbf{\textit{a}}) := 2(\theta, \mathrm{d}\textbf{\textit{a}}) \quad , \quad {}_{\theta}\Delta(\textbf{\textit{a}}) := -2(\mathrm{d}\textbf{\textit{a}}, \theta)$$

where $\theta = \sum \omega_{x \longrightarrow y}$.

Proposition

If we fix the basis $\{\delta_x\}_{x\in V_G}$ for $\mathbf{k}[V_G]$, we identify $\mathbf{k}[V_G]\cong \mathbf{k}^{|V_G|}$, L is a linear operator and one can readily check:

$$L = D - A = (1/2)\Delta_{\theta}$$
, for $\lambda_{v \to w, w \to v} = \lambda_{w \to v, v \to w} = 1$

where D is the degree matrix (diagonal matrix with the degree of vertices on the diagonal) and A is the adjacency matrix of G.

Connection Laplacian

Observation

The equality $L=D-A=2\Delta_{\theta}$ is obtained from the comparison of the expressions of L and Δ_{θ} :

$$(La)(x) = \sum_{y,(x,y) \in E_G} (a(x) - a(y)), \qquad \Delta_{\theta} a(x) = 2 \sum_{y,x \to y \in E_G} \lambda_{x \to y,y \to x} (a(x) - a(y))$$

We can extend the definition $\theta \Delta$ when a right connection is given on a vector bundle.

Definition

Assume we have:

- $G \in \operatorname{diGraphs}_{\leq 1}$ and a FODC Γ^1 ,
- M a free rank n right A_G-bimodule,
- ullet ∇ a right connection
- ullet (,) a generalized quantum metric on Γ_G^1 .

Let η be the left A_G -module map $M \otimes_A \Gamma^1_G \to M \otimes_A \Gamma^1_G \otimes_A \Gamma^1_G$:

$$\eta(m\otimes\omega_{x\to y})=m\otimes\omega_{x\to y}\otimes\theta$$

Define the connection Laplacian

$$_{\theta}\Delta^{M}:=-2(\mathbb{1}\otimes(,))\circ\eta\circ\nabla:M\to M$$

Observation

Assume we have:

- $G \in \operatorname{diGraphs}_{<1}$ and a FODC (Γ^1, d) ,
- M a free rank n right A_G -bimodule, with basis $\{e_i\}_{i=1}^n$
- ∇ a right connection
- (,) a generalized quantum metric on Γ_G^1 .

Then

0

$$_{\theta}\Delta^{M}(e_{i}f^{i}) = -2\sum_{x \to y} \lambda_{x \to y \to x}(\mathcal{R}_{x \to y, i}^{j}f^{i}(y) - f^{i}(x))e_{j}\delta_{x}$$

where in the summation only the edges $x \to y$ of the maximal bidirected subgraph of G appear.

② If $M = A_G$, we recover the Laplacian $\theta \Delta$.

Sheaf Laplacian in Geometric Deep Learning

Definition (Bodnar et al. 2022)

Let G = (V, E) be a directed graph, $f \in k[V]$. Let \mathcal{F} be a sheaf of vector spaces. We define sheaf Laplacian

$$L_F(f)_x := \sum_{y, x \le x \to y} F_{x \le x \to y}^{-1} (F_{x \le x \to y} f_x - F_{y \le x \leftrightarrow y} f_y)$$
 (12)

Recall that a sheaf of vector spaces on a digraph $G = (E_G, V_G, h_G, t_G)$ for the standard (dual) topology is equivalent to give

- a vector space F(v) for each vertex $v \in V_G$,
- ullet a vector space F(e) for each edge (with its endpoints) $e \in E_G$,
- linear maps (restriction maps) $F_{x \leq x \longrightarrow y} : F(x \longrightarrow y) \to F(x)$, $F_{y \leq x \longrightarrow y} : F(x \longrightarrow y) \to F(y)$ for each edge $x \longrightarrow y \in E_G$, where, we write $v \leq e$ to mean that v is a vertex of the edge e.

where the irreducible open sets in the dual standard topology are

Geometric Deep Learning meets Quantum Geometry

Observation

Vector bundles are locally free sheaves (as in ordinary geometry).

Theorem (F.-Simonetti-Zanchetta 2025)

Assume

- $G \in \operatorname{diGraphs}_{<1}$ is a bidirected graph with (Γ^1, d) , differential calculus
- ullet ${\cal F}$ a vector bundle i.e. a sheaf of vector spaces of rank n on ${\it G}$
- ullet ∇ connection with $\mathcal R$ weak parallel transport,
- M the free right A_G -module associated to the vector bundle \mathcal{F} .
- **1** If \mathcal{R}^F is a parallel transport, then ${}_{\theta}\Delta^M = -L_F$.
- ① If $\mathcal F$ is a sheaf of inner product spaces and $F^*_{v\leq e}=F^{-1}_{v\leq e}$ (i.e. F in an $\mathrm O(n)$ -bundle), then

$$\nabla^*\nabla = L_F$$

where we fix isomorphisms $M \cong M^*$ and $\Gamma^1 \cong (\Gamma^1)^*$.

Remark

This theorem can be proven more generally in the context of semisimplicial sets and their homology/cohomology.