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Quantum Gravity

What is Quantum Gravity?
Too hard → we ask a simpler question:
Swampland question: How should a consistent quantum
gravity look in the IR, as an effective field theory?

Landscape

IR limit

EFT

QG

String theory

Can we constrain some of these properties?
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Outline

We focus on the weak gravity conjecture, arguably the most
“rigorous” and expected (maybe also the most useless?)

• Motivation
• Evidence
• Proof

Modular Invariance and Spectral Flow
Self-repulsiveness proof
Self-repulsiveness =⇒ superextremality
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Weak Gravity Conjecture

In a Quantum Gravity Theory with a massless photon there
is a charged particle satisfying

Weak Gravity Conjecture

|q|
m

≥ |Q|
M

∣∣∣∣
large black hole

Mild WGC: “There should be a superextremal state in the
spectrum”.

Refinements, such as “tower WGC”, “lattice WGC”,
“sublattice WGC” require infinite number of states
satisfying the condition.
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Repulsive Force Conjecture

Related to the WGC, but not equivalent in general

Repulsive Force Conjecture

F =
F

VD−2rD−2 ,F = f abQaQb − kNm
2 − Gij

∂m

∂ϕi

∂m

∂ϕj
≥ 0

F resultant of electric repulsion, gravitational attraction
and interaction with moduli.

“A pair of identical particles should repel each other”.

Similar refinements “lattice RFC”, “sublattice RFC”, etc.
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Motivation



Remnants

By gravitational collapse + Hawking radiation

Q

M

MEXT(Q)

MPl

•
••

•

• • •

Hawking RadiationGravita
tiona

l Collaps
e ->

we would have
stable black hole remnants ∼ global symmetry
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Black hole decay

To avoid this, we need black holes to be allowed to decay,
i.e. there should be superextremal states in the spectrum. .

BH decay

M = Q

M ′ ≥ Q ′

m ≤ q

Extremal BH

Subextremal BH

Superextremal particle
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Evidence



Heterotic on T k

Heterotic string theory on T k is a simple example where
everything can be computed.
For each Q in the charge lattice, compare lightest states
and black hole extremality bound:

α′

4
m2 =

1
2
max

(
Q2 − 2, Q̃2

)
≤ α′

4
M2

EXT(Q)

Two cases:
{

Q2 ≤ Q̃2 Exactly Extremal
Q2 > Q̃2 Stricly superextremeal|

In any case, for every Q there is a superextremal particle.

Lattice WGC is satisfied
M. Lotito WGC in string theory 8 / 26



Heterotic on T 3/Z2

Heterotic string theory on T 3/Z2.

Spectrum m2 ∼ n2
1

R2
1
+

n2
2

R2
2
+

n2
3

R2
3

Orbifold implies identifications n1 ↔ n2,R1 = R2

U(1)2, with charges QA = n1 + n2,QB = n3

One can compute

m2 −M2
EXT(Q) =

(n1 − n2)
2

2R2
1

If n1 ̸= n2, there is no extremal particle.

Sublattice WGC is satisfied
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Proof



Strategy

General idea:
• Exploit structure and properties of the 2d worldsheet

CFT to compute the two sides of the WGC bound.

Steps in the proof:
• we identify candidate superextremal states - we need

appropriate charged states that exist in any string
theory;

• we compute the long-range forces (= contributions to
the RFC) between these states;

• we show that if we find self-repulsive states, there are
also superextremal states.
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1
Identify charged states that exist in any string theory via
modular invariance arguments on the worldsheet;
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Flavored Partition Function

Given the modular invariant partition function

Z (τ, τ) = Tr
[
qL0− c

24qL̃0− c̃
24

]
=

∑
qh−

c
24qh̃−

c̃
24 , q = e2πiτ

we Introduce the “flavored” partition function

Z (µ, τ ; µ̃, τ) =
∑

qh−
c
24yQqh̃−

c̃
24 ỹ Q̃

with yQ = e2πiµaQ
a

, ỹ Q̃ = e−2πi µ̃ãQ̃
ã

,
S now acts non trivially

Z (µ, τ ; µ̃, τ) =


Z (µ, τ + 1; µ̃, τ + 1)

e
−
πi

τ
µ2+

πi

τ
µ̃2

Z

(
µ

τ
,−1

τ
;
µ̃

τ
,−1

τ

)
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Spectral Flow

Invariance over period lattice Γ ((µ, µ̃) → (µ+ ρ, µ̃+ ρ̃))

and introducing ĥ = h − 1
2Q

2, ̂̃h = h̃ − 1
2Q̃

2, the flavored
partition function reads

Z =
∑

qĥ−
c
24 q

̂̃h− c̃
24 q

1
2 (Q+ρ)2yQ+ρq

1
2 (Q̃+ρ̃)2 ỹ Q̃+ρ̃ .

which tells us that the spectrum is invariant under

(Q, Q̃) → (Q, Q̃) + (ρ, ρ̃), (ρ, ρ̃) ∈ Γ ,with ĥ, ̂̃h fixed.

Applying this to neutral (Q = 0, Q̃ = 0) states, we have a
massive spectrum

α′

4
m2 =

1
2
max(h, h̃)− 1 =

α′

4
m2 =

1
2
max(Q2, Q̃2)− 1
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2
Compute the long-range forces (contributions to the RFC)
relating EFT amplitudes to worldsheet three-point
functions;
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Long-range forces

Long-range forces

F = FGRAV+Φ0 + FGAUGE + FΦi MODULI

are mediated by massless states.
F depends on EFT vertices

⟨ΨΨγA⟩ ∼ δABeaBQa , ⟨ΨΨg⟩ ∼ κdm , ⟨ΨΨΦI ⟩ ∼ δIJg i
J

∂m

∂ϕi

These are mapped to worldsheet three-point functions.
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Correlators from the worldshheet

Factorizing the worldsheet theory as T = TEXT ⊗ TINT

• TEXT: “external” universal free theory ∼ Free Boson
• TINT: “internal” interacting modular-invariant unitary

CFT with c = 26 − D

The correlators factorize as

⟨V1V2V3⟩ = ⟨V EXT
1 V EXT

2 V EXT
3 ⟩EXT · ⟨V INT

1 V INT
2 V INT

3 ⟩INT

Massless states contributing to long-range interactions are
mapped to “internal” CFT operators

EFT state worldsheet operator (h, h̃)

graviton gµν 1 (0,0)

photons Aa
µ

Ja(z) (1,0)
J̃a(z) (0,1)

scalars (moduli) Φi ϕi (z , z) (1,1)
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Universal terms

FGRAV+Φ0: since graviton and dilaton operators in the
internal CFT are trivial gINT = Φ0

INT = 1̂ =⇒ reduces to
two-point functions + external normalization factors

FGRAV+Φ0 ∼ ⟨ΨΨg⟩⟨gg⟩−1⟨gΨΨ⟩ = −kDm
2

FGAUGE: Modes of the worldsheet currents Ja0 , J̃
b̃
0 extract

charges of the Ψ states∮
dz

2π
⟨ΨJa(z)Ψ⟩ = ⟨ΨJa0(z)Ψ⟩ = Qa⟨ΨΨ⟩ =⇒ ⟨ΨJa(z)Ψ⟩ = i

z
QaΨΨ⟩

FGAUGE = NJ⟨ΨΨJa⟩⟨JaJb⟩−1⟨JbΨΨ⟩ = 2k2
D

α′

(
δabQ

aQb + δãb̃Q̃
ãQ̃ b̃

)
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Moduli contribution

FΦi MODULI: This is the interesting to compute.
(1,1) primaries that contribute are

• λab̃(z , z) = Ja(z)J̃ b̃(z)

⟨Ψλab̃(z , z)Ψ⟩ = 1
|z |2

QaQ̃ b̃

• Neutral current primaries χ(z , z),
i.e. Ja1 |χ⟩ = J̃ ã1 |χ⟩ = 0 ↔ ⟨χλab̃⟩ = 0

⟨Ψχ(z , z)Ψ⟩ = ?
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Sugawara decomposition

We decompose the CFT factoring its current part.

T (z) = T̂ (z) + T J(z) , T J(z) =
1
2
δab : J

a(z)Jb(z) :

We know the weights of the charged states,
LJ0|Ψ⟩ = 1

2Q
2|Ψ⟩. Furthermore, we had factorized the

moduli so that χ(z , z) are neutral current primaries.

Operator (hJ , h̃J) (ĥ,
˜̂
h)

Ψ(z , , z)
(

1
2Q

2, 1
2Q̃

2
)

(0,0)
χ(z , , z) (0, 0) (1,1)

=⇒ ⟨ΨχΨ⟩ = ⟨ΨΨ⟩⟨χ⟩ = 0︸ ︷︷ ︸
too quick, but we show it carefully
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Self-force

Putting all the pieces together

F = − 4k2
D

α′mm′

(α′

2
mm′ − δabQ

aQb
)(α′

2
mm′ − δãb̃Q̃

ãQ̃ b̃
)

Recall massive spectrum contains α′

4 m
2 = 1

2 max(Q2, Q̃2)+N − 1

N = 0 FSELF > 0: if |Q2 − Q̃2| > 2
N = 0 FSELF = 0 : if |Q2 − Q̃2| = 2
N = 0 FSELF < 0 if |Q2 − Q̃2| = 0 :
N = 1 FSELF = 0: always
N = 2 FSELF < 0 always

For every site in the period lattice, we have states with
FSELF = 0 =⇒

Sublattice RFC
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3
Show that if states are self-repulsive everywhere in moduli
space, then they must be superextremal. Œ
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Black Hole solutions

Consider a refined statement of the WGC.
A state of mass m and charge q is superextremal if

M = Λm ≤ MEXT(Q = Λq)

RHS is the mass of the lightest BH of charge Q.

A spherically symmetric black hole solution

δ̇s2 = −e2ψ(r)f (r)δ̇t2 + e−
2

d−3ψ(r)

[
δ̇r2

f (r)
+ r2δ̇Ω2

d−2

]

F a
2 =

fab(ϕ(r))Qb

Vd−2

e2ψ(r)

rd−2 δ̇t ∧ δ̇r , f (r) = 1 −
rd−3
h

rd−3

M. Lotito WGC in string theory 22 / 26



Black Hole Extremality Bound

The black hole mass can be written as a functional

MBH. =
1
2

∫ zh

0
e2ψ[fabQaQb − kNM(ϕ)2 − G ijM,iM,j︸ ︷︷ ︸

⋆

]
δ̇z − feψM(ϕ)

∣∣∣∣zh
0

If ⋆ ≥ 0, then MBH ≥ −feψM(ϕ)

∣∣∣∣zh
0
,= M(ϕ∞) = MEXT(Q)

Now suppose there is a self-repulsive particle, i.e.

fabqaqb − kNm
2 − G ijm,im,j ≥ 0

Then taking M(ϕ) = Λm(ϕ) =⇒ MBH ≥ Λm(ϕ).
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Superextremal states

We had in fact found the first excited states

N = 1 FSELF = 0:always (for any Q)

to have vanishing self-force. So they satisfy (saturate)

QBH

MBH
≤ Q

M(ϕ)
=

Λq

Λm(ϕ)
=

q

m

which implies

α′

4
M2

BH ≥ 1
2
max(Q2, Q̃2)︸ ︷︷ ︸

N=1 states, F=0

>
1
2
max(Q2, Q̃2)− 1︸ ︷︷ ︸
N=0 states, F=?

Lightest states for each Q are strictly superextremal.
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Summary



Results

The Weak Gravity Conjecture and its refinements was
postulated and checked in many examples..

Various ingredients had appeared before but there was no
comprehensive “proof”.

• Modular invariance on the worldsheet / spectral flow
• Self-force computation for charged states → RFC
• Black hole solution relating RFC and WGC

Proof of Sublattice WGC
(flat space, perturbative, bosonic string)
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Caveats and next steps

• Are there any issues with our perturbative results?
higher genus spectrum / modular invariance (claim: ✓)
generic background, cosmological constant (?)
existence of perturbative black hole solutions
(stay tuned: [25xx.yyyyy] w/ Ben Heidenreich)

• How to repeat the derivation for superstrings?
more complicated structure, along the way find general
features of superstring theory
(stay tuned some more: [25/6zz.wwwww] w/ Ben
Heidenreich)

• Can we relate our results to other conjectures in the
swampland program?

leverage worldsheet approach
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Thanks!



Backup



Universal contributions

The first factor

FGRAV+Φ0 ∼ NG ⟨ΨΨg⟩⟨gg⟩−1⟨gΨΨ⟩

is automatic since graviton and dilaton operators in the
internal CFT are trivial gINT = Φ0

INT = 1̂. Therefore,

⟨gINTΦ
0
INTΦ

i
INT⟩ = 0

there is no mixing between graviton, dilaton and other
moduli. FGRAV+Φ0 comes purely from the external
(normalization) factor.

FGRAV+Φ0 = −kDm
2
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Gauge contribution

The worldsheet currents extract the charges of the Ψ states
as the eigenvalues of the current modes Ja0 , J̃

b̃
0 .

FGAUGE ∼ NJ⟨ΨΨJa⟩⟨JaJb⟩−1⟨JbΨΨ⟩
The two-point function of the current is simply
⟨JaJb⟩ = δab⟨1⟩.
The three-point function ⟨ΨJΨ⟩ comes from∮

dz

2π
⟨ΨJa(z)Ψ⟩ = ⟨ΨJa0 (z)Ψ⟩ = Qa⟨ΨΨ⟩ =⇒ ⟨ΨJa(z)Ψ⟩ = i

z
QaΨΨ⟩

FGAUGE = NJδabQ
aQb + ÑJδãb̃Q̃

ãQ̃ b̃

=
2k2

D

α′

(
δabQ

aQb + δãb̃Q̃
ãQ̃ b̃

)
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Moduli contribution

Finally, we get to the interesting term to compute.

FΦi MODULI ∼ NΦi ⟨ΨΨϕi⟩⟨ϕiϕj⟩−1⟨ϕjΨΨ⟩
(1, 1) primaries in the internal CFT are
• λab̃(z , z) = Ja(z)J̃ b̃(z) and
• Neutral current primaries χ(z , z),

i.e. Ja1 |χ⟩ = J̃ ã1 |χ⟩ = 0 ↔ ⟨χλab̃⟩ = 0
From the currents

⟨Ψλab̃(z , z)Ψ⟩ = 1
|z |2

QaQ̃ b̃

We still have the remaining contribution

⟨Ψχ(z , z)Ψ⟩
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Contour argument

Since χ(z , z) has weight (1,1) and is a neutral current
primary

|χ⟩ = L0|χ⟩ = L̂0|χ⟩ =⇒ χ(z , z) =

∮
dz ′

2πi
(z ′ − z)T̂ (z ′)χ(z , z)

χ(z , z) =
[ ∮

Σ′′

dz ′

2πi
(z ′ − z)T̂ (z ′), χ(z , z)

]
= [L̂0 − zL̂−1, χ(z , z)]

=⇒ ⟨ΨχΨ⟩ = ⟨Ψ|[L̂0 − zL̂−1, χ(z , z)]|Ψ⟩ = 0
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