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The simplest case z;,2;, k= 0,1 are the generators of the algebra @%(ng’):
-1

2021 = q 2120, 2021 = Q2125 2120 = qz02]

2520 = 2025 + (1 — q2)zlzf , 2121 = 2127,

* % . —1 _x %
2120 — 4 =0*1),

and sphere relations : 2oz + z12] = 1 2020 + q2z{z1 =1

An co-action of U(1); the coinvariant elements make up the projective line

;z%((Cqu) (the standard Podles sphere)
Bo:=2z2iz1, Bo:=2zjz0, B-:=2zyz1

with Bj = Bp and Bj = B_.

They satisfy commutation relations

BoBo = ¢°BoBy , BoB- = q °B_By, B_Bo = ¢*BoB_+¢*(1—¢*)Bg

and sphere relations: BoB_ = Bo(1 — Bp), B_Bo = ¢°Bo(1 — ¢°Bg)



The tautological line bundle ( the monopole bundle )

via its sections; or the module of equivariant maps; or a projection :

. 1—-q¢°By B_
Py = (2%) (z0,21) = ( Bq+ 0 Bo) — » = zo0f + 219

Tr(py) =1+ (1 —¢°)Bo

The rank of the bundle: [el([Tr(py]) =140
The degree of the bundle: [e]([Tr(py]) =0 -1

The K-theory group K(Cqu) classifies equivalence classes of projection

( i.e. line bundles )



Ring structure on the K-theory group of quantum projective spaces @%(CPq”)
Projections Py € Maty (& (CF})) , N =0,1,...,n
such that [Py] generate the group Ko(#/(CP}')) (algebraic generators).
Indeed we have &/(CPF;')) - bimodules

Ly := Py(«(CPM))™

(written as right modules) obeying :

LN Qu(cry Lm = Lytn

Chern numbers coming from pairing with K-homology:

Cho(ﬁN) =1, Chl(LN) = —N

Ly space of sections of a line bundle over CF}') with winding number —N.



Proposition (Arici-Brain-L, 2015)

Ko(CP})) = Zlu] Ju" Tt ~ 771

with Euler class

u=x(L_1) =1-[L_1]

Generalise the above to vector bundles with rank higher that 1

So we seek the quantization of spaces whose K-theory in the classical limit is
the ring of dual numbers Z[t]/(t?).

Classically, t = r — [E] is the Euler characteristic (in K-theory) of the vector
bundle E with rank ». One can rephrase the relation t?> = (r — [E])2 =0 as

r2 —2r[E] + [E® E] = 0.



This result can be dualized and then generalized, in a suitable way, to non-
commutative spaces.

For a compact quantum space, sufficient conditions for a morphism of abelian
groups Ko — Z[t]/(t?) compatible with the tensor product of bimodules.

Applications include the standard PodlesS sphere Sg and a quantum 4-sphere
S;‘ coming from quantum symplectic groups. The K-theory is generated by
the Euler class of the monopole or instanton bundle respectively.

Explicit formulas for the projections of vector bundles on the sphere S;‘ asso-
ciated to the principal SU,(2)-bundle Sq7 — Sf]‘ via irreducible corepresentations
of SU,(2), and compute their characteristic classes.



Characteristic classes of nhoncommutative vector bundles
A unital *-algebra 4, and its C*-enveloping algebra B

B is a ‘compact quantum space’, and £ describes some additional structure
on this quantum space. In addition, an inclusion of unital *-algebras

B C o,
where o/ describes some auxiliary noncommutative space
Interested in classes in Ko(B) that are represented by finitely generated pro-
jective right #-modules (‘noncommutative vector bundles”).

Specialize to right modules that ‘“trivialize” over & (that is, their “pullback”
to the total space is trivial), and denote by Vect, (%) their class.

We construct an isomorphism
ch : Ko(B) — Z[t]/(t?)

of abelian groups that is “multiplicative’”, in the sense that it is compatible
with the tensor product in Vect,(%4).



A first result:

Proposition:
With mild assumptions, if Kqo(B) = Z? and there is & € Vecty, (%) with
chi1(&) = £1, then (1,[&]) is a basis of Ko(B) and

r? —2r[8] + [£ ®% & = O, r 1= cho(&).

This identity is the analogue of the classical statement t> = 0 for t := r — [E].

The construction of Z-linear maps Ko(B) — Z induced by an even Fredholm
module. We focus on 1-summable Fredholm modules.



1-summable even Fredholm modules

Let B be a unital C*-algebra, w1, 7 : B — B(H) be two bounded *-representations
on a Hilbert space H and F,v € B(H ® C?) the operators

(0 1 (1 O
r=(10) =(0 &)
where 1 is the identity on H.

Let © be the representation of B on H ® C2 direct sum of 1 and m». Note:

_( m(b) — m2(b) 0
YF[F,m(b)] = ( ' 0 i m1(b) — m2(b) )

If the difference m1(b) — m2(b) is of trace class on H for all b in a dense unital
*-subalgebra # of B, then (B,H ® C?, F,~) is a 1-summable even Fredholm
module. It defines a Z-module map

v : Ko(B) = Z.



For [p] the K-theory class of a projection p € My(%), this is given by

e([p]) = 3 Tryec:(YFIF, 7(Trp)]) = Try(m1(Trp) — m2(Trp)) ,

where Trp = Zfilpg € % and Try (resp. Tryec:) iS the trace of operators on
the Hilbert space H (resp. H ® C?).

Note:

(i) ¢([p]) only depends on the K-theory class of p;

(ii) it is an integer being the index of a Fredholm operator

Thus: v € Ko(B)V.

(In general, in this way one constructs a Z-module map K°(B) — Ko(B)Y
which needs not to be injective or surjective)



Proposition
Assume that there is a character ¢ : &/ — C and a bounded unital *-
representation 7 : & — B(H) such that

7(b) —e(d) € LY(H), Vbe R
Then:

(i) There is a homomorphism of unital semirings

ch : (Vecty (#),®,®) — Z[t]/(t?), ch(&) = cho(&) + ch1(&)t,

given, for any & = p %", by the formulas

cho(&) == e(Trp), ch1(&) = Try(n(Trp) —e(Trp)).

(ii) The underlying morphism of abelian semigroups is the composition of
(??) with a homomorphism [ch] : Ko(B) — Z[t]/(t?).

(iii) If (u,v) is a trivializing pair for &, then the number of column of u is
r = chg(&) and thus depends only on the K-theory class of &.



Note

The maps [chg] and [ch;i] are the index maps of the Fredholm modules asso-
ciated with the pair or representations (¢,0) on C and (m,e) on H.

Here £(b) acts on H as a scalar multiple of the identity.

The representations € and © extend from £ to the C*-enveloping algebra B,
due to the universal property of the latter.

The map ch is compatible with the tensor product of elements of Vect, (%),
which in components means that

cho(& ® &) = cho(&)cho(&)
chi(€ ®4 &) = cho(&)ch1(&€) 4 chi(&)cho(&) (1)

for all éa,é@v € Vect,(A).



Corollary
Under the assumptions as before, for every & € Vect, (%) and every positive
integer k, for the module

&EF =EQRpERz...Qp &

k times

one has

cho(&%#%) = cho(&)F ch1(&%#%) = kcho(&)*1chi(&) .

Proposition
Under the assumptions as before, if Ko(B) £ Z? and there exists & € Vect,, (%)
with chi1(&) = £1, then (1,[&]) is a basis of Ko(B) and

r2 —2r[&] + [ @4 &) = 0,

where r ;= cho(&).

This identity is the analogue of the classical statement t2 =0 for t := r — [E].



Modules associated to corepresentations

In the examples we are interested in, the inclusion 4 C &« is a Hopf-Galois
H is a Hopf algebra with bijective antipode,

</ a right H-comodule algebra with coaction g

B = o/°H the subalgebra of &/ of coinvariant elements, and assume that
B C o is a faithfully flat Hopf-Galois extension.

Associated bundles, via left H comodule (co-representations) trivialize when
pulled back to the total space of a noncommutative principal bundle



Vector bundles on a quantum 4-sphere

Let O<g< 1. The quantum symplectic 7-sphere is the noncommutative

space dual the unital *-algebra (’)(S;) generated by elements {z;, z}}i=1,
with commutation relations

12 = qITr2x1

and sphere relations:
* * * *
T1x] + 2T + T3T3 + T4y = 1,

8 6 2 -
q°rir1 + ¢Cx5r2 + ¢ 303 + xH14 = 1.

This algebra was studied in LPR 2006 as a quantum homogeneous space
the quantum symplectic group O(Sp,(2)).

!

of



A character ¢ : O(S]) — C is given on generators by
e(x;)) =0 for i #£ 4, e(xg)=1.
It is the restriction to O(S;) of the counit of the quantum group O(Sp,(2)).

The quotient of O(S/) by the ideal generated by z; is the unital *-algebra
O(S2) of a quantum 5-sphere DL2021.

The irreducible bounded *-representation of O(S;?) there when pulled back to
O(S;) gives a representation « on ¢2(N?), with canonical orthonormal basis
(Ik1,k2)), , . that on generators reads:

m(x1) =0
m(x2) k1, k2) = ¢"T2% |kq, ko)

r(3) Jkr o) = g™/ 1 — ¥+ [y ko + 1)

m(z4) |k1, k2) = \/ 1— Pt |k + 1, ko) . (2)




The instanton bundle

The algebra O(S;) carries a coaction of O(SU,(2)), which makes it a faithfully
flat Hopf—Galois extension of its subalgebra of coinvariant elements.

The generators of O(Sg) arranged in the matrix

qri qr2

2% 3%

- —q T, (qTI,q
' —x3 T4

* *

Tz qx3

The subalgebra of O(S;) made of coinvariant for the coaction is O(S;‘).

Geometrically this is a quantum principal bundle on the quantum 4-sphere Sg
with structure quantum group SU,(2) and total space S;.



The *-algebra O(S;‘) is generated by the entries of the matrix

¢y O Y1 y2
0 Yo 7Yy QYL
= 'u/u,* = %« _ _ 5 3
P vi ¢ l-q¢'yp 0 (3)
Y5 —qy1 0 1 —q7yo
where
Yo = q* (w17} + z27h) Y1 1= —qr1x3 + qT2Ty Y2 i= qr1T4 + ¢ T2T3 .

The relations among generators are encoded in the equality p? = p.
The projection p in (3) determines a class [£] in the K-theory of (’)(Sg):

Geometrically the projection p describes the quantum vector bundle on the
4-sphere S; associated with the Hopf—Galois extension O(S;) C O(S]) via the
fundamental corepresentation T,, of O(SU,(2)).



The K-theory ring

The C*-enveloping algebra of O(S;) is isomorphic to the one of the Vaksman-
Soibelman quantum 7-sphere C(S/). Its K-theory is Ko(C(S[)) £ Z

Ko(C(S/])) £ Z is generated by the class of the unit.

(alway the case for these odd dimensional quantum spheres HL).

We let C(Sg) be the C*-enveloping algebra of O(S;‘), not the closure in C(S;).
The group KO(C(S(?)) is isomorphic to Z2.

When restricted to the subalgebra O(Sj), the character ¢ : O(S;) — C reduces
to the trivial representation, while 7 in (2) reads

m(yo) |k1, ko) = ¢* 2R+ |y ko)

w(y1) |k1, k2) = qk1+2k2\/ 1—q® M |ky — 1, ko)

7.‘.(,yQ) |k:1, ]{32> — q2(k1+k2+2) \/1 . q4(k’2+1) |k']_, k'Q + 1> .

For all b € O(S;‘), the operator (w —¢)(b) is of trace class.



Let & = p (O(S;))* be the right O(S;)-module of sections of the vector bundle

p = uu’.
Since u has 2 columns, cho(&) = e(Trp) = 2.

Since (w — ¢) factors to the quotient O(S;‘)/C, one computes

_ ¢+t -1-¢° _
(1-¢2)(1—qg%)

chi(&) = Try(n(Trp) —e(Trp)) —1.



The general theory then applies and

Ko(C(Sy)) is a free Z-module generated by [1] and [£], and relation

4 —4[&]+ [€ ®osy €] = 0. (4)

From the general theory we compute the characteristic classes of modules
associated to irreducible corepresentations of H := O(SU,(2)).

These irreducible corepresentations are labelled by n € N. Let V,, be the vector
space underlying the n + 1 dimensional irreducible corepresentation, and call

& = 0(S)H) 0" V.

the associated O(Sj)—bimodule. In particular, &1 £ &

For every n > 1,
chi([8]) =~ zn(n+ D) (n +2). (5)

From the known decomposition V1 ® V,, = V41 ® V,,—1, using (?7) and (?77),



one gets the bimodule isomorphism

@(ol ®(9(5’;¥) éon = (g)n—i—l S éan—1~ (6)
From (1) we get

chi([én+1]) = cho([é1])chi([6n]) + cho([&n])chi([&1]) — chi([n-1]).

Using chi([&1]) = —1, and cho([&,]) = dim(V,,) = n + 1, we find

chi([6n41]) = 2ch1([&n]) —n — 1 — chi([&h-1]).

Formula (5) follows by induction on n > 1.



A special case of (6) is the isomorphism & ®o(s%) &= E5 D Sy,

The free bimodule &p is the analogue of the determinant line bundle of &1.
With an abuse of notations we can denote it by & No(sH) &1

Then, the relation (4) can be interpreted as the vanishing of the “square” of
the Euler class in K-theory of the instanton bundle on S;‘ given by:

x(é1) =1 —[&1] + [61 Noesyy 1] = 2 — [61].

Again this parallel the classical result.



Projections from corepresentations of SU,(2)

One constructs explicitly a trivializing pairs and then projections describing the
vector bundles on the quantum 4-sphere S;‘ associated to finite-dimensional
irreducible corepresentations of the Hopf algebra O(SU,(2)).



thanks you



