Kinematical Lie algebras and contact sub-Riemannian symmetric spaces

Pierre Bieliavsky (joint work with Nicolas Boulanger)

Corfu, 19/09/2025

Mackey's analogy:

Mackey's analogy: G real reductive Lie group

Mackey's analogy: G real reductive Lie group $\widehat{G}^{temp} \to \widehat{K \ltimes \mathcal{P}}$ (Cartan motion group)

Mackey's analogy: G real reductive Lie group $\widehat{G}^{temp} \to \widehat{K \ltimes \mathcal{P}}$ (Cartan motion group) N. Higson proves for G complex simple [2008]

Mackey's analogy: G real reductive Lie group $\widehat{G}^{temp} \to \widehat{K \ltimes \mathcal{P}}$ (Cartan motion group)

N. Higson proves for *G* complex simple [2008]

A. Afgoustidis proves for G real reductive [2023]

Mackey's analogy: G real reductive Lie group

 $\widehat{G}^{temp} o \widehat{K \ltimes \mathcal{P}}$ (Cartan motion group)

N. Higson proves for G complex simple [2008]

A. Afgoustidis proves for G real reductive [2023]

Current joint project with A.A.: "symplectization" of Mackey's bijection

Mackey's analogy: G real reductive Lie group

 $\widehat{G}^{temp} o \widehat{K \ltimes \mathcal{P}}$ (Cartan motion group)

N. Higson proves for *G* complex simple [2008]

A. Afgoustidis proves for G real reductive [2023]

Current joint project with A.A.: "symplectization" of Mackey's bijection

Lorenztian (noncommutative) geometry:

Mackey's analogy: G real reductive Lie group

 $\widehat{G}^{temp} o \widehat{K \ltimes \mathcal{P}}$ (Cartan motion group)

N. Higson proves for *G* complex simple [2008]

A. Afgoustidis proves for G real reductive [2023]

Current joint project with A.A.: "symplectization" of Mackey's bijection

Lorenztian (noncommutative) geometry:

implement thermodynamical element?

Inertial frame → kinematical group

Inertial frame → kinematical group

For instance:

Newton's first law

$$\rightsquigarrow$$
 Galileo(3) := $(SO(3) \ltimes \mathbb{R}^3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Inertial frame → kinematical group

For instance:

Newton's first law

$$\rightsquigarrow$$
 Galileo(3) := $(SO(3) \ltimes \mathbb{R}^3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Special Relativity

$$ightharpoonup Poincaré(3) := SO_o(1,3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$$

Inertial frame → kinematical group

For instance:

Newton's first law

$$\rightsquigarrow$$
 Galileo(3) := $(SO(3) \ltimes \mathbb{R}^3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Special Relativity

$$\rightarrow$$
 Poincaré(3) := $SO_o(1,3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Problem [Bacry et al. 1968']: Classify all possible types of inertial frames that can accomodate space-time.

Inertial frame → kinematical group

For instance:

Newton's first law

$$\rightsquigarrow$$
 Galileo(3) := $(SO(3) \ltimes \mathbb{R}^3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Special Relativity

$$\rightarrow$$
 Poincaré(3) := $SO_o(1,3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Problem [Bacry et al. 1968']: Classify all possible types of inertial frames that can accomodate space-time.

Kinematical Lie algebra:
$$\mathfrak{g}(3)=\mathfrak{so}(3)\oplus\mathbb{R}^3\oplus\mathbb{R}\oplus\mathbb{R}^3$$
 such that $\mathfrak{so}(3)\times\mathbb{R}^3\to\mathbb{R}^3$ natural rep'

Inertial frame → kinematical group

For instance:

Newton's first law

$$\rightsquigarrow$$
 Galileo(3) := $(SO(3) \ltimes \mathbb{R}^3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Special Relativity

$$ightharpoonup Poincaré(3) := SO_o(1,3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$$

Problem [Bacry et al. 1968']: Classify all possible types of inertial frames that can accomodate space-time.

Kinematical Lie algebra:
$$\mathfrak{g}(3)=\mathfrak{so}(3)\oplus\mathbb{R}^3\oplus\mathbb{R}\oplus\mathbb{R}^3$$
 such that $\mathfrak{so}(3)\times\mathbb{R}^3\to\mathbb{R}^3$ natural rep' $[\mathfrak{so}(3)\,,\,\mathbb{R}]=\{0\}$.

Inertial frame → kinematical group

For instance:

Newton's first law

$$\rightsquigarrow$$
 Galileo(3) := $(SO(3) \ltimes \mathbb{R}^3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Special Relativity

$$\rightarrow$$
 Poincaré(3) := $SO_o(1,3) \ltimes (\mathbb{R} \times \mathbb{R}^3)$

Problem [Bacry et al. 1968']: Classify all possible types of inertial frames that can accomodate space-time.

Kinematical Lie algebra:
$$\mathfrak{g}(3) = \mathfrak{so}(3) \oplus \mathbb{R}^3 \oplus \mathbb{R} \oplus \mathbb{R}^3 \text{ such that }$$

$$\mathfrak{so}(3) \times \mathbb{R}^3 \to \mathbb{R}^3 \text{ natural rep'} \quad [\mathfrak{so}(3), \mathbb{R}] = \{0\} \ .$$

[Figueroa-O'Farril 2018]: classification of $\mathfrak{g}(D)$'s.

Carnot cycles [1824] (adiabatic thermodynamical processes)

Carnot cycles [1824] (adiabatic thermodynamical processes) \leadsto

Caratheodory [1909] formulates the Second Law of Thermodynamics in terms of "horizontality" of adiabatic processes.

Carnot cycles [1824] (adiabatic thermodynamical processes) \leadsto

Caratheodory [1909] formulates the Second Law of Thermodynamics in terms of "horizontality" of adiabatic processes.

Gromov et al. [1981]: A **C-C** space is a smooth manifold M equipped with a tangent distribution $\mathcal{D} \subset \mathcal{T}(M)$.

Carnot cycles [1824] (adiabatic thermodynamical processes) \leadsto

Caratheodory [1909] formulates the Second Law of Thermodynamics in terms of "horizontality" of adiabatic processes.

Gromov et al. [1981]: A **C-C** space is a smooth manifold M equipped with a tangent distribution $\mathcal{D} \subset T(M)$. When \mathcal{D} generates (under bracket) the whole T(M), every point x possesses a neighbourhood where every point can be joined to x by a horizontal curve.

Carnot cycles [1824] (adiabatic thermodynamical processes) \leadsto

Caratheodory [1909] formulates the Second Law of Thermodynamics in terms of "horizontality" of adiabatic processes.

Gromov et al. [1981]: A **C-C** space is a smooth manifold M equipped with a tangent distribution $\mathcal{D} \subset T(M)$. When \mathcal{D} generates (under bracket) the whole T(M), every point x possesses a neighbourhood where every point can be joined to x by a horizontal curve.

Example: $M = \mathbb{R}^3$, $\theta := dx + y dz$, $\mathcal{D} := \ker(\theta)$.

Carnot cycles [1824] (adiabatic thermodynamical processes) \leadsto

Caratheodory [1909] formulates the Second Law of Thermodynamics in terms of "horizontality" of adiabatic processes.

Gromov et al. [1981]: A **C-C** space is a smooth manifold M equipped with a tangent distribution $\mathcal{D} \subset T(M)$. When \mathcal{D} generates (under bracket) the whole T(M), every point x possesses a neighbourhood where every point can be joined to x by a horizontal curve.

Example:
$$M = \mathbb{R}^3$$
, $\theta := dx + y dz$, $\mathcal{D} := \ker(\theta)$.

$${\mathcal D}$$
 is spanned by $e:=\partial_y$ and $f:=y\partial_x-\partial_z$.

e, f and $[e, f] = \partial_x$ span a Heisenberg Lie algebra

Roughly:

Roughly:

(generalized) Kinematical Lie algebras are Carnot-Caratheodory spaces.

Roughly:

(generalized) Kinematical Lie algebras are Carnot-Caratheodory spaces.

"Symmetric" C-C spaces are (generalized) Kinematical Lie algebras.

Symmetric spaces [O. Loos, 1969]

A **symmetric space** is a pair (M, s) where M is a smooth manifold and $s: M \times M \to M: (x, y) \mapsto s_x(y)$ is a smooth map, such that

- 2 x is an isolated fixed point of s_x .

Symmetric spaces [O. Loos, 1969]

A **symmetric space** is a pair (M, s) where M is a smooth manifold and $s: M \times M \to M: (x, y) \mapsto s_x(y)$ is a smooth map, such that

- 2 x is an isolated fixed point of s_x .

Proposition: The expression

$$(\nabla_X Y)_X := \frac{1}{2} [X, Y + s_{x\star} Y]_X$$

defines a linear connection in T(M).

It is the unique linear connection invariant under the symmetries: $\{s_x\}_{x\in M}\subset \mathsf{Aff}(\nabla)$.

Moreover:

$$T^{\nabla} \equiv 0$$
 and $\nabla R^{\nabla} \equiv 0$.

A symplectic symmetric space is a triple (M, s, ω) where (M, s) is a symmetric space and ω is a **non-degenerate differential 2-form** on M which is invariant under the symmetries:

$$s_{\mathsf{x}}^{\star}\omega = \omega . \tag{1}$$

A symplectic symmetric space is a triple (M, s, ω) where (M, s) is a symmetric space and ω is a **non-degenerate differential 2-form** on M which is invariant under the symmetries:

$$s_{\mathsf{x}}^{\star}\omega = \omega . \tag{1}$$

Remark: (1) implies $\nabla \omega = 0$ hence $d\omega = 0$.

A symplectic symmetric space is a triple (M, s, ω) where (M, s) is a symmetric space and ω is a **non-degenerate differential 2-form** on M which is invariant under the symmetries:

$$s_{\mathsf{x}}^{\star}\omega = \omega$$
 . (1)

Remark: (1) implies $\nabla \omega = 0$ hence $d\omega = 0$.

Example: Massive (coadjoint) orbits of the Poincaré group are SSS.

A symplectic symmetric space is a triple (M, s, ω) where (M, s) is a symmetric space and ω is a **non-degenerate differential 2-form** on M which is invariant under the symmetries:

$$s_{\mathsf{x}}^{\star}\omega = \omega$$
 . (1)

Remark: (1) implies $\nabla \omega = 0$ hence $d\omega = 0$.

Example: Massive (coadjoint) orbits of the Poincaré group are SSS. Their symplectic connection ∇ is *never* metric (i.e. Levi-Civita).

A differential one-form θ on a connected smooth manifold $\mathcal M$ is a **contact form** if

$$\mathrm{d}\, \theta \mid_{\mathcal{D} imes \mathcal{D}}$$
 is non-degenerate on $\mathcal{D} := \ker(\theta)$.

A differential one-form θ on a connected smooth manifold $\mathcal M$ is a **contact form** if

$$\mathrm{d}\, \theta \,|_{\mathcal{D} imes \mathcal{D}}$$
 is non-degenerate on $\,\mathcal{D} \,:=\, \ker(\theta)\,.$

The vector field ξ on \mathcal{M} characterized by $\iota_{\xi} d\theta = 0$ and $\langle \theta, \xi \rangle = 1$ is called the **Reeb field**.

A differential one-form θ on a connected smooth manifold $\mathcal M$ is a **contact form** if

$$\mathrm{d}\, \theta \,|_{\mathcal{D} imes \mathcal{D}}$$
 is non-degenerate on $\,\mathcal{D} \,:=\, \ker(\theta)\,.$

The vector field ξ on $\mathcal M$ characterized by $\iota_\xi\mathrm{d}\,\theta=0$ and $\langle\theta\,,\,\xi\rangle=1$ is called the **Reeb field**. When equipped with a smoothly varying **Riemannian partial metric** on $\mathcal D$

$$g \in \underline{\mathcal{D}^{\star} \otimes \mathcal{D}^{\star}}$$
,

the triple $(\mathcal{M}, \mathcal{D}, g)$ is called a **contact sub-Riemannian** manifold.

A differential one-form θ on a connected smooth manifold $\mathcal M$ is a **contact form** if

$$\mathrm{d}\, \theta \,|_{\mathcal{D} imes \mathcal{D}}$$
 is non-degenerate on $\,\mathcal{D} \,:=\, \ker(\theta)\,.$

The vector field ξ on $\mathcal M$ characterized by $\iota_\xi\mathrm{d}\,\theta=0$ and $\langle\theta\,,\,\xi\rangle=1$ is called the **Reeb field**. When equipped with a smoothly varying **Riemannian partial metric** on $\mathcal D$

$$g \in \underline{\mathcal{D}^{\star} \otimes \mathcal{D}^{\star}}$$
,

the triple $(\mathcal{M}, \mathcal{D}, g)$ is called a **contact sub-Riemannian** manifold. An **sub-isometry** is a diffeomorphism of \mathcal{M} preserving the distribution and the partial metric.

The adapted connection [Falbel-Gorodski 1994]

Theorem: Let $(\mathcal{M}, \mathcal{D}, g)$ be a contact sub-Riemannian manifold. Then there exists a unique pair (∇, τ) where ∇ is a linear connection in $\mathcal{T}(\mathcal{M})$ and $\tau \in \operatorname{End}(\mathcal{D})$ (sub-torsion) such that

- $\nabla \xi = 0$

Proposition [B.-Falbel-Gorodski-Tausk, 1995] Every two points in \mathcal{M} can be joined by a horizontal broken ∇ -geodesic.

sub-Riemannian contact symmetric spaces [Strichartz 1986]

A sub-Riemannian contact symmetric space is a quadruple $(\mathcal{M}, \mathcal{D}, g, \psi)$ where $\psi : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ is a smooth map such that, for every $x \in M$, the map $\psi_x : \mathcal{M} \to \mathcal{M} : y \mapsto \psi(x, y)$ is a sub-isometry that fixes x and such that

$$\psi_{\mathsf{X}_{\mathsf{A}\mathsf{X}}}|_{\mathcal{D}_{\mathsf{X}}} = -\mathrm{Id}_{\mathcal{D}_{\mathsf{X}}}$$
.

Classification of sub-Riemannian contact symmetric spaces [B.-Falbel-Gorodski 1995]

Theorem: The Reeb field of a sub-Riemannian contact symmetric space $(\mathcal{M}, \mathcal{D}, g, \psi)$ induces a principal fibration of \mathcal{M} over a symplectic symmetric space M (dim (\mathcal{M}) = dim(M) + 1).

Classification of sub-Riemannian contact symmetric spaces [B.-Falbel-Gorodski 1995]

type			examples	sub-torsion	holonomy
solvable			H^{2n+1}	zero	trivial
semisimple	Hermitean		S^1 -fibration over Hermitean Riemannian symmetric space	zero	irreducible if symmetric space is irreducible
	non-Hermitean	simple	$SO(n+2)/SO(n) \ (n \ge 3)$	nonzero	irreducible
			$SO(n,2)/SO(n) \ (n \ge 3)$	nonzero	irreducible
			SO(n+1,1)/SO(n)	nonzero	irreducible if $n \geq 3$
		non-simple	SO(4)/SO(2)	nonzero	not irreducible
			SO(2,2)/SO(2)	nonzero	not irreducible
else			$SO(n+1)\bowtie R^{n+1}/SO(n)$	nonzero	irreducible if $n \geq 3$
			$SO(n,1)\bowtie R^{n+1}/SO(n)$	nonzero	irreducible if $n \geq 3$
			twisted product of H^{2n+1} and Hermitean	zero	not irreducible

Table 1. Contact sub-Riemannian symmetric spaces of dimension $2n + 1 \ge 5$, $n \ge 2$

Generalized Kinematical Lie algebras [B.-Boulanger, 2025]

$$\mathfrak{g} = \mathcal{K} \oplus \mathbb{R} \oplus (V \oplus V)$$

is a (finite dimensional real) Lie algebra such that

- \bullet \mathcal{K} is a (compact) Lie sub-algebra.
- ② V is a simple faithful K-module equipped with an invariant quadratic form (possibly signed).
- **1** The isotypical component of V in $\Lambda^2(V)$ is empty.
- $\bullet \ [\mathbb{R}, \mathcal{K}] = \{0\}.$

Generalized Kinematical Lie algebras [B.-Boulanger, 2025]

$$\mathfrak{g} = \mathcal{K} \oplus \mathbb{R} \oplus (V \oplus V)$$

is a (finite dimensional real) Lie algebra such that

- $oldsymbol{0}$ \mathcal{K} is a (compact) Lie sub-algebra.
- ② V is a simple faithful \mathcal{K} -module equipped with an invariant quadratic form (possibly signed).
- **1** The isotypical component of V in $\Lambda^2(V)$ is empty.

Theorem: Let G be a (connected simply connected) generalized kinematical Lie group. Then:

- $\mathcal{M} := G/K$ is a sub-Riemannian contact symmetric space, while M := G/H is a symplectic symmetric space.
- ② The principal fibration $G/K \to G/H : gK \mapsto gH$ realizes the Reeb fibration of $\mathcal M$ over its associated symplectic symmetric space.
- A sub-Riemannian contact symmetric space comes from such a generalized Kinematical Lie group that way if and only if its horizontal holonomy acts reducibly.