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Drinfeld–Jimbo quantisation
Recall that the Lie algebra  is generated by  subject to the relations 

. 

Its enveloping algebra  admits the structure of a Hopf algebra, which can be -deformed:

𝔰𝔩2 E, F, H

[H, E] = 2E, [H, F] = − 2F, [E, F] = H

U(𝔰𝔩2) q

Drinfeld–Jimbo quantisation:  

• introduce a parameter  

• replace commutations relations in  with -commutation relations to form the 
quantum enveloping algebra  

•  also admits a Hopf algebra structure.

q ∈ ℂ∖{0}

U(𝔰𝔩2) q
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The quantum enveloping algebra Uq(𝔰𝔩2)
The quantum enveloping algebra  is 

generated by  subject to the relations 

 

 

A Hopf algebra structure is given by  

 

  

.

Uq(𝔰𝔩2)
E, F, K, K−1

KK−1 = K−1K = 1, KEK−1 = q2E,

KFK−1 = q−2F, [E, F] = K − K−1

q − q−1

Δ(E) = E ⊗ K + 1 ⊗ E,

Δ(F) = F ⊗ 1 + K−1 ⊗ F,

Δ(K) = K ⊗ K

Key features: 

•  is a -deformation of  

• encodes symmetries in quantum 
integrable systems 

• Representations use -analogues, 
but representation theory is the same
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The dual Hopf algebra 𝒪q(SU2)

 is a -deformation of .  

Since it is a Hopf algebra, we can consider its Hopf dual. 

In the undeformed setting, the Hopf algebra dual of  is the coordinate algebra , 

that is, the algebra of regular functions on the Lie group . 

Analogously, the Hopf dual of  is the quantum coordinate algebra , which we 

think of as the algebra of regular functions on the “quantum group” -deformation of . 

  is an algebraic compact quantum group. It is dense in the C*-algebra , which 
is a compact quantum group in the sense of Woronowicz.

Uq(𝔰𝔩2) q U(𝔰𝔩2)

U(𝔰𝔩2) 𝒪(SU2)
SU2

Uq(𝔰𝔩2) 𝒪q(SU2)
q SU2
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Hopf algebra structure of 𝒪q(SU2)
Algebra structure: generated by the elements  
subject to the relations

 

 

.

a, b, c, d

ab = q ba, ac = q ca, bd = q db, cd = q dc

bc = cb, ad − da = (q − q−1) bc

ad − q bc = 1

Coproduct:  

,  

.

Δ : 𝒪q(SU2) → 𝒪q(SU2) ⊗ 𝒪q(SU2)

Δ(a) = a ⊗ a + b ⊗ c, Δ(b) = a ⊗ b + b ⊗ d

Δ(c) = c ⊗ a + d ⊗ c, Δ(d) = c ⊗ b + d ⊗ d

Counit:  

  

.

ε : 𝒪q(SU2) → ℂ

ε(a) = ε(b) = 1,

ε(b) = ε(c) = 0

Antipode:  

  

..

S : 𝒪q(SU2) → 𝒪q(SU2)

S(a) = d, S(b) = − q−1b,

S(c) = qc, S(d) = a
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and the matrix coefficients of finite-dimensional  representations generate . 

This duality mirrors the duality in the classical case: 
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Recall the classical case:  

In , the maximal torus  

corresponds to the Cartan subalgebra . 

Functions on the homogeneous space  form 

the coordinate algebra of the -sphere . 

Recalling that , we recognise this as the 
classical Hopf fibration, 

.

SU2 U1 ≅ S1 ≅ 𝕋 ⊂ SU2
𝔥 ⊂ 𝔰𝔩2

SU2/𝕋
2 S2

SU2 ≅ S3

S3 → S2 ≅ S3/𝕋

Cartan subalgebra

Hopf fibration in Kampa park, Prague



Recall the classical case:  

In , the maximal torus  

corresponds to the Cartan subalgebra . 

Functions on the homogeneous space  form 

the coordinate algebra of the -sphere . 

Recalling that , we recognise this as the 
classical Hopf fibration, 

.

SU2 U1 ≅ S1 ≅ 𝕋 ⊂ SU2
𝔥 ⊂ 𝔰𝔩2

SU2/𝕋
2 S2

SU2 ≅ S3

S3 → S2 ≅ S3/𝕋

Cartan subalgebra

Hopf fibration in Kampa park, Prague



Recall the classical case:  

In , the maximal torus  

corresponds to the Cartan subalgebra . 

Functions on the homogeneous space  form 

the coordinate algebra of the -sphere . 

Recalling that , we recognise this as the 
classical Hopf fibration, 

.

SU2 U1 ≅ S1 ≅ 𝕋 ⊂ SU2
𝔥 ⊂ 𝔰𝔩2

SU2/𝕋
2 S2

SU2 ≅ S3

S3 → S2 ≅ S3/𝕋

Cartan subalgebra

Hopf fibration in Kampa park, Prague



Recall the classical case:  

In , the maximal torus  

corresponds to the Cartan subalgebra . 

Functions on the homogeneous space   form 

the coordinate algebra of the -sphere . 

Recalling that , we recognise this as the 
classical Hopf fibration, 

.

SU2 U1 ≅ S1 ≅ 𝕋 ⊂ SU2
𝔥 ⊂ 𝔰𝔩2

SU2/𝕋
2 S2

SU2 ≅ S3

S3 → S2 ≅ S3/𝕋

Cartan subalgebra

Hopf fibration in Kampa park, Prague



Recall the classical case:  

In , the maximal torus  

corresponds to the Cartan subalgebra . 

Functions on the homogeneous space   form 

the coordinate algebra of the -sphere . 

Recalling that , we recognise this as the 
classical Hopf fibration, 

.

SU2 U1 ≅ S1 ≅ 𝕋 ⊂ SU2
𝔥 ⊂ 𝔰𝔩2

SU2/𝕋
2 S2

SU2 ≅ S3

S3 → S2 ≅ S3/𝕋

Cartan subalgebra

Hopf fibration in Kampa park, Prague



Recall the classical case:  

In , the maximal torus  

corresponds to the Cartan subalgebra . 

Functions on the homogeneous space   form 

the coordinate algebra of the -sphere . 

Recalling that , we recognise this as the 
classical Hopf fibration, 

.

SU2 U1 ≅ S1 ≅ 𝕋 ⊂ SU2
𝔥 ⊂ 𝔰𝔩2

SU2/𝕋
2 S2

SU2 ≅ S3

S3 → S2 ≅ S3/𝕋

Cartan subalgebra

Hopf fibration in Kampa park, Prague



Quantum Cartan subalgebra and the 
Podleś sphere

Definition (Podleś sphere): The Podleś sphere is the invariant subalgebra of  
given by 

𝒪q(SU2)

𝒪q(S2) := {f ∈ 𝒪q(SU2) ∣ K ▹ b = K−1 ▹ b = b} .

The generators of  are given by 

. 

In the classical limit, we get a single relation,  

.

𝒪q(S2)

x := bc, y := ac, z := db

x2 + y2 + z2 = 1
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The Podleś Sphere
• The Hopf algebra  admits a -algebra grading  

  

uniquely defined by 
 ,  

• The degree zero summand is of course just the Podleś  sphere . 

• Each summand   is a invertible finitely generated projective module (both left and right) 

over  and -deforms the module of sections of a line bundle over .

𝒪q(SU2) ℤ

𝒪q(SU2) ≅ ⨁
k∈ℤ

ℰk

deg(α) = deg(α) = 1 deg(α*) = deg(α*) = − 1

𝒪q(S2) := ℰ0

ℰk
𝒪q(S2) q S2
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The Podleś sphere provides the first and most-studied example of a quantum 
homogeneous space. 

It plays a central role in noncommutative geometry.

Noncommutative geometry of quantum 
homogeneous spaces is easier than that 
of the quantum group itself. 

In essence, when considering quantum 
homogeneous spaces, we “quotient out 
the worst of the noncommutativity”.

Role in NCG
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NC Geometry of the Podleś sphere
What do we want?

This is a -deformation of the 2-sphere. As such, we look for: 

• A -deformation of the de Rham complex. (The de Rham complex is the standard 
complex associated to a differential manifold, in terms of which most of modern 
differential geometry is expressed.) 

• A decomposition of this -de Rham complex into a double complex reflecting the 
fact that  is classically a complex manifold. 

• Noncommutative holomorphic structures on its quantum line bundles.

q

q

q
S2
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de Rham complex
Podleś Sphere

Ω0

Ω1

Ω2

d

d

•  Here  is an -bimodule and  

•  Each  admits a left coaction . 

• The maps  satisfy , and the Leibniz rule: 
 

•   

• There exists a degree zero graded anti-commutative -automorphism of . 

• (Formally this means that we have a left -covariant different calculus.)

Ω1 𝒪q(S2) Ω0 = 𝒪q(SU2) ≅ Ω2

Ωi ΔL : Ωi → 𝒪q(SU2) ⊗ Ωi

d : Ωj → Ωj+1 d2 = 0
d(ω ∧ ν) = dω ∧ ν + (−1)|ω|ω ∧ dν

Ω1 = 𝒪q(S2)d𝒪q(S2)

* Ω∙

𝒪q(SU2)
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d = ∂ + ∂

The de Rham complex can be 
refined into a -graded complex 
called the Dolbeaut complex
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*
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Connections
For finitely generated projective modules

For any irreducible quantum flag manifold  and  a finitely generated projective 

left module . A connection is a linear map  
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∇ : ℱ → Ω1 ⊗B ℱ

∇(bf ) = db ⊗ f + b∇( f )
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Each line bundle  admits a unique left -covariant connection 
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Note that since ,  the projected -connection is trivially flat.
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∇ : ℰk → Ω1 ⊗𝒪q(S2) ℰk

Ω(0,2) = 0 (0,1)

In the classical setting, such connections are 
equivalent to a holomorphic structure on the 
vector bundle.  

Moreover, the kernel of the connection 
coincides with the holomorphic sections of the 
bundle.

So what do noncommutative holomorphic sections look like?
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III. Quantum homogeneous 
spaces and one-cross bundles



Quantum homogeneous spaces
• Let  and  be a dual pair of Hopf algebras. 

• Let  be a Hopf subalgebra of  

• Denote the space of invariants  

• If  is a faithfully flat functor then we say that  is a quantum 
homogeneous space.

A U

W ⊂ U U .

B := AW = {b ∈ A | a(1)⟨a(2),w,  for all w ∈ W⟩} .

A ⊗B − : BMod → Vectℂ B
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Definition: A differential graded algebra over an algebra  is an -graded algebra 

 

where , together with a degree one homogeneous map   such that 

• , and  

•   for all . 

If  is generated as an algebra by those elements of degree  and , then we say that it is a 
differential calculus over .

B ℕ0

Ω∙ ≅ ⨁
k∈ℕ0

Ωk,

Ω0 = B d : Ω∙ → Ω∙

d2 = 0

d(ω ∧ ν) = dω ∧ ν + (−1)|ω|ω ∧ dν, ω, ν ∈ Ω∙

Ω∙ 1 2
B
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Torsion-free connections
Definition: A connection  is torsion free if 

, 

that is, if the following diagram commutes:

∇ : Ω1 → Ω1 ⊗B Ω1

Tor := ∧ ∘ ∇ − d = 0

Ω1(B) ⊗B Ω1(B)

Ω2(B)Ω1(B)
d

∇ ∧

0

0

0
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Weak one-cross bundles

Definition: Let and  be a dual pair of Hopf algebras, and  be a Hopf subalgebra 
such that the space of invariants  is a quantum homogeneous space. A weak one-
cross bundle for  is an element  such that  

• , where  is an element satisfying , 

•  is a finite-dimensional simple left -module.

A U W ⊆ U
B := WA

B X ∈ U∖W

Δ(X) = X ⊗ H + 1 ⊗ X Y ∈ U ResW(Y) = 1

X ◃ W W
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One-cross bundles

Definition: Let  and  be a dual pair of Hopf algebras, and  a Hopf subalgebra such 
that the space of invariants  is a quantum homogeneous space. A one-cross bundle 
for  is a weak one-cross bundle  such that  admits a central element  satisfying 

A U W ⊆ U
B := WA

B X ∈ W W Z

X ◃ Z ≠ X .

Proposition: For any one-cross bundle, there exists a unique covariant torsion-free 

.∇ : Ω1 → Ω1 ⊗B Ω1
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Theorem: Every one-cross bundle , admits a covariant noncommutative metric (in the 
sense of Beggs and Majid) and the connection  is a Levi-Civita connection with respect to 
this metric.

(W, X)
∇

Corollary: For any one-cross bundle , the maximal prolongation of the associated 
first-order calculus  has relations that are generated, as a -bimodule, by the elements 

 for , and , for , 

where  is a generating set of .

(W, X) Ω∙

Ω1 B

ω ⊗ ν + σ(ω ⊗ ν) ω, ν ∈ Ω1 ∇(db) b ∈ Gen(B)

Gen(B) B
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Theorem: Theorem 2.1. For a one-cross bundle of complex type, with a strongly torsion-free 
Levi-Civita connection, we have an -algebra grading  on  satisfying 

1. , 

2. , 

3. the decomposition is integrable, that is, the decomposition of  with respect to gives 
a double complex.

ℕ2
0 Ω(∙,∙) Ω∙

Ωk ≃ ⨁
a+b=k

Ω(a,b)

(Ω(a,b))* = Ω(b,a)

d Ω(∙,∙)

Complex structures

In the language of noncommutative geometry, we call an -algebra grading  with the 
above properties a complex structure.

ℕ2
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Theorem: If the degree two relations of the maximal prolongation are all of the form 

 

(that is, the torsion relations  can be forgotten) then the decomposition of the 
tangent space  extends to a covariant complex structure on 

ω ⊗ ν + σ(ω ⊗ ν),  for all  ω, ν ∈ Ω1(B),

∇(d)
T = X * W ⊕ XW Ω∙(B) .

Corollary:  Every relative Hopf module  admits a covariant holomorphic 
structure 

 

If  is simple then  is unique.

ℱ ∈ A
Bmod

∂ℱ : ℱ → Ω(0,1) ⊗B ℱ
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V. Examples



Example: If we take , , and , then we get the Podleś 

sphere. Choosing the element  we recover the holomorphic structures of  presented 
at the start of the talk.

A = 𝒪q(SU2) U = Uq(𝔰𝔩2) W = ⟨K, K−1⟩
X = E ℰk

Example: If we take ,  and 

 

then we get quantum projective space . If we set , then we recover the  

holomorphic structures on , from the work of Khalkhali and Moatadelro.

A = 𝒪q(SUn+1) U = Uq(𝔰𝔩n+1)

W = ⟨Ei, Fi, K±1
i ∣ i ≠ 1⟩,

𝒪q(ℂPn) X = E1
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Root system Dynkin diagram Heighest weight

α1 + ⋯ + αn

α1 + 2(α2 + ⋯ + αn)

2(α1 + ⋯ + αn−1) + αn

α1 + 2(α2 + ⋯ + αn−2) + αn−1 + αn

An

Bn

Cn

Dn

…

1 2 n-1 n

…

1 2 n-1 n

…

1 2 n-1 n

…
1 2 n-2

n-1

n



Root system Dynkin diagram Heighest weight

α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6
E6

E7

E8

F4

G2

1

2

3 4 5 6

71

2

3 4 5 6

871

2

3 4 5 6

1 2 3 4

1 2

α1 + 2α2 + 3α3 + 4α4

+3α5 + 2α6 + α7

2α1 + 3α2 + 4α3 + 6α4

+5α1 + 4α2 + 3α3 + 2α4

2α1 + 3α2 + 4α3 + 2α4

3α1 + 2α2



Example: Let  be a complex simple Lie algebra, and  the associated connected 
simple-connected compact Lie group. If we take ,  and 

, 

then we get the irreducible quantum flag manifolds . If we set , for  the 
cominiscule root, then we recover the celebrated Heckenberger–Kolb differential calculi 
and their holomorphic structures.

𝔤 G
A = 𝒪q(G) U = Uq(𝔤)

W = Uq(𝔩αi
) := ⟨Ei, Fi, K±1i ∣ αi is not cominiscule⟩

𝒪q(G/LS) X = Ex αx
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Example: For the non-cominiscule case, we recover 
something totally new . . .



Thank you! 

Σας ευχαριστώ!

Quantum projective space (Bucharest)


