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Hopf Algebra

Definition
A Hopf algebra is a quadruple (A, A, ¢, S) where:
e Ais a unital algebra.

e A A— A® Aand e: A— C are algebra homomorphisms
called coproduct and counit respectively.

e S: A — A an algebra anti-morphism called antipode.

such that:
e (ARid)oA=(ld®A)o A (coassociativity)
o (e®id)oA=id=(ld®¢)o A (counit condition)

e mo(S®id)oA=e=mo(id® S)o A (antipode condition)



Hopf Algebra

Example
Let G be a finite group. By O(G) we denote the set of all

complex-valued functions on G.

Together with the pointwise operations O(G) turns into an algebra:

(h+h)e) = flg)+h(g)
(ht)(g) = hil(g)h(s)

Moreover, together with the coproduct, counit and antipode defined as

follows:
A(f)(g,g') = f(gg’),  e(f):=f(e),  S(f)g)="r(g™")

for all g,g’ € G and f € O(G), and e denotes the identity element of G,
O(G) turns into a commutative Hopf algebra.



Quantum Matrices

Example
Let g € C* be a non-zero complex number and set v := q — g~ *. The

algebra of quantum matrices C4[M,] is defined as the quotient algebra:

CqM,] = C(uj| i,j=1,---,n/1,

where T is the ideal generated by following relations (often called Manin
relations):

Uik Ujk — qUjk Ujk, UkjUlj — QUkj Ui, 1<i<j<n 1<k<n,

UjlUjk — Uik Ujp, Uik Uj) — UjjUjk — VUjjUjk, 1<i<j<n 1<k<I<n

Cq[M,] turns into a bialgebra together with the coproduct and counit
defined as follows:

A(uy) Z Uik & Ugj e(uij) == dj.



Quantum Special Linear Group

Define the quantum determinant to be:
detq := Z (=0) D t1,1) + Uno(n)s
oc€eS,
where /(o) denotes the length of o.
The quantum special linear group C4[SL,] is defined as the quotient

algebra:
Cq[SL,] := Cq[M,]/(detq — 1)

C4[SL,] turns into a Hopf algebra together with the antipode S defined
as follows:

S(uy) = (—q)i_j Z (—Q)/(”)Ukm(h)"'Uknfm(/nfl)v
0ESy_1
where {ky, -+, ko—1} :={1,--- ,n} — {j} and
{h,~ -1} :={1,--- ,n} — {i} as ordered sets.



Quantum Special Linear Group

Furthermore, C4[SL,] also admits a s-structure given by:
(uy)™ == S(uji)-

Cq4[SL,] togther with this s-structure is called quantum special unitary
group C4[SU,].

Example

Let U(g) be the universal enveloping algebra of a Lie algebra g. Then,
together with the following data:

AX)=X®1l+1®X, eX)=0, SX)=-X, VXeU(g)

U(g) turns into a Hopf algebra.



Drinfeld—Jimbo Quantized Enveloping Algebras

Let g be a finite dimensional, complex, semi-simple Lie algebra of rank /,
and (a;) denotes its Cartan matrix, and we fix g; := q(®)/2,

The Drinfeld—Jimbo quantized enveloping algebra Ug(g) is the algebra
generated by the elements E;, F;, K; and K,-_1 subject to the following

relations:

KiEj = q;" EjKi, KiFj = q; " FiK;, KiK; = KiKi,

Ki— K
KiK' =1=K 'K, Eif; — FE = 66—+,
ai — 4q;
where i,j € {1,--- ./}, and the quantum Serre relations:



Drinfeld—Jimbo Quantized Enveloping Algebras

Theorem
Uq(g) admits a unique Hopf algebra structure with comultiplication A,
counit ¢ and antipode S defined as:

AE)=E®K +1®E, AFR)=Fe1+K'oF,
A(K) = K @ Ki, AK ) =K 'K,

1

Theorem
Any finite-dimensional irreducible representation of a Drinfeld—Jimbo

algebra is a weight representation and a representation with highest

weight. Such a representation is uniquely determined by its highest
weight.



Dual Pairing Between O,(SU,) And Ug(sl,)

Let G and H be two Hopf algebras. A dual pairing is a bilinear map
(——):GaH—C
such that, for all g,g’ € G and h,h € H:
(g, hh') = (gn). h)(g), h'),  (gg’, h) = (g, hw))(g’, hez))-
(g,1n) =e(g),  (le,h)=e(h),  (5(g), h) = (g, 5(h)).

Example
A dual pairing of Hopf algebras between O4(SL,) and Ug(sl,) is given

by:
(Uita,i, Ei) = 1, (uiiv1, Fi) =1,
(i, Kj) = @i =% (uy, K Y) = g% 0,

and requiring all other pairings to be zero, where uj; denotes the
generators of Oq(SL,) and Ej, F;, K; are the generators of Ug(sly).
Furthermore, this pairing respects the x-structure.



Full Flag Manifold O,(F5)

The dual pairing described above gives a natural Ug(sl,11)-module
structure on Og(SUp41):

fobi=> buyf ba)  for f€Uy(sloi1), b€ Og(SUns1).

The full quantum flag manifold O4(F3) is defined as the subalgebra of
Ugq(h)-invariants:

Oq(F3) = Ui0,(SUs),
= {be0y(sUs)| Fob==(f)b, V f € Uy(h) }.

where U,(h) := span{KE} € U,(sls).

Theorem

O4(F3) as a subalgebra of O4(SUs) is generated by the following

elements:

z,-j“ = upu;; = uinS(uyy), Z?Z = uUj3 = uizS(us;j), fori,j=1,2,3.



First-Order Differential Calculus

A first-order differential calculus over an algebra B is a pair (Q!,d),
where, Q! is an B-bimodule, and,

d:B— Qt,
is a linear map obeying:

(i) d(ab) =da.b+ a.db YV a,bebB,
(i) Q! =span{adb: a, b € B},
(iii) kerd =K.1.

Example (Universal First-Order Differential Calculus)

Given any algebra B, define:
Q) = ker(m) ={d awbeB@B:Y ab=0},

dy(a) =1®a—-a®l, VaehB.

It is easy to verify that the pair (Q1.d,) is a first-order differential
calculus. 10



Differential Calculus

Theorem
Any FODC (Q,d) on B is isomorphic to some quotient calulus

(QL/N,dy) where N is a sub-bimodule and dy := 7 od,,.

Definition
A differential calculus on an algebra A is a triplet (2, A, d), where
Q= 3,Q" is a graded-algebra,

AN:QeQ—Q and d:Q—Q

are linear maps, such that:

(i) QKA QN c QK+ d(Qk) c Qk*1, ¥ k, | € Ny,
(i) The wedge product A is associative,

(i) d®2 =0, and d(w A7) = dw A+ (—1)4E@)w A dy, for all n,w € Q,
w being homogeneous,

(iv) Q0 = A4, Q" = span{apda; A --- Adap: ag,---a, € A}.
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Left-Covariant FODC

Let A be a Hopf algebra. A first order differential calculus (Q!,d) on a
left A-comodule algebra B is called left A-covariant if Q! also admit a
left coaction ®; such that:

&, (ach) = AL(a)®L(0)AL(b)  foralla,be B, o€ QY

and the following diagram commute:

B2 AeB

b

Ql A@ Ql

Theorem (Woronowicz, 1989): Let A be a Hopf algebra, R be a right

ideal contained in kere and N = r=1(A® R) where

rrA® A — A® A defined as: r(a® b) = (a® 1)A(b). Then, Nis a
sub-bimodule of Q! and (Q1/N,dy) is a left-covariant FODC on A.
Moreover, every left-covariant FODC can be obtained in this way. 12



Quantum Homogeneous Space

Let (A,m, A, n,e) and (H, my, Ay, n3,£9¢) be Hopf algebras, and
m: A — H be a surjective Hopf algebra morphism. We view A as a
right H-comodule algebra via coaction

Ay =(dor)ocA: A— ARH.
With all this datum, the space of coinvariants:
B:=A°M = f{aec A:Ayla) =a®1}

is a right coideal subalgebra of A. We call B a quantum homogeneous
space, if A is faithfully flat as a right B-module.
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Left-Covariant FODC on quantum homogeneous spaces

Theorem (Hermisson, 2002)
Let B = A<M be a quantum homogeneous space. For any
1) ¢ B := Bnker(e) in M}, define:
Qb= A0y BT /1Y
with B-bimodule structure and left A-coaction as:
b(a' @ [c)b = ba'bjyy @ [c'bly], @A :=A®id,

and, d : B — Q! defined as:

d(b) = b(l) X 71'/(([)(2))+).

Then, (Q1,d) is a left A-covariant FODC on B. Moreover, every left
A-covariant FODC on B is of this form.
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Quantum Tangent Space

A quantum tangent space for B = " A is a subspace T C B° such that
T @ C1 is a right coideal of B° and WT C T.

For any quantum tangent space T, a right B-ideal of B" is given by
I = {x e B*|X(x) =0, for all X € T}.

We call V! = B+/I(), the cotangent space of T.

Theorem (Heckenberger, Kolb, 2003)
There is a bijective correspondence between isomorphism classes of

finite-dimensional tangent spaces and finitely-generated left A-covariant
FODCi on B.

Theorem (Heckenberger, Kolb, 2006)
For quantum grassmannians, there exists a unique covariant differential

calculus of classical dimension.
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Quantum Tangent Space Generated by Lusztig’s Root Vectors

Theorem (R. O Buachalla, P. Somberg, 2025)
For a particular choice of reduced decomposition of the longest element

of the Weyl group, the space spanned by the Lusztig's root vectors is a
quantum tangent space for Oq(SU,), whose restriction to the case of
quantum grassmannians gives the anti-holomorphic HK quantum tangent
space.

Example

For the case of sl3C, and the choice w = waw;ws (this is the choice set
by R. O B. and P. S.) of reduced decomposition of the longest element w
of the Weyl group W =2 S5, the list of root vectors is given by:

Ea1 = El, Ea2 = E2, and Ea1+a2 = [EQ, E]_]q—l.
and we denote by:

7O . span{E.,, Ens, Eaytas}
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A Tangent Space for O,(F5)

We define:

T(l,O) = (T(O’l))*

)

where x is the s-structure on Ug(sl3). We see it is spanned by the
elements:

F()u = E* :K1F17 F(xz = E* :K2F27

6% a2
F061+062 = E(::1+o¢2 = q71K1K2[F17 F2]q—1

Now, we take our quantum tangent space T to be:

T:=739 ¢ 70D

17



Differential Calculus on O,(F5;)

Theorem (A. Carotenuto, R. O Buachalla, J. Razzaq, 2025)

Let V*® denote the quantum exterior algebra for the maximal
prolongation of QY(F3). Then, a full set of relations for V* is given by
following three sets of identities:

enes = —qPNegne,,  AAfE=—q BIGAL, forall B <€ AT,
ey Nfg = —q(ﬁ""’)ﬁ;/\ew for all B #~ € AT, or for B =~ = ai+as,

€ay AN fay = =G fay A€oy — Ufaytan A €aytans

oz A faz = =G fay N €0y + Varias A €astass

where an order < on the set of positive roots AT = {1, ap, a1 + ap} is
fixed as follows:

az <ag+az <ag.
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Complex Structures

A first-order almost complex structure for a +-FODC Q(B) over an
algebra B is a direct sum decomposition of B-bimodules,

QI(B) ~ Q(l,O) o Q(O,l)

such that (Q(1:9))* = Q1) or equivalently (Q(©1)* = Q(1.0),

An almost complex structure for a differential #-calculus Q°(A) is an
N2-algebra grading Q*(A) = @429 such that:
(i) QX(A) = @p+q:kQ(PaQ)’ (i) (QPD)* = Qla:p),

Define the projections of differential operator d as follows:

0:= pron(WrLQ) od, 0:= pron(P,qﬂ) od,

An almost complex structure is said to be integrable if d = 9 + 0.
Moreover, an integrable almost complex structure is called a complex
structure.
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Complex Structures on O,(Fs)

Theorem (A. Carotenuto, R. O Buachalla, J. Razzaq, 2025)

The first-order differential calculus Q(F3) admits, up to identification of
opposite structures, two covariant first-order almost complex structures.
Explicitly, one decomposition of V1 is given by:

V(LO) = Span(C{ealv €aszs ea1+a2}7 V(071) = Span(c{fa17 fazv fa1+a2}v
and the other is given by:

V(LO) - Span(c{eap fozz7 ea1+a2}a V(071) = Span([:{fau eaza fa1+az}7

Moreover, both of these FOACSs extends to an integrable almost
complex structure on Q§(F3).

20



Bibliography

e S. L. Woronowicz, Differential calculus on compact matrix
pseudogroups (quantum groups), Commun. Math. Phy. 125-170,
(1989).

e U. Hermisson, Derivations with quantum group, Commun. Alg, 30,

(2002).

I. Heckenberger and S. Kolb, Differential Calculus on Quantum

Homogeneous Spaces, Letters in Mathematical Physics 63: 255-264,

(2003).

e R. O Buachalla and P. Somberg, Lusztig's positive root vectors and

a Dolbeault complex for the A-series full quantum flag manifolds,
Journal of Algebra, (2025).

A. Carotenuto, R. O Buachalla, J. Razzaq, Noncommutative

Complex Structures for the Full Quantum Flag Manifold of
Quantum SU(3), Letters in Mathematical Physics, (2025).

21



THANK YOU VERY MUCH!

22



