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Take home message

−3.18702

Fuzzy spaces are examples of spacetimes with quantum structure.

Plenty of interesting things happen on such spaces.

Physics is described by random matrix ensembles.
Analyzing these is technically challenging, but doable.
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Quick motivation
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Quantum structure of spacetime

We need a quantum theory of gravity.

Quantization of general relativity leads to a nonrenormalizable theory.

We have reasons to believe that future theory of quantum gravity will have a di�erent notion of
spacetime.
No distinction between points under certain length scales. [Hossenfelder 1203.6191]

Reasons:

gravitational Heisenberg microscope,
instability of quantum gravitational vacuum, [Doplicher, Fredenhagen, Roberts '95]
emergent spacetimes.

Fuzzy spaces are very important examples of such spacetimes.
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Fuzzy spaces
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Fuzzy spaces

We divide the space into N cells. Function on the fuzzy space is given by a matrix M and the
eigenvalues of M represent the values of the function on these cells.

However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.
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Fuzzy spaces

Regularization of in�nities in the standard QFT.
[Heisenberg ∼1930; Snyder 1947, Yang 1947]

Regularization of �eld theories for numerical simulations.
[Panero 2016]

An e�ective description of the open string dynamics in a magnetic background in the low energy
limit.
[Seiberg Witten 1999; Douglas, Nekrasov 2001]

Solutions of various matrix formulations of the string theory (IKKT, BFSS, BMN).
[Steinacker 2013, 2024]

Geometric uni�cation of the particle physics and theory of gravity.
[van Suijlekom 2015]

An e�ective description of various systems in a certain limit (eg. QHE).
[Karabali, Nair 2006]

Toy models of spaces with discrete quantum structure.
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Fuzzy spaces

Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klim£ík, Pre²najder 1990s]

Functions on the usual sphere are given by

f (θ, φ) =
∞∑

l=0

l∑
m=−l

clmYlm(θ, φ) ,

where Ylm are the spherical harmonics

∆Ylm(θ, φ) = l(l + 1)Ylm(θ, φ) .

If we truncate the possible values of l in the expansion

f =
L∑

l=0

l∑
m=−l

clmYlm(θ, φ) ,

we will not be able to see any features of functions under certain length scales.

Expressions de�ned in this way are not closed under multiplication.
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Fuzzy spaces

Number of independent functions with l ≤ L is (L + 1)2, the same as the number of N × N
hermitian matrices.

We have a map ϕ : Ylm → M and we de�ne the product

Ylm ? Yl′m′ := ϕ−1 (ϕ (Ylm)ϕ (Yl′m′)) .

Opposing to some lattice discretization this space still possess a full rotational symmetry.

In the limit N or L→∞ we recover the original sphere.
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Fuzzy spaces

For the fuzzy sphere S2
N we de�ne

x̂i x̂i = r2 , [x̂i , x̂j ] = iθεijk x̂k , i , j = 1, 2, 3 .

The conditions can be realized as an N = 2s + 1 dimensional representation of SU(2)

x̂i =
2r√

N2 − 1
Li , θ =

2r√
N2 − 1

∼ 2

N
, ρ2 =

4r2

N2 − 1
s(s + 1) = r2 .

The group SU(2) still acts on x̂i 's and this space enjoys a full rotational symmetry. Most
importantly nonzero commutators imply uncertainty relations for positions ∆xi ∆xj 6= 0.

In a similar fashion it is possible to construct an analogous deformation of the plane

[x̂i , x̂j ] = iθεij = iθij , i = 1, 2 .

Construction uses the ?-product

f ? g = f e
i
2

~∂ θ ~∂ g = fg +
iθµν

2

∂f

∂xµ
∂g

∂xν
+ · · ·
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Fuzzy spaces
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Fuzzy �eld theories
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Fuzzy scalar field theory

Commutative euclidean theory of a real scalar �eld is given by an action

S(Φ) =

∫
d2x

[
1

2
Φ∆Φ +

1

2
m2Φ2 + V (Φ)

]
and path integral correlation functions

〈F 〉 =

∫
dΦF (Φ)e−S(Φ)∫

dΦ e−S(Φ)
.

We construct the noncommutative theory as an analogue with

�eld → matrix,
functional integral → matrix integral,
spacetime integral → trace,
derivative → Li commutator.
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Fuzzy scalar field theory

Commutative

S(Φ) =

∫
d2x

[
1

2
Φ∆Φ +

1

2
m2Φ2 + V (Φ)

]
,

〈F 〉 =

∫
dΦF (Φ)e−S(Φ)∫

dΦ e−S(Φ)
.

Noncommutative (for S2
F )

S(M) =
4πR2

N
Tr

[
1

2
M

1

R2
[Li , [Li ,M]] +

1

2
m2M2 + V (M)

]
,

〈F 〉 =

∫
dM F (M)e−S(M)∫

dM e−S(M)
.

[Balachandran, Kürkçüo§lu, Vaidya 2005; Szabo 2003; Ydri 2016]
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Random matrices ensembles
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Random matrices

[M.L. Mehta 2004; B. Eynard, T. Kimura, S. Ribault 2015; G. Livan, M. Novaes, P. Vivo 2017]

Matrix model = ensemble of random matrices, e.g. ensemble of N × N hermitian matrices with

P(M) ∼ e−NTr(V (M)) , usually V (x) =
1

2
r x2 + g x4

Expectation values

〈f 〉 =
1

Z

∫
dM P(M)f (M)

can be analyzed

numerically using Hamiltonian Monte Carlo,
analytically in the large N limit using saddle point equation.

One usually looks for eigenvalue distribution ρ(x).
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Fuzzy �eld theories ensembles I
Full matrix model
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Fuzzy field theory model

Recall the action of the fuzzy scalar �eld theory

S(M) =
1

2
Tr (M[Li , [Li ,M]]) +

1

2
m2 Tr

(
M2
)

+ g Tr
(
M4
)
. (1)

This is a particular case of a matrix model since we need∫
dM F (M)e−S(M) .

"Matrix model begs to be put on a computer".

Juraj Tekel Matrix ensembles from fuzzy physics 23 / 52



S [M] = Tr

(
1

2
M[Li , [Li ,M]] +

1

2
m2M2 + gM4

)
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Fuzzy field theory model - UV/IR mixing

The phase diagram of noncommutative �eld theories has one more phase. It is a non-uniform order
phase, or a striped phase.
[Gubser, Sondhi 2001; Chen, Wu 2002]

In this phase, the �eld does not oscillate around one given value in the whole space. Translational
symmetry is spontaneously broken.

This has been established in numerous numerical works for variety di�erent spaces.
[Martin 2004; García Flores, Martin, O'Connor 2006, 2009; Panero 2006, 2007; Ydri 2014; Bietenholz, F. Hofheinz,

Mejía-Díaz, Panero 2014; Mejía-Díaz, Bietenholz, Panero 2014; Medina, Bietenholz, D. O'Connor 2008; Bietenholz,

Hofheinz, Nishimura 2004; Lizzi, Spisso 2012; Ydri, Ramda, Rouag 2016; Ková£ik, O'Connor 2018]

[Panero 2015]

The key property of the noncommutative �eld theories is the UV/IR mixing phenomenon, which
arises as a result of the nonlocality of the theory.
[Minwalla, Van Raamsdonk, Seiberg 2000; Vaidya 2001; Chu, Madore, Steinacker 2001]
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Fuzzy �eld theories ensembles II
Perturbative model
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Perturbative model

S(M) =
1

2
Tr (M[Li , [Li ,M]]) +

1

2
m2 Tr

(
M2
)

+ g Tr
(
M4
)

Perturbative calculation of the integral show that the Seff contains products of traces of M.
[O'Connor, Sämann 2007; Sämann 2010]

The most recent result is
[Sämann 2015]

Seff (Λ) =
1

2

[
ε
1

2

(
c2 − c21

)
− ε2 1

24

(
c2 − c21

)2
+ ε4

1

2880

(
c2 − c21

)4]−
− ε4 1

3456

[ (
c4 − 4c3c1 + 6c2c

2
1 − 3c41

)
− 2

(
c2 − c21

)2 ]2−
− ε3 1

432

[
c3 − 3c1c2 + 2c31

]2
, where cn =

1

N

∑
i

λn
i (2)

Yields a very unpleasant behaviour close to the origin of the parameter space. [JT '15]
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Fuzzy �eld theories ensembles III
Nonperturbative model
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Second moment approximation

For the free theory g = 0 the kinetic term just rescales the eigenvalues.
[Steinacker 2005]

There is a unique parameter independent e�ective action that reconstructs this rescaling.
[Polychronakos 2013]

Seff (Λ) =
1

2
log

(
c2

1− e−c2

)
+R .

Can be generalized to more a more complicated kinetic term K.
Introducing the asymmetry c2 → c2 − c21 we obtain a matrix model

S(M) =
1

2
F (c2 − c21 ) +

1

2
r Tr

(
M2
)

+ g Tr
(
M4
)
, F (t) = log

(
t

1− e−t

)
. (3)

[�ubjaková, JT PoS CORFU2019; JT '14 '15 '18; �ubjaková, JT '20]
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[JT '18; �ubjaková, JT 2020]
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Beyond the second moment approximation

Taking a lesson from

S(M) =
1

2
F (c2 − c21 ) +

1

2
r Tr

(
M2
)

+ g Tr
(
M4
)
, F (t) = log

(
t

1− e−t

)
we could try to complete the perturbative action

Seff = F
[
c1, t2, t3, t4 − 2t22

]
=

1

2
log

(
t2

1− e−t2

)
+ F3(t3) + F4(t4 − 2t22 ) (4)

and
F4(y4) = α0 log(y4) + α1 +

α2
y4

+
α3
y24

+ . . . .

Any attempt to complete the perturbative expansion in the spirit of the non-perturbative model is
not capable of solving the above problems and does not lead to a phase diagram that is in
complete agreement with the numerical simulations. Most importantly the location of the triple
point can not be brought closer to the numerical value. [�ubjaková, JT '22]
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Fuzzy �eld theories ensembles IV
Removal of stripes
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Removal of stripes

There are more complicated �eld theory models on fuzzy sphere and NC plane, where the UV/IR
mixing is not present. [Dolan, O'Connor, Pre²najder '01; Grosse Wulkenhaar '00's].

These can be recast as matrix models and at least some their aspect studied.

S(M) =
1

2
Tr (MKM)+

1

2
m2 Tr

(
M2
)
+g Tr

(
M4
)
, K = (1+ag)C2+bg C 2

2 , C2 = [Li , [Li , ·]] . (5)

[�ubjaková, JT '20]

S = Tr (M[X , [X ,M]] + M[Y , [Y ,M]])− grTr
(
RM2

)
− g2Tr

(
M2
)

+ g4Tr
(
M4
)
. (6)

[Bukor, JT '23]

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Ková£ik, JT '22; Bukor, Prekrat, JT '25]

S(Λ) =N

(
−g2c2 + 8grc2 + g4c4 −

32

3
g2

r c4 +
1024

45
g4

r c8 −
(8gr )6

2835
c12

)
+

+
32

3
g2

r c
2
2 +

1024

15
g4

r c
2
4 −

4096

45
g4

r c6c2 +
2(8gr )6

945
c2c10 −

(8gr )6

189
c4c8 +

2(8gr )6

567
c26 . (7)
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New phase in GW model?

[Bukor, Prekrat, JT '25]
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Fuzzy �eld theories ensembles V
Beyond phase structure
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Correlation functions

Behaviour of

〈φ(x)φ(y)〉 =
1

Z

∫
dφ 〈~x |φ |~x〉 〈~y |φ |~y〉 e−S(φ)

in the matrix model can be studied numerically.
[Hatakeyama, Tsuchiya '17; Hatakeyama, Tsuchiya, Yamashiro '18 '18]

At the �standard� phase transition, the behaviour of the correlation functions at short distances
di�ers from the commutative theory and seems to agree with the tricritical Ising model.
A di�erent behaviour at long distances.
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Entanglement entropy

In local theories S(A) ∼ A.
[Ryu, Takayanagi '06]

In non-local theories this can change.
[Barbon, Fuertes '08; Karczmarek, Rabideau '13; Shiba, Takayanagi '14]

Problem on the fuzzy sphere has been studied numerically.
[Karczmarek, Sabella-Garnier '13; Sabella-Garnier '14; Okuno, Suzuki, Tsuchiya '15; Suzuki, Tsuchiya '16;

Sabella-Garnier '17; Chen, Karczmarek '17]

For free �elds, the EE follows volume law rather than area law.
In the interacting case much smaller EE than in the free case.
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Fuzzy �eld theories ensembles VI
Other spaces
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Other spaces

To study entanglement entropy, we need to extended the model to R× S2
F , i.e. M(t)

S(M) =

∫
dtTr

(
−1
2
M∂2t M +

1

2
M[Li , [Li ,M]] +

1

2
m2M2 + gM4

)
(8)

[Medina, Bietenholz, O'Connor '07; Ihl, Sachse, Sämann '10]

This is matrix quantum mechanics, di�erent but similar methods apply. [Jevicki, Sakita '80]

We are trying to apply the second moment approximation here. For EE free theory where R = 0, is
enough. [Bukor, JT work in progress]
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Other spaces

The �eld theory on other spaces di�ers in the de�nition of the kinetic term.

S(M) = Tr

(
1

2
MKM +

1

2
m2M2 + gM4

)
. (9)

Second moment approximation applicable.

Numerical results available for fuzzy disc [Lizzi, Spisso '12] and torus [Mejía-Díaz, Bietenholz, Panero '14].

Perturbative models have been derived for CP2,CP3 [Sämann '10], disc [Rea, Sämann '15].
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Dirac ensembles and random fuzzy geometries
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Quantum dynamics of finite spectral triples

Noncommutative geometry can be described by a spectral triple [Connes '94]

(A,D,H) .

For certain �nite geometries the Dirac operator can be constructed using (anti)commutators with p
hermitian and q antihermitian matrices (and some Cli�ord module baggage) to form a (p, q)
geometry [Barrett '15].

Path integral over geometries given by weight∫
dDe−S(D)

and becomes (multi)matrix integral. The simplest nontrivial choice is S(D) = Tr
(
g D2 +D4

)
.

[Barrett, Glaser '16; Khalkhali '20s; D'Arcangelo '22; Glaser '23]

Toy model of �uctuating dynamical geometry.
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(1, 0) Dirac ensemble

[Khalkhali, Pagliaroli '21; Bukor, Ková£ik, Magdolenová, Pagliaroli, JT work in progress]

In the simplest (1, 0) case the Dirac operator is given by

D · = {M, ·} .

Then simply dD = dM. The action for M is given by

S(M) = N (2g c2 + 2c4) + 2g c21 + 8c1c3 + 6c22 . (10)

Simpler model analyzed before [Bukor, JT '25].

Can be analyzed numerically, analytically and using bootstrap.
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(1, 0) Dirac ensemble

The ensamble
S(M) = N (2gc2 + 2c4) + 2gc21 + 8c1c3 + 6c22

has a stable asymmetric 2-cut regime for g < −3.18702.
Similar results obtained numerically before [D'Arcangelo '22].
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(1, 3) Dirac ensemble is fuzzy sphere

More complicated spaces are described by multi matrix models. Symetric regime has been analyzed
before, but no results for asymmetric regime.

(1, 3) (11)

geometry is the fuzzy sphere!

Not much hope for analytical results, but bootstrap might be useful.
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One �nal ensemble - gauge theory on NC plane
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Gauge theory on NC plane

[Buric, Grosse, Madore '10]
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Gauge theory on NC plane

Standard analysis of this model suggests that it is not renormalizable even with the GW trick
[Buric, Nenadovic, Prekrat '16].

A rather complicated three matrix model.

Can we see that in the phase structure of the corresponding matrix model � is there a striped
phase? [work in progress]

Juraj Tekel Matrix ensembles from fuzzy physics 50 / 52



Take home message
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Take home message and 2do list

Fuzzy spaces are examples of spacetimes with quantum structure.

Plenty of interesting things happen on such spaces.

Physics is described by random matrix ensembles.
Analyzing these is technically challenging, but doable.

Beyond fuzzy sphere.

Correlation functions, entanglement entropy.

Dirac ensembles and random fuzzy geometries.

U(1) gauge theory on NC plane.

More on kinetic term e�ective action.

Thank you for your attention!
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