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Motivations

Mackey’s analogy:

G real reductive Lie group

Ĝ temp → K̂ ⋉ P (Cartan motion group)
N. Higson proves for G complex simple [2008]
A. Afgoustidis proves for G real reductive [2023]
Current joint project with A.A. : “symplectization” of Mackey’s
bijection
Lorenztian (noncommutative) geometry:
implement thermodynamical element?
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Historical introduction I: relativity principles

Inertial frame ⇝ kinematical group

For instance:

Newton’s first law
⇝ Galileo(3) :=

(
SO(3)⋉R3

)
⋉

(
R× R3

)
Special Relativity
⇝ Poincaré(3) := SOo(1, 3)⋉

(
R× R3

)
Problem [Bacry et al. 1968’]: Classify all possible types of inertial

frames that can accomodate space-time.

Kinematical Lie algebra: g(3) = so(3)⊕R3 ⊕R⊕R3 such
that

so(3)× R3 → R3 natural rep’ [so(3) , R] = {0} .

[Figueroa-O’Farril 2018]: classification of g(D)’s.
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⇝ Poincaré(3) := SOo(1, 3)⋉

(
R× R3

)
Problem [Bacry et al. 1968’]: Classify all possible types of inertial

frames that can accomodate space-time.

Kinematical Lie algebra: g(3) = so(3)⊕R3 ⊕R⊕R3 such
that

so(3)× R3 → R3 natural rep’ [so(3) , R] = {0} .

[Figueroa-O’Farril 2018]: classification of g(D)’s.

Pierre Bieliavsky (joint work with Nicolas Boulanger) Kinematical Lie algebras and contact sub-Riemannian symmetric spaces



Historical introduction I: relativity principles

Inertial frame ⇝ kinematical group
For instance:

Newton’s first law
⇝ Galileo(3) :=

(
SO(3)⋉R3

)
⋉
(
R× R3

)
Special Relativity
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Historical introduction II: Carnot-Caratheodory spaces

Carnot cycles [1824] (adiabatic thermodynamical processes)

⇝

Caratheodory [1909] formulates the Second Law of
Thermodynamics in terms of “horizontality” of adiabatic processes.

Gromov et al. [1981]: A C-C space is a smooth manifold M
equipped with a tangent distribution D ⊂ T (M). When D
generates (under bracket) the whole T (M), every point x
possesses a neighbourhood where every point can be joined to x by
a horizontal curve.

Example: M = R3, θ := dx + y dz , D := ker(θ).

D is spanned by e := ∂y and f := y∂x − ∂z .

e , f and [e, f ] = ∂x span a Heisenberg Lie algebra
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Roughly:

(generalized) Kinematical Lie algebras are Carnot-Caratheodory
spaces.

“Symmetric” C-C spaces are (generalized) Kinematical Lie
algebras.
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Symmetric spaces [O. Loos, 1969]

A symmetric space is a pair (M, s) where M is a smooth manifold
and s : M ×M → M : (x , y) 7→ sx(y) is a smooth map, such that

1 s2x = IdM .

2 x is an isolated fixed point of sx .

3 sx sy sx = ssx (y).

Proposition: The expression

(∇XY )x :=
1

2
[X , Y + sx⋆Y ]x

defines a linear connection in T (M).
It is the unique linear connection invariant under the
symmetries: {sx}x∈M ⊂ Aff(∇).
Moreover:

T∇ ≡ 0 and ∇R∇ ≡ 0 .
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Symplectic symmetric spaces [B.-Cahen-Gutt, 1994]

A symplectic symmetric space is a triple (M, s, ω) where (M, s)
is a symmetric space and ω is a non-degenerate differential
2-form on M which is invariant under the symmetries:

s⋆xω = ω . (1)

Remark: (1) implies ∇ω = 0 hence dω = 0.

Example: Massive (coadjoint) orbits of the Poincaré group are SSS.
Their symplectic connection ∇ is never metric (i.e. Levi-Civita).
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sub-Riemannian contact manifolds [Strichartz 1986]

A differential one-form θ on a connected smooth manifold M is a
contact form if

d θ |D×D is non-degenerate on D := ker(θ) .

The vector field ξ on M characterized by
ιξd θ = 0 and ⟨θ , ξ⟩ = 1 is called the Reeb field. When
equipped with a smoothly varying Riemannian partial metric on
D

g ∈ D⋆ ⊗D⋆ ,

the triple (M,D, g) is called a contact sub-Riemannian
manifold. An sub-isometry is a diffeomorphism of M preserving
the distribution and the partial metric.
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The adapted connection [Falbel-Gorodski 1994]

Theorem: Let (M,D, g) be a contact sub-Riemannian manifold.
Then there exists a unique pair (∇, τ) where ∇ is a linear
connection in T (M) and τ ∈ End(D) (sub-torsion) such that

1 ∇ : T (M)×D → D
2 ∇ξ = 0

3 ∇g = 0

4 T∇(X ,Y ) = d θ(X ,Y ) ξ

5 T∇(ξ,X ) = τ(X ).

Proposition [B.-Falbel-Gorodski-Tausk, 1995] Every two points
in M can be joined by a horizontal broken ∇-geodesic.
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sub-Riemannian contact symmetric spaces [Strichartz
1986]

A sub-Riemannian contact symmetric space is a quadruple
(M,D, g , ψ) where ψ : M×M → M is a smooth map such that,
for every x ∈ M, the map ψx : M → M : y 7→ ψ(x , y) is a
sub-isometry that fixes x and such that

ψx⋆x |Dx
= −IdDx .
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Classification of sub-Riemannian contact symmetric spaces
[B.-Falbel-Gorodski 1995]

Theorem: The Reeb field of a sub-Riemannian contact symmetric
space (M,D, g , ψ) induces a principal fibration of M over a
symplectic symmetric space M (dim(M) = dim(M) + 1).
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Generalized Kinematical Lie algebras [B.-Boulanger, 2025]

g = K ⊕ R⊕ (V ⊕ V )
is a (finite dimensional real) Lie algebra such that

1 K is a (compact) Lie sub-algebra.
2 V is a simple faithful K-module equipped with an invariant

quadratic form (possibly signed).
3 The isotypical component of V in Λ2(V ) is empty.
4 [R , K] = {0}.

Theorem: Let G be a (connected simply connected) generalized
kinematical Lie group.Then:

1 M := G/K is a sub-Riemannian contact symmetric space,
while M := G/H is a symplectic symmetric space.

2 The principal fibration G/K → G/H : gK 7→ gH realizes the
Reeb fibration of M over its associated symplectic symmetric
space.

3 A sub-Riemannian contact symmetric space comes from such
a generalized Kinematical Lie group that way if and only if its
horizontal holonomy acts reducibly.
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