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Recall that the Lie algebra 81, is generated by E, F, H subject to the relations
|H,E|=2E, |H.F|=-2F, |E,F|=H.

ts enveloping algebra U(81,) admits the structure of a Hopf algebra, which can be g-deformed:

Drinfeld-Jimbo quantisation:

. introduce a parameter g € C\ {0}

. replace commutations relations in U(81,) with g-commutation relations to form the

U,(81,)

. in such a way that Uq(élz) admits a Hopf algebra structure.
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U,(81,) is a g-deformation of U(81,).

Since it is a Hopt algebra, we can consider its Hopf dual.

In the undeformed setting, the Hopf algebra dual of U(81,) is the coordinate algebra O(SU,),

that is, the algebra of regular functions on the Lie group SU,.

Analogously, the Hopf dual of U, (81,) is the O (SU,), which we

think of as the algebra of regular functions on the “quantum group” g-deformation of SU,.
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Recall the classical case:

In SU,, the maximal torus U; = S' >~ T c SU,
corresponds to the Cartan subalgebra ) C 8l,.

Functions on the homogeneous space SU,/ T form

the coordinate algebra of the 2-sphere 2.

Recalling that SU, & §°, we recognise this as the
classical Hopf fibration,

S5 - S?~ ST

Hopf T

bration in Kompa park, Prague
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Quantum Cartan subalgepra and the

Podles sphere

Definition (Podles sphere):
given by

he

s the invariant subalgebra of O (SU,)

0,(5%):={feO0,SUy) | Kbb=K"'>b=0}.

The generators of @q(SZ) are given by

X .

In the classical limit, we get a single relation,

bc,

y = dac,

z .= db.

X +y*+z2=1
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he Hopf algebra @q(SUz) admits a Z-algebra grading
0,5U,) = P %,

keZ

uniguely defined by
deg(a) = deg(a) = 1, deg(a™) = deg(a™) = — 1.

The degree zero summand is of course just the Podles sphere @q(Sz) =&

. Each summand & is a invertible finitely generated projective module (both left and right)

over @q(Sz) and g-deforms the module of sections of a line bundle over S,
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. A decomposition of this g-de Rham complex into a double complex reflecting the

fact that S is classically a complex manifold.

- Noncommutative holomorphic structures on its guantum line bundles.
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de Rham complex

Podles Sphere

. Here Qlis an @q(Sz)—bimoolule and QU = 0, 5U,) = Q?
. Each Q' admits a left coaction A; : Q' — 0,80, ® Q'

.The maps d : ¥ — Q! satisfy d? = 0, and the Leibniz rule:

Ql dwArv)=do Av+ (—D?wAdy

Q= 0,(5%)d0 (5%
- There exists a degree zero graded anti-commutative *-automorphism of €2°.

(Formally this means that we have a left @Q(SUz)—covqriont different calculus.)
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QZ Q(l,l) The de Rham complex can be
4 refined into a Nz—groded complex
d V \a called the Dolbeaut complex

. 0l — 0L @ QO.1
010~ g 0.1 ¢

A \/ - ® d — @ -+ 0
d a\ / 0 . (QIO)% = QO
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grading O (SU,) @ ' gz >

F D>

N
Joo

0
keZ
0
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Connections

For finitely generated projective modules

For any irreducible quantum flag manifold @q(G/LS) and & a finitely generated projective

left module @q(G/LS). A connection is a linear map
V:F - Q! Qp F
satistying the Leibniz rule

Vbf) =db®f+bV(f).
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Fach line bundle & admits a unique left O (SU,)-covariant connection
: 1

Note that since QY = 0, the projected (0,1)-connection is trivially flat.

So what do nhoncommutative holomorphic sections look like?
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Proposition A.1. The space of holomorphic sections & 110,1 of the charge —n q-monopole
bundle contains the standard n + 1-dimensional corepresentation of C,[SL].
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Differential graded algebras and
differential calculi

Definition: A over an algebra B is an Ny-graded algebro

where Q" = B, together with a degree one homogeneous map d : €2° — ° such that
.d? = 0, and
cdlwAv)=doAv+ (=D wAdy, foralm,v e Q°

f C°is generated as an algebra by those elements of degree 1 and 2, then we say that it is o
over B.
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Definition: A connection V : Q! — Q! Rp Qlis

Tor = AV —-d=0

thatis, it the following diagram commutes:

Q'(B) ®5 Q'(B)

Q'(B)

A\

i1

- Q%(B)
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Definition: Let A and U be a dual pair of Hopf algebras, and W C U be a Hopf subalgebro
such that the space of invariants B := "A is a quantum homogeneous space. A
for Bis an element X € U\ W such that

AX)=XQ® Y+ 1Q® X whereY € Uisan element satisfying Resy(Y) = 1,

- X < Wis a finite-dimensional simple left W-module.
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One-cross bunales

Definition: Let A and U be a dual pair of Hopf algebras, and W C U a Hopf subalgebra such

that the space of invariants B := WA is a quantum homogeneous space. A
for B is a weak one-cross bundle X € W such that W admits a central element Z satisfying

XAL#+X.

Proposition: For any one-cross bundle, there exists a unique covariant torsion-free

V:Ql - Ql, Q!
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Theorem: Every one-cross bundle (W, X), admits a covariant noncommutative metric (in the

sense of Beggs and Majid) and the connection V is a Levi-Civita connection with respect to
this metric.

Corollary: For any one-cross bundle (W, X), the maximal prolongation £2°of the associated
first-order calculus Q' has relations that are generated, as a B-bimodule, by the elements

o @U+olw®v)forw,v e Q, andV(db), for b € Gen(B),

where Gen(B) is a generating set of B.
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Complex structures

Theorem: For a one-cross bundle of complex type we have an N%-a/gebrq grading Q) on

€2* satisfying

1. QF ~ @ Q@)

a+b=k

2 (Q(a,b))* = Qa2

3. the decomposition is integrable, that is, the decomposition of d with respect to Q("’)gives
a double complex.
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Theorem: If the degree two relations of the maximal prolongation are all of the form
o@U+olw®u), foral w,ve Q(B),

(that is, the torsion relations V (d) can be forgotten) then the decomposition of the
tangent space T'= X * W @ XW extends to a covariant complex structure on £2°(B) .

Corollary: Every relative Hopf module # & g}mod admits a covariant holomorphic

structure
3. F - Q0D F

If F is simple then 0 is unique.
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Example: If we take A = O (SU,), U = U, (8],), and W = (K, K1, then we get the Podle$

sphere. Choosing the element X = E we recover the holomorphic structures of &, presented
ot the start of the talk.

Example: If we take A = O (SU,, ). U = U (8],4) and
W= <Ei9Fl'9[{ii1 ‘ l# 1>9

then we get guantum projective space @q(CP”). f we set X = E, then we recover the

holomorphic structures on &, from the work of Khalkhali and Moatadelro.
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Example: Let @ be a complex simple Lie algebra, and G the associated connected

simple-connected compact Lie group. If we take A = @Q(G), U = Uq(g) ana
W=U/(,) = (E,F, K*i | a;is not cominiscule),

then we get the irreducible quantum flag manifolds O (G/Lg).

cominiscule root, then we recover the celebrated
and their holomorphic structures.




Example: For the non-cominiscule case, we recover
something totally new . . .
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