Monopoles and instantons on quantum spaces

Giovanni Landi - Trieste

CALISTA - 2025

Corfu, Greece, 14th-18th September 2025

Mostly with Francesco D'Andrea , Chiara Pagani

The simplest case z_k, z_k^* , k = 0, 1 are the generators of the algebra $\mathscr{A}(S_q^3)$:

$$z_0 z_1 = q^{-1} z_1 z_0$$
, $z_0^* z_1 = q z_1 z_0^*$, $z_1^* z_0 = q z_0 z_1^*$
 $z_0^* z_0 = z_0 z_0^* + (1 - q^2) z_1 z_1^*$, $z_1^* z_1 = z_1 z_1^*$, $z_1^* z_0^* = q^{-1} z_0^* z_1^*$,

and sphere relations :
$$z_0 z_0^* + z_1 z_1^* = 1$$
 $z_0^* z_0 + q^2 z_1^* z_1 = 1$

An co-action of U(1); the coinvariant elements make up the projective line $\mathscr{A}(\mathbb{C}P_q^1)$ (the standard Podleś sphere)

$$B_0 := z_1^* z_1$$
, $B_0 := z_1^* z_0$, $B_- := z_0^* z_1$

with $B_0^* = B_0$ and $B_0^* = B_-$.

They satisfy commutation relations

$$B_0B_0 = q^2B_0B_0$$
, $B_0B_- = q^{-2}B_-B_0$, $B_-B_0 = q^4B_0B_- + q^2(1-q^2)B_0$

and sphere relations: $B_0B_- = B_0(1 - B_0)$, $B_-B_0 = q^2B_0(1 - q^2B_0)$

The tautological line bundle (the monopole bundle)

via its sections; or the module of equivariant maps; or a projection :

$$p_{(1)} = \begin{pmatrix} z_0^* \\ z_1^* \end{pmatrix} (z_0, z_1) = \begin{pmatrix} 1 - q^2 B_0 & B_- \\ B_+ & B_0 \end{pmatrix} \longleftrightarrow \phi = z_0 f + z_1 g$$

for $f,g \in \mathscr{A}(\mathbb{C}P^1_q)$

$$Tr(p_{(1)}) = 1 + (1 - q^2)B_0$$

The rank of the bundle: $[\varepsilon]([\operatorname{Tr}(p_{(1)}]) = 1 + 0$

The degree of the bundle: $[\varepsilon]([\operatorname{Tr}(p_{(1)}]) = 0 - 1$

The K-theory group $K(\mathbb{C}P_q^1)$ classifies equivalence classes of projection (i.e. line bundles)

Ring structure on the K-theory group of quantum projective spaces $\mathscr{A}(\mathbb{C}P_q^n)$

Projections $P_N \in \mathsf{Mat}_{\mathsf{d}_\mathsf{N}}(\mathscr{A}(\mathbb{C}P_q^n))$, N = 0, 1, ..., n

such that $[P_N]$ generate the group $K_0(\mathscr{A}(\mathbb{C}P_q^n))$ (algebraic generators).

Indeed we have $\mathscr{A}(\mathbb{C}P_q^n)$) - bimodules

$$\mathcal{L}_N := P_N(\mathscr{A}(\mathbb{C}P_q^n))^{d_N}$$

(written as right modules) obeying:

$$\mathcal{L}_N \otimes_{\mathscr{A}(\mathbb{C}P_a^n)} \mathcal{L}_M \cong \mathcal{L}_{M+N}$$

Chern numbers coming from pairing with K-homology:

$$\mathsf{ch}_0(\mathcal{L}_N) = 1, \qquad \mathsf{ch}_1(\mathcal{L}_N) = -N$$

 \mathcal{L}_N space of sections of a line bundle over $\mathbb{C}P_q^n$) with winding number -N.

Proposition (Arici-Brain-L, 2015)

$$K_0(\mathbb{C}P_q^n)) = \mathbb{Z}[u]/u^{n+1} \simeq \mathbb{Z}^{n+1}$$

with Euler class

$$u = \chi(\mathcal{L}_{-1}) := 1 - [\mathcal{L}_{-1}]$$

Generalise the above to vector bundles with rank higher that 1

So we seek the quantization of spaces whose K-theory in the classical limit is the ring of dual numbers $\mathbb{Z}[t]/(t^2)$.

Classically, t = r - [E] is the Euler characteristic (in K-theory) of the vector bundle E with rank r. One can rephrase the relation $t^2 = (r - [E])^2 = 0$ as

$$r^2 - 2r[E] + [E \otimes E] = 0.$$

This result can be dualized and then generalized, in a suitable way, to non-commutative spaces.

For a compact quantum space, sufficient conditions for a morphism of abelian groups $K_0 \to \mathbb{Z}[t]/(t^2)$ compatible with the tensor product of bimodules.

Applications include the standard Podleś sphere S_q^2 and a quantum 4-sphere S_q^4 coming from quantum symplectic groups. The K-theory is generated by the Euler class of the monopole or instanton bundle respectively.

Explicit formulas for the projections of vector bundles on the sphere S_q^4 associated to the principal $SU_q(2)$ -bundle $S_q^7 \to S_q^4$ via irreducible corepresentations of $SU_q(2)$, and compute their characteristic classes.

Characteristic classes of noncommutative vector bundles

A unital *-algebra \mathcal{B} , and its C*-enveloping algebra B

B is a 'compact quantum space', and \mathscr{B} describes some additional structure on this quantum space. In addition, an inclusion of unital *-algebras

$$\mathscr{B}\subseteq\mathscr{A}$$
,

where \mathscr{A} describes some auxiliary noncommutative space

Interested in classes in $K_0(B)$ that are represented by finitely generated projective right \mathscr{B} -modules ("noncommutative vector bundles").

Specialize to right modules that "trivialize" over \mathscr{A} (that is, their "pullback" to the total space is trivial), and denote by $\operatorname{Vect}_{\mathscr{A}}(\mathscr{B})$ their class.

We construct an isomorphism

$$\mathsf{ch}: K_0(B) \to \mathbb{Z}[t]/(t^2)$$

of abelian groups that is "multiplicative", in the sense that it is compatible with the tensor product in $Vect_{\mathscr{A}}(\mathscr{B})$.

A first result:

Proposition:

With mild assumptions, if $K_0(B) \cong \mathbb{Z}^2$ and there is $\mathscr{E} \in \mathsf{Vect}_{\mathscr{A}}(\mathscr{B})$ with $\mathsf{ch}_1(\mathscr{E}) = \pm 1$, then $(1, [\mathscr{E}])$ is a basis of $K_0(B)$ and

$$r^2 - 2r[\mathscr{E}] + [\mathscr{E} \otimes_{\mathscr{B}} \mathscr{E}] = 0, \qquad r := \operatorname{ch}_0(\mathscr{E}).$$

This identity is the analogue of the classical statement $t^2 = 0$ for t := r - [E].

The construction of \mathbb{Z} -linear maps $K_0(B) \to \mathbb{Z}$ induced by an even Fredholm module. We focus on 1-summable Fredholm modules.

1-summable even Fredholm modules

Let B be a unital C*-algebra, $\pi_1, \pi_2 : B \to \mathcal{B}(\mathcal{H})$ be two bounded *-representations on a Hilbert space \mathcal{H} and $F, \gamma \in \mathcal{B}(\mathcal{H} \otimes \mathbb{C}^2)$ the operators

$$F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

where 1 is the identity on \mathcal{H} .

Let π be the representation of B on $\mathcal{H} \otimes \mathbb{C}^2$ direct sum of π_1 and π_2 . Note:

$$\gamma F[F, \pi(b)] = \begin{pmatrix} \pi_1(b) - \pi_2(b) & 0 \\ 0 & \pi_1(b) - \pi_2(b) \end{pmatrix}.$$

If the difference $\pi_1(b) - \pi_2(b)$ is of trace class on \mathcal{H} for all b in a dense unital *-subalgebra \mathscr{B} of B, then $(B, \mathcal{H} \otimes \mathbb{C}^2, F, \gamma)$ is a 1-summable even Fredholm module. It defines a \mathbb{Z} -module map

$$\varphi: K_0(B) \to \mathbb{Z}$$
.

For [p] the K-theory class of a projection $p \in M_N(\mathscr{B})$, this is given by

$$\varphi([p]) = \frac{1}{2} \operatorname{Tr}_{\mathcal{H} \otimes \mathbb{C}^2} (\gamma F[F, \pi(\operatorname{Tr} p)]) = \operatorname{Tr}_{\mathcal{H}} (\pi_1(\operatorname{Tr} p) - \pi_2(\operatorname{Tr} p)),$$

where $\operatorname{Tr} p = \sum_{i=1}^N p_i^i \in \mathscr{B}$ and $\operatorname{Tr}_{\mathcal{H}}$ (resp. $\operatorname{Tr}_{\mathcal{H} \otimes \mathbb{C}^2}$) is the trace of operators on the Hilbert space \mathcal{H} (resp. $\mathcal{H} \otimes \mathbb{C}^2$).

Note:

- (i) $\varphi([p])$ only depends on the K-theory class of p;
- (ii) it is an integer being the index of a Fredholm operator

Thus: $\varphi \in K_0(B)^{\vee}$.

(In general, in this way one constructs a \mathbb{Z} -module map $K^0(B) \to K_0(B)^\vee$ which needs not to be injective or surjective)

Proposition

Assume that there is a character $\varepsilon: \mathscr{A} \to \mathbb{C}$ and a bounded unital *-representation $\pi: \mathscr{A} \to \mathcal{B}(\mathcal{H})$ such that

$$\pi(b) - \varepsilon(b) \in \mathcal{L}^1(\mathcal{H}) , \quad \forall b \in \mathscr{B}.$$

Then:

(i) There is a homomorphism of unital semirings

$$\mathsf{ch}: \left(\mathsf{Vect}_{\mathscr{A}}(\mathscr{B}), \oplus, \otimes\right) \to \mathbb{Z}[t]/(t^2), \qquad \mathsf{ch}(\mathscr{E}) = \mathsf{ch}_0(\mathscr{E}) + \mathsf{ch}_1(\mathscr{E})t,$$

given, for any $\mathscr{E} \cong p \mathscr{B}^N$, by the formulas

$$\operatorname{ch}_0(\mathscr{E}) := \varepsilon(\operatorname{Tr} p), \qquad \operatorname{ch}_1(\mathscr{E}) = \operatorname{Tr}_{\mathcal{H}}(\pi(\operatorname{Tr} p) - \varepsilon(\operatorname{Tr} p)).$$

- (ii) The underlying morphism of abelian semigroups is the composition of (??) with a homomorphism [ch] : $K_0(B) \to \mathbb{Z}[t]/(t^2)$.
- (iii) If (u, v) is a trivializing pair for \mathscr{E} , then the number of column of u is $r = \operatorname{ch}_0(\mathscr{E})$ and thus depends only on the K-theory class of \mathscr{E} .

Note

The maps $[\mathsf{ch}_0]$ and $[\mathsf{ch}_1]$ are the index maps of the Fredholm modules associated with the pair or representations $(\varepsilon,0)$ on \mathbb{C} and (π,ε) on \mathcal{H} .

Here $\varepsilon(b)$ acts on \mathcal{H} as a scalar multiple of the identity.

The representations ε and π extend from \mathscr{B} to the C*-enveloping algebra B, due to the universal property of the latter.

The map ch is compatible with the tensor product of elements of $Vect_{\mathscr{A}}(\mathscr{B})$, which in components means that

for all $\mathscr{E},\widetilde{\mathscr{E}}\in\mathsf{Vect}_{\mathscr{A}}(\mathscr{B}).$

Corollary

Under the assumptions as before, for every $\mathscr{E} \in \mathsf{Vect}_{\mathscr{A}}(\mathscr{B})$ and every positive integer k, for the module

$$\mathscr{E}^{\otimes_{\mathscr{B}} k} := \underbrace{\mathscr{E} \otimes_{\mathscr{B}} \mathscr{E} \otimes_{\mathscr{B}} \dots \otimes_{\mathscr{B}} \mathscr{E}}_{k \text{ times}}$$

one has

$$\mathsf{ch}_0(\mathscr{E}^{\otimes_{\mathscr{B}} k}) = \mathsf{ch}_0(\mathscr{E})^k$$
, $\mathsf{ch}_1(\mathscr{E}^{\otimes_{\mathscr{B}} k}) = k \, \mathsf{ch}_0(\mathscr{E})^{k-1} \mathsf{ch}_1(\mathscr{E})$.

Proposition

Under the assumptions as before, if $K_0(B) \cong \mathbb{Z}^2$ and there exists $\mathscr{E} \in \mathsf{Vect}_\mathscr{A}(\mathscr{B})$ with $\mathsf{ch}_1(\mathscr{E}) = \pm 1$, then $(1, [\mathscr{E}])$ is a basis of $K_0(B)$ and

$$r^2 - 2r[\mathscr{E}] + [\mathscr{E} \otimes_{\mathscr{B}} \mathscr{E}] = 0,$$

where $r := \operatorname{ch}_0(\mathscr{E})$.

This identity is the analogue of the classical statement $t^2 = 0$ for t := r - [E].

Modules associated to corepresentations

In the examples we are interested in, the inclusion $\mathscr{B} \subseteq \mathscr{A}$ is a Hopf-Galois H is a Hopf algebra with bijective antipode,

 \mathscr{A} a right H-comodule algebra with coaction δ_R

 $\mathscr{B}:=\mathscr{A}^{\operatorname{co} H}$ the subalgebra of \mathscr{A} of coinvariant elements, and assume that $\mathscr{B}\subset\mathscr{A}$ is a faithfully flat Hopf-Galois extension.

Associated bundles, via left H comodule (co-representations) trivialize when pulled back to the total space of a noncommutative principal bundle

Vector bundles on a quantum 4-sphere

Let 0 < q < 1. The quantum symplectic 7-sphere is the noncommutative space dual the unital *-algebra $\mathcal{O}(S_q^7)$ generated by elements $\{x_i, x_i^*\}_{i=1,\dots,4}$ with commutation relations

$$x_1x_2 = qx_2x_1 \qquad \dots$$

and sphere relations:

$$x_1 x_1^* + x_2 x_2^* + x_3 x_3^* + x_4 x_4^* = 1,$$

$$q^8 x_1^* x_1 + q^6 x_2^* x_2 + q^2 x_3^* x_3 + x_4^* x_4 = 1.$$

This algebra was studied in LPR 2006 as a quantum homogeneous space of the quantum symplectic group $\mathcal{O}(Sp_q(2))$.

A character $\varepsilon: \mathcal{O}(S_q^7) \to \mathbb{C}$ is given on generators by

$$\varepsilon(x_i) = 0$$
 for $i \neq 4$, $\varepsilon(x_4) = 1$.

It is the restriction to $\mathcal{O}(S_q^7)$ of the counit of the quantum group $\mathcal{O}(Sp_q(2))$.

The quotient of $\mathcal{O}(S_q^7)$ by the ideal generated by x_1 is the unital *-algebra $\mathcal{O}(S_q^5)$ of a quantum 5-sphere DL2021.

The irreducible bounded *-representation of $\mathcal{O}(S_q^5)$ there when pulled back to $\mathcal{O}(S_q^7)$ gives a representation π on $\ell^2(\mathbb{N}^2)$, with canonical orthonormal basis $\left(|k_1,k_2\rangle\right)_{k_1,k_2\in\mathbb{N}}$, that on generators reads:

$$\pi(x_1) = 0$$

$$\pi(x_2) |k_1, k_2\rangle = q^{k_1 + 2k_2} |k_1, k_2\rangle$$

$$\pi(x_3) |k_1, k_2\rangle = q^{k_1} \sqrt{1 - q^{4(k_2 + 1)}} |k_1, k_2 + 1\rangle$$

$$\pi(x_4) |k_1, k_2\rangle = \sqrt{1 - q^{2(k_1 + 1)}} |k_1 + 1, k_2\rangle.$$
(2)

The instanton bundle

The algebra $\mathcal{O}(S_q^7)$ carries a coaction of $\mathcal{O}(SU_q(2))$, which makes it a faithfully flat Hopf–Galois extension of its subalgebra of coinvariant elements.

$$T_{\scriptscriptstyle (1)} := \left(egin{array}{cc} lpha & -q \gamma^* \ \gamma & lpha^* \end{array}
ight)$$

The generators of $\mathcal{O}(S_q^7)$ arranged in the matrix

$$u := \begin{pmatrix} qx_1 & qx_2 \\ -q^2x_2^* & q^3x_1^* \\ -x_3 & x_4 \\ x_4^* & qx_3^* \end{pmatrix}.$$

The subalgebra of $\mathcal{O}(S_q^7)$ made of coinvariant for the coaction is $\mathcal{O}(S_q^4)$.

Geometrically this is a quantum principal bundle on the quantum 4-sphere S_q^4 with structure quantum group $SU_q(2)$ and total space S_q^7 .

The *-algebra $\mathcal{O}(S_q^4)$ is generated by the entries of the matrix

$$p := uu^* = \begin{pmatrix} q^{-2}y_0 & 0 & y_1 & y_2 \\ 0 & y_0 & q^{-2}y_2^* & -q^2y_1^t * \\ y_1^* & q^{-2}y_2 & 1 - q^{-4}y_0 & 0 \\ y_2^* & -q^2y_1 & 0 & 1 - q^2y_0 \end{pmatrix},$$
(3)

where

$$y_0 := q^4(x_1x_1^* + x_2x_2^*)$$
 $y_1 := -qx_1x_3^* + qx_2x_4^*$ $y_2 := qx_1x_4 + q^2x_2x_3$.

The relations among generators are encoded in the equality $p^2 = p$.

The projection p in (3) determines a class $[\mathscr{E}]$ in the K-theory of $\mathcal{O}(S_q^4)$:

Geometrically the projection p describes the quantum vector bundle on the 4-sphere S_q^4 associated with the Hopf–Galois extension $\mathcal{O}(S_q^4) \subset \mathcal{O}(S_q^7)$ via the fundamental corepresentation $T_{\scriptscriptstyle (1)}$ of $\mathcal{O}(SU_q(2))$.

The K-theory ring

The C*-enveloping algebra of $\mathcal{O}(S_q^7)$ is isomorphic to the one of the Vaksman-Soibelman quantum 7-sphere $C(S_q^7)$. Its K-theory is $K_0(C(S_q^7)) \cong \mathbb{Z}$

 $K_0\big(C(S_q^7)\big)\cong\mathbb{Z}$ is generated by the class of the unit.

(alway the case for these odd dimensional quantum spheres HL).

We let $C(S_q^4)$ be the C*-enveloping algebra of $\mathcal{O}(S_q^4)$, not the closure in $C(S_q^7)$. The group $K_0(C(S_q^4))$ is isomorphic to \mathbb{Z}^2 .

When restricted to the subalgebra $\mathcal{O}(S_q^4)$, the character $\varepsilon: \mathcal{O}(S_q^7) \to \mathbb{C}$ reduces to the trivial representation, while π in (2) reads

$$\pi(y_0) |k_1, k_2\rangle = q^{4+2k_1+4k_2} |k_1, k_2\rangle$$

$$\pi(y_1) |k_1, k_2\rangle = q^{k_1+2k_2} \sqrt{1 - q^{2k_1}} |k_1 - 1, k_2\rangle$$

$$\pi(y_2) |k_1, k_2\rangle = q^{2(k_1+k_2+2)} \sqrt{1 - q^{4(k_2+1)}} |k_1, k_2 + 1\rangle .$$

For all $b \in \mathcal{O}(S_q^4)$, the operator $(\pi - \varepsilon)(b)$ is of trace class.

Let $\mathscr{E} = p(\mathcal{O}(S_q^4))^4$ be the right $\mathcal{O}(S_q^4)$ -module of sections of the vector bundle $p = uu^*$.

Since u has 2 columns, $\operatorname{ch}_0(\mathscr{E}) = \varepsilon(\operatorname{Tr} p) = 2$.

Since $(\pi - \varepsilon)$ factors to the quotient $\mathcal{O}(S_q^4)/\mathbb{C}$, one computes

$$\mathsf{ch}_1(\mathscr{E}) = \mathsf{Tr}_{\mathcal{H}} \big(\pi(\mathsf{Tr}\, p) - \varepsilon(\mathsf{Tr}\, p) \big) = \frac{q^2 + q^4 - 1 - q^6}{(1 - q^2)(1 - q^4)} = -1.$$

The general theory then applies and

 $K_0(C(S_q^4))$ is a free \mathbb{Z} -module generated by [1] and $[\mathscr{E}]$, and relation

$$4 - 4[\mathscr{E}] + [\mathscr{E} \otimes_{\mathcal{O}(S_q^4)} \mathscr{E}] = 0. \tag{4}$$

From the general theory we compute the characteristic classes of modules associated to irreducible corepresentations of $H := \mathcal{O}(SU_q(2))$.

These irreducible corepresentations are labelled by $n \in \mathbb{N}$. Let V_n be the vector space underlying the n+1 dimensional irreducible corepresentation, and call

$$\mathscr{E}_n := \mathcal{O}(S_q^7) \square^H V_n.$$

the associated $\mathcal{O}(S_q^4)$ -bimodule. In particular, $\mathscr{E}_1 \cong \mathscr{E}$

For every $n \geq 1$,

$$\mathsf{ch}_1([\mathscr{E}_n]) = -\frac{1}{6}n(n+1)(n+2). \tag{5}$$

From the known decomposition $V_1 \otimes V_n \cong V_{n+1} \oplus V_{n-1}$, using (??) and (??),

one gets the bimodule isomorphism

$$\mathscr{E}_1 \otimes_{\mathcal{O}(S_a^4)} \mathscr{E}_n \cong \mathscr{E}_{n+1} \oplus \mathscr{E}_{n-1}. \tag{6}$$

From (1) we get

$$\mathsf{ch}_1([\mathscr{E}_{n+1}]) = \mathsf{ch}_0([\mathscr{E}_1]) \mathsf{ch}_1([\mathscr{E}_n]) + \mathsf{ch}_0([\mathscr{E}_n]) \mathsf{ch}_1([\mathscr{E}_1]) - \mathsf{ch}_1([\mathscr{E}_{n-1}]).$$

Using
$$\operatorname{ch}_1([\mathscr{E}_1]) = -1$$
, and $\operatorname{ch}_0([\mathscr{E}_n]) = \dim(V_n) = n+1$, we find
$$\operatorname{ch}_1([\mathscr{E}_{n+1}]) = 2\operatorname{ch}_1([\mathscr{E}_n]) - n - 1 - \operatorname{ch}_1([\mathscr{E}_{n-1}]).$$

Formula (5) follows by induction on $n \ge 1$.

A special case of (6) is the isomorphism $\mathscr{E}_1 \otimes_{\mathcal{O}(S^4_q)} \mathscr{E}_1 \cong \mathscr{E}_2 \oplus \mathscr{E}_0$,

The free bimodule \mathscr{E}_0 is the analogue of the determinant line bundle of \mathscr{E}_1 . With an abuse of notations we can denote it by $\mathscr{E}_1 \wedge_{\mathcal{O}(S_q^4)} \mathscr{E}_1$.

Then, the relation (4) can be interpreted as the vanishing of the "square" of the Euler class in K-theory of the instanton bundle on S_q^4 given by:

$$\chi(\mathscr{E}_1) = 1 - [\mathscr{E}_1] + [\mathscr{E}_1 \wedge_{\mathcal{O}(S_q^4)} \mathscr{E}_1] = 2 - [\mathscr{E}_1].$$

Again this parallel the classical result.

Projections from corepresentations of $SU_q(2)$

One constructs explicitly a trivializing pairs and then projections describing the vector bundles on the quantum 4-sphere S_q^4 associated to finite-dimensional irreducible corepresentations of the Hopf algebra $\mathcal{O}(SU_q(2))$.

