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Motivation

Machine Learning, Geometric Deep Learning need a theory of differential
operators on graphs (meshes).

Quantum Geometry shows that quantum differential calculus is the right
framework to write geometry on graphs.

Sheaf Neural Networks show greater “expressibility” because of the use of rings of
functions versus just function values.
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Directed Graphs as Semisimplicial sets

∆+: category with objects the ordered sets [n] = {0 < · · · < n}, n ∈ N, and
arrows the injective order preserving maps between them.

∆n,+: category with objects the ordered sets [n] = {0 < · · · < n}, n fixed.

ssSets := Fun(∆op
+ , Sets): category of semisimplicial sets.

Example

diGraphs= Fun(∆op
1,+, Sets), ∆1,+ has objects [0] = {0} and [1] = {0 < 1}.

G : ∆op
1,+ −→ Sets

[0] 7→ G([0]) = VG ,

[1] 7→ G([1]) = EG ,

[0] ↪→ [1] 7→ h : EG → VG , t : EG → VG
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Attention: i is not necessarily injective!
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Topology on Graphs

Definition

For G = (V ,E) we define the poset (partially ordered set) structure:

x ≤ y if and only if x = y or x is a vertex of the edge y .

We define a topology generated by the base of open sets

Uv = {e ∈ E | v ≤ e}, that is the open star of v, for each vertex v ∈ V ,

Ue = {e}, i.e. the edge e, without its vertices, for each e ∈ E.

Irreducible open sets:

e
•
v

Irreducibles for the dual topology (open are the closed subsets):

•
v

• •
v w
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Sheaves on Graphs

Theorem (Key Result)

Let X be a topological space. If X has a basis consisting of irreducible open sets, then
there is an equivalence between:

presheaves on irreducible open sets in X ⇔ sheaves on X.

Observation

A sheaf of vector spaces on a digraph G = (EG ,VG , hG , tG ) for the standard (dual)
topology is equivalent to give

a vector space F (v) for each vertex v ∈ VG ,

a vector space F (e) for each edge (with its endpoints) e ∈ EG ,

linear maps (restriction maps) FhG (e)≤e : F (e) → F (hG (e)),
FtG (e)≤e : F (e) → F (tG (e)) for each edge e ∈ EG , where, we write v ≤ e to
mean that v is a vertex of the edge e.

Observation (Irreducible open sets in the dual standard topology)

•
v

• •
v w

This is the topology and the sheaf definition used in Geometric Deep Learning.
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Étale coverings

Definition

Let G ∈ diGraphs. We say that the surjective map ϕ : H −→ G is an étale directed
cover if

1 H is a disjoint union of graphs in diGraphs≤1.

2 The arrow ϕE : EH −→ EG induced by ϕ is bijective when restricted to non
self-loops.

G • •v w

e1

e2

e3

H1

H2

H3

• •

• •

• •

v1 w1

v2 w2

v3 w3

e′3

e′2

e′1

Clearly, given G , such H and ϕ are not unique, but they always exists.

Remark

It is possible to define Grothendieck topologies and étale coverings more general on
semisimplicial sets together with their sheaves (sites and topos).
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Étale cover in Graph Neural Networks

Ref: ”Heterogeneous Graph Attention Network”,
https://arxiv.org/pdf/1903.07293
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First Order Differential Calculus

Definition

A first order differential calculus (FODC) on an algebra A is (Γ, d), where

i.) Γ is an A-bimodule.

ii.) d : A → Γ is a k-linear map satisfying the Leibniz rule

d(ab) = d(a)b + ad(b)

for all a, b ∈ A.

iii.) A⊗ A → Γ, ai ⊗ bi 7→ aid(bi ) is a (left A-linear and) surjective map.

Example (Kahler differential, exterior derivative)

Take A = C∞(M), M differentiable manifold, Γ = Ω1(M).

d : C∞(M) −→ Ω1(M), f 7→ df

In local coordinates:
df =

∑
∂i f

idxi
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First Order Differential Calculus on diGraphs
Let G = (V ,E) ∈ diGraphs≤1 (G directed with at most one edge per direction).

A := k[V ] = span{δx | x ∈ V }, (2)

where δx (y) = 1 if x = y and zero otherwise.

Definition

We define a FODC (Γ1,d), on A = k[V ]

Γ1 := k[E ] = span{ωx→y | (x , y) ∈ E}

The A-bimodule structure is given by:

f ωx→y = f (x)ωx→y , ωx→y f = ωx→y f (y), df =
∑

x→y∈E

(f (y)− f (x))ωx→y

We define d : A −→ Γ1 on generators as:

dδx =
∑

y :y→x

ωy→x −
∑

y :x→y

ωx→y , δxdδy =


−

∑
z:x→z ωx→z x = y

ωx→y x → y

0 otherwise

(3)

This FODC is inner, i.e. da = [θ, a] for all a ∈ A, where

θ :=
∑

x→y∈E

ωx→y
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FODC on multi-edge graphs via Étale coverings

We can extend the theory of FODC to the case of multi-edge graphs.
We illustrate it by an example.

Example

Consider the graph G and its étale covering

f : H = H1 ⨿ H2 ⨿ H3 −→ G

with G ,H ∈ diGraphs (self-loops are not depicted)

G • •v w

e1

e2

e3

H1

H2

H3

• •

• •

• •

v1 w1

v2 w2

v3 w3

e′3

e′2

e′1

We have that Γ1G := span{ωv1→w1 , ωv2→w2 , ωw3→v3}, and

d(a) = d1(f
∗(a)|VH1

) + d2(f
∗(a)|VH2

) + d3(f
∗(a)|VH3

) ∈ Γ1 = Γ1H1
⊕ Γ1H2

⊕ Γ1H3

So, for example, if a = δv , d(δv ) = d1(δv1 ) + d2(δv2 ) + d3(δv3 ).
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Vector bundles and Parallel transport on Graphs

Definition (Braune et al. 2017)

A vector bundle F of rank n on a set V is an assignment:

v −→ Fu , v ∈ V

where Fv is a vector space of dimension n. We define the frame bundle Fr, an
assignment:

V ∋ v 7→ {evi } ⊂ Fv

where {evi } is a basis for Fv . Moreover we denote with 11u,v : Fu −→ Fv the linear
map 11u,v (eui ) = evi .

Definition

Let F be a vector bundle on V and let G = (V ,E) ∈ diGraphs.

We define a weak parallel transport a collection of linear maps
Re,u→v : Fv −→ Fu , where e is an edge between u and v.

If G ∈ diGraphs≤1 is bidirected, we say that a weak parallel transport is a

parallel transport if each Re,u→v is invertible and Re,u→v = R−1
e′,v→u

.

Rita Fioresi, FaBiT, Unibo Geometric Deep Learning meets Quantum Groups



Connections

Definition (Braune et al. 2017)

We define a connection on a digraph G as a collection of linear maps
Θe,u→v := Re,u→v − 11v,u , on all edges e ∈ E, with {Re,u→v} a weak parallel
transport.

Once a frame bundle is given, we can write:

Re,u→v : Fv −→ Fu , evi 7→ Rj
e,u→v,ie

v
j

Observation

In the differentiable setting the parallel transport for a vector bundle E −→ M on a
differentiable manifold M is a collection of maps:

Γ(γ)ts : Eγ(s) → Eγ(t)

It allows us to take the derivative of a section V along a curve γ:

∇γ̇V = lim
h→0

Γ(γ)0hVγ(h) − Vγ(0)

h
=

d

dt
Γ(γ)0tVγ(t)

∣∣∣∣
t=0

.

Rewrite replacing the curve γ with an edge e between vertices u and v (taking the
places of γ(0) and γ(h)) of the graph G ∈ Graphs.

Vu 7→ Re,u→vVv − Vu
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Curvature and Geometric Deep Learning

Observation

Classically there is a correspondence:

Locally constant sheaves ↔ vector bundles with a flat connection

In machine learning the invertibility assumption on parallel transport Rx→y = R−1
y→x

severely restricts the connection, making it a flat one!

Barbero et al. https://arxiv.org/pdf/2206.08702
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Metric and Laplacians

Definition

Let (Γ1G , dG ) be a FODC on k[V ] associated to G = (V ,E) ∈ diGraphs. We define

1 a quantum metric on Γ1, a bimodule map

(, ) : Γ1G ⊗AG
Γ1G −→ AG

2 A k-linear map ∆ : AG → AG is a second order Laplacian if

∆(ab) = (∆a)b + a∆b + 2(da, db)

3 Graph laplacians associated to the metric (, ) are given by:

∆θ(a) := 2(θ, da) , θ∆(a) := −2(da, θ)

where θ =
∑

ωx−→y .

Proposition

If we fix the basis {δx}x∈VG
for k[VG ], we identify k[VG ] ∼= k|VG |, L is a linear

operator and one can readily check:

L = D − A = (1/2)∆θ, for λv→w,w→v = λw→v,v→w = 1

where D is the degree matrix (diagonal matrix with the degree of vertices on the
diagonal) and A is the adjacency matrix of G.
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Connection Laplacian

We can extend the definition θ∆ when a right connection is given on a vector bundle.

Definition

Assume we have:

G ∈ diGraphs≤1 and a FODC Γ1,

M a free rank n right AG -bimodule,

∇ a right connection

(, ) a generalized quantum metric on Γ1G .

Let η be the left AG -module map M ⊗A Γ1G → M ⊗A Γ1G ⊗A Γ1G :

η(m ⊗ ωx→y ) = m ⊗ ωx→y ⊗ θ

Define the connection Laplacian

θ∆
M := −2(11⊗ (, )) ◦ η ◦ ∇ : M → M

Observation

We have:

θ∆
M(ei f

i ) = −2
∑
x→y

λx→y→x (Rj
x→y,i f

i (y)− f i (x))ejδx
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Sheaf Laplacian in Geometric Deep Learning

Definition (Bodnar et al. 2022)

Let G = (V ,E) be a directed graph, f ∈ k[V ]. Let F be a sheaf of vector spaces. We
define sheaf Laplacian

LF (f )x :=
∑

y,x≤x→y

F−1
x≤x→y (Fx≤x→y fx − Fy≤x↔y fy ) (4)

Recall that a sheaf of vector spaces on a digraph G = (EG ,VG , hG , tG ) for the
standard (dual) topology is equivalent to give

a vector space F (v) for each vertex v ∈ VG ,

a vector space F (e) for each edge (with its endpoints) e ∈ EG ,

linear maps (restriction maps) Fx≤x−→y : F (x −→ y) → F (x),
Fy≤x−→y : F (x −→ y) → F (y) for each edge x −→ y ∈ EG , where, we write
v ≤ e to mean that v is a vertex of the edge e.

where the irreducible open sets in the dual standard topology are

•
v

• •
v w
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Geometric Deep Learning meets Quantum Geometry

Observation

Vector bundles are locally free sheaves (as in ordinary geometry).

Theorem (F.-Simonetti-Zanchetta 2025)

Assume

G ∈ diGraphs≤1 is a bidirected graph with (Γ1,d), differential calculus

F a vector bundle i.e. a sheaf of vector spaces of rank n on G

∇ connection with R weak parallel transport,

M the free right AG -module associated to the vector bundle F .

1 If RF is a parallel transport, then θ∆
M = −LF .

2 If F is a sheaf of inner product spaces and F∗
v≤e = F−1

v≤e (i.e. F in an

O(n)-bundle), then
∇∗∇ = LF

where we fix isomorphisms M ∼= M∗ and Γ1 ∼= (Γ1)∗.

Remark

This theorem can be proven more generally in the context of semisimplicial sets and
their homology/cohomology.
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First Order Differential Calculus and Category equivalences

Theorem (Dimakis 1994, Majid 2013)

We have a fully faithful contravariant functor

F : diGraphs≤1 −→ (FODC), G = (V ,E) 7→ (Γ1, d)

realizing an antiequivalence of categories between diGraphs≤1 and the category of

FODC (Γ1,d) on k-algebras A = k[V ], with V finite set.

We can extend the definition of FODC from diGraphs≤1 to diGraphs, obtaining still
an equivalence of categories.

Theorem (F., Simonetti, Zanchetta 2025)

We have a fully faithful contravariant functor

F : diGraphs −→ (FODC)e, G 7→ (Γ1G , d)

giving an antiequivalence of categories, where (FODC)e consists of all the FODC
(Γ1, d) coming from an étale cover of a given graph.
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Triangular Cliques and Second order differential calculus on graphs

Definition

For a given G ∈ diGraphs≤1, we define Γ2G as the vector space freely generated by the
triangular cliques:

Γ2G := span{ωx→y→z | x → y , y → z ∈ V , x ̸= y , y ̸= z} (5)

Γ2G is an AG -bimodule:

f ωx→y→z = f (x)ωx→y→z , ωx→y→z f = ωx→y→z f (z), f ∈ AG

In analogy to the continuous setting, we refer to Γ2G as the space of 2-forms on AG .

z
•

x• //

??��������
•y

__????????

• •
x y

Figure: Triangular cliques
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Universal Second Order Differential Calculus for V

Definition

Define Ω2
V to be the k-vector space freely generated by the triangular cliques of fully

connected G on V :

Ω2
V := span{ωx→y→z | x , y , z ∈ V , x ̸= y , y ̸= z}

We define the exterior product as the k-linear map:

Ω1
V × Ω1

V −→ Ω2
V , (ωx→y , ωw→z ) 7→ ωx→y ∧ ωw→z := δy,wωx→y→z

where (Ω1
V , d

0
V ) is the FODC associated with the fully connected graph G.

d1V : Ω1
V −→ Ω2

V d1Vωx→y := d0V δx ∧ d0V δy (6)

The map d1V satisfies the Leibniz rule:

d1V (f ωx−→y ) = d0V f ∧ωx−→y+f d1Vωx−→y , d
1
V (ωx−→y f ) = d1Vωx−→y f −ωx−→y ∧d0V f

and d1V ◦ d0V = 0. We also have the explicit expression:

dωx→y =
∑
u∈V

(ωu→x→y − ωx→u→y + ωx→y→u) (7)
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General Second Order Differential Calculus on G = (V ,E )

Let G = (V ,E) ∈ diGraphs≤1, we can write the FODC Γ1G as a quotient of a

universal calculus Ω1 corresponding to the fully connected graph with vertices V :

Γ1G = Ω1
V /I , I = span{ωx→y | x → y ̸∈ E}

The previous proposition, along with the definition of the wedge product, allows us to
see Ω•

V := ⊕2
i=0Ω

i
V (where Ω0

V := k[V ]) as a differential graded algebra (Ω•
V , d

•
V )

(DGA)

Proposition

Let G ∈ diGraphs≤1. The graded AG -bimodule Γ•G := ⊕2
i=0Γ

i
G , where

Γ0G := AG , Γ1G = Ω1
V /I Γ2G

∼= Ω2
V /d

1
V (I )

has a well defined DGA structure induced by the one of (Ω•
V ,d

•
V ), the bimodule

structure being the same.

We notice that any quotient of Γ2G by the span of a subset of the triangular cliques
will give a well defined differential.
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General Second Order Differential Calculus on G

Definition

Let G = (V ,E) ∈ diGraphs≤1 and S a subset of its triangular cliques. We define the
pair (Γ•S , d

•
S ) with:

Γ•S := Γ•G/⟨S⟩, d•S : Γ•S −→ Γ•S (8)

a second order differential calculus on A = k[V ], where ⟨S⟩ is the AG -bimodule
generated by S and d1S is obtained from d1G , by taking the quotient of Γ2G by ⟨S⟩.

Note that if S = ∅ we get that (Γ•S , d
•
S ) = (Γ•G , d

•
G ). In addition, notice that d1S

satisfies the Leibnitz rule and d1S ◦ d0S = 0, where d0S = d0G and ΓiS := ΓiG for i = 0, 1.

Remark

Let V be a finite set. Our approach could be extended to obtain all differential graded
algebras on A as quotients of the universal one ΩV := ⊕nΩn

V . Moreover one could
also extend our results to comprehend the case of étale directed covers,
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First Order Differential Calculus and Category equivalences

Theorem (Dimakis 1994, Majid 2013)

We have a fully faithful contravariant functor

F : diGraphs≤1 −→ (FODC), G = (V ,E) 7→ (Γ1, d)

realizing an antiequivalence of categories between diGraphs≤1 and the category of

FODC (Γ1,d) on k-algebras A = k[V ], with V finite set.

We can extend the definition of FODC from diGraphs≤1 to diGraphs, obtaining still
an equivalence of categories.

Theorem (F., Simonetti, Zanchetta 2025)

We have a fully faithful contravariant functor

F : diGraphs −→ (FODC)e, G 7→ (Γ1G , d)

giving an antiequivalence of categories, where (FODC)e consists of all the FODC
(Γ1, d) coming from an étale cover of a given graph.

Rita Fioresi, FaBiT, Unibo Geometric Deep Learning meets Quantum Groups



Noncommutative connections

Definition

Let G = (V ,E) ∈ diGraphs, A = k[V ] and (Γ1, d) the FODC on A. Let M be a free
rank n left A-module. We define a left noncommutative connection ∇ on M as a map

∇ : M −→ Γ1 ⊗M

satisfying the Leibniz identity, i.e:

∇(fm) = df ⊗m + f∇m, f ∈ A, m ∈ M

Analogously, given a free rank n right A-module M, one can define a right
noncommutative connection ∇ on M as a map

∇ : M −→ M ⊗ Γ1

satisfying the Leibniz identity:

∇(mf ) = m ⊗ df + (∇m)f , f ∈ A, m ∈ M

Once a basis {ei}ni=1 for the free A-module M is chosen, a non commutative right
connection amounts to give a map:

ei f
i 7→ ei ⊗ df i + ej ⊗ ωj

i f
i

where ωj
i is a matrix of 1 forms, i.e. elements of Γ1
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Connections and noncommutive connections on graphs

Observation

There is a bijective correspondence between the two notions:

1 A noncommutative right connection on M, a right A-module of rank n, with
respect to the FODC given via G on A.

2 A connection on a digraph.

(2) → (1). In fact, consider a vector bundle F of rank n on V , a frame bundle

V ∋ v 7→ {evi }

and a free rank n right A-module n with the choice of a basis {ei}ni=1.
Then given a connection Θe,u→v := Re,u→v − 11v,u we get:

ωj
i =

∑
e,x→y

[Rj
e,x→y,i − δi,j ]ωe,x→y (9)

M ∋ e i fi 7→
∑

e,x→y

ej ⊗
[
f i (y)Rj

e,x→y,i − f i (x)δij

]
ωe,x→y ∈ M ⊗ Γ1G (10)

(1) → (2). Conversely given a right connection

ei f
i 7→ ei ⊗ df i +

n∑
j=1

ej ⊗ ωj
i f

i

where ωj
i =

∑
e,x→y a

j
e,x→y,iωe,x→y (using the basis {ωe,x→y} of Γ1G as a k-vector

space), by setting R j
e,x→y,i := aje,x→y,i + δij we get a connection.
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Curvature

Definition

Assume we have:

G ∈ diGraphs≤1, (Γ
1
G ,d) a FODC on A = k[G ]

S a subset of its triangular cliques

M a free A bimodule of rank n with basis {ei}ni=1, A = k[G ].

∇ : M → Γ1G ⊗M a noncommutative right connection

We define:

the curvature of ∇ as R∇ : M → M ⊗ Γ2G as the right A module map defined on
the basis {ei}ni=1 as follows

R∇(ei ) = ej ⊗ dωj
i + ej ⊗ ωj

k ∧ ωk
i

the curvature outside of S of ∇ as:

RS
∇ := (11⊗ πS ) ◦ R∇ : M → M ⊗ Γ2S

where πS : Γ2G → Γ2S = Γ2G/⟨S⟩ is the projection morphism.

We say that ∇ is flat outside of S if RS
∇ = 0. We say that ∇ is flat if R∇ = 0.
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Curvature and Flat Connections

Observation

We can rewrite R∇ in terms the weak parallel transport associated with ∇ as

R∇(ei ) =
∑

x→y→z∈tri(G)

(Rj
x→y,kR

k
y→z,i −Rj

x→z,i )ej ⊗ ωx→y→z (11)

tri(G) is the set of all triangular cliques of G.

Proposition

Let be G, M and ∇ as above. Then:

1. If ∇ is flat then Rx→z = Rx→yRy→z for each triangular clique. In particular, we

have that Rx→y = R−1
y→x for all edges x → y ∈ EG that are part of a triangular

clique of the form x → y → x.

2. Assume G to be bidirected. Consider the set of triangular cliques S consisting of
all triangular cliques of the form x → y → z having x , y , z ∈ VG all distinct.
Then ∇ is flat outside of S if and only if the weak parallel transport associated to
∇ is a parallel transport i.e.:

Rx→y = R−1
y→x for all edges x → y ∈ EG
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Metric and Laplacians

Definition

Let (Γ1G , dG ) be a FODC on k[V ] associated to G = (V ,E) ∈ diGraphs. We define

1 a quantum metric on Γ1, a bimodule map

(, ) : Γ1G ⊗AG
Γ1G −→ AG

2 A k-linear map ∆ : AG → AG is a second order Laplacian if

∆(ab) = (∆a)b + a∆b + 2(da, db)

3 Graph laplacians associated to the metric (, ) are given by:

∆θ(a) := 2(θ, da) , θ∆(a) := −2(da, θ)

where θ =
∑

ωx−→y .

Proposition

If we fix the basis {δx}x∈VG
for k[VG ], we identify k[VG ] ∼= k|VG |, L is a linear

operator and one can readily check:

L = D − A = (1/2)∆θ, for λv→w,w→v = λw→v,v→w = 1

where D is the degree matrix (diagonal matrix with the degree of vertices on the
diagonal) and A is the adjacency matrix of G.
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Connection Laplacian

Observation

The equality L = D − A = 2∆θ is obtained from the comparison of the expressions of
L and ∆θ:

(La)(x) =
∑

y,(x,y)∈EG

(a(x)− a(y)), ∆θa(x) = 2
∑

y,x→y∈EG

λx→y,y→x (a(x)− a(y))

We can extend the definition θ∆ when a right connection is given on a vector bundle.

Definition

Assume we have:

G ∈ diGraphs≤1 and a FODC Γ1,

M a free rank n right AG -bimodule,

∇ a right connection

(, ) a generalized quantum metric on Γ1G .

Let η be the left AG -module map M ⊗A Γ1G → M ⊗A Γ1G ⊗A Γ1G :

η(m ⊗ ωx→y ) = m ⊗ ωx→y ⊗ θ

Define the connection Laplacian

θ∆
M := −2(11⊗ (, )) ◦ η ◦ ∇ : M → M

Rita Fioresi, FaBiT, Unibo Geometric Deep Learning meets Quantum Groups



Observation

Assume we have:

G ∈ diGraphs≤1 and a FODC (Γ1, d),

M a free rank n right AG -bimodule, with basis {ei}ni=1

∇ a right connection

(, ) a generalized quantum metric on Γ1G .

Then

1

θ∆
M(ei f

i ) = −2
∑
x→y

λx→y→x (Rj
x→y,i f

i (y)− f i (x))ejδx

where in the summation only the edges x → y of the maximal bidirected
subgraph of G appear.

2 If M = AG , we recover the Laplacian θ∆.
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Sheaf Laplacian in Geometric Deep Learning

Definition (Bodnar et al. 2022)

Let G = (V ,E) be a directed graph, f ∈ k[V ]. Let F be a sheaf of vector spaces. We
define sheaf Laplacian

LF (f )x :=
∑

y,x≤x→y

F−1
x≤x→y (Fx≤x→y fx − Fy≤x↔y fy ) (12)

Recall that a sheaf of vector spaces on a digraph G = (EG ,VG , hG , tG ) for the
standard (dual) topology is equivalent to give

a vector space F (v) for each vertex v ∈ VG ,

a vector space F (e) for each edge (with its endpoints) e ∈ EG ,

linear maps (restriction maps) Fx≤x−→y : F (x −→ y) → F (x),
Fy≤x−→y : F (x −→ y) → F (y) for each edge x −→ y ∈ EG , where, we write
v ≤ e to mean that v is a vertex of the edge e.

where the irreducible open sets in the dual standard topology are

•
v

• •
v w
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Geometric Deep Learning meets Quantum Geometry

Observation

Vector bundles are locally free sheaves (as in ordinary geometry).

Theorem (F.-Simonetti-Zanchetta 2025)

Assume

G ∈ diGraphs≤1 is a bidirected graph with (Γ1,d), differential calculus

F a vector bundle i.e. a sheaf of vector spaces of rank n on G

∇ connection with R weak parallel transport,

M the free right AG -module associated to the vector bundle F .

1 If RF is a parallel transport, then θ∆
M = −LF .

2 If F is a sheaf of inner product spaces and F∗
v≤e = F−1

v≤e (i.e. F in an

O(n)-bundle), then
∇∗∇ = LF

where we fix isomorphisms M ∼= M∗ and Γ1 ∼= (Γ1)∗.

Remark

This theorem can be proven more generally in the context of semisimplicial sets and
their homology/cohomology.
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