Complex Structures for the Full Flag Manifold of Quantum SU(3)

(Joint work with R. Ó Buachalla and A. Carotenuto)

Junaid Razzaq (CU, Prague, Czech Republic)

19 September, 2025
Cost Action CaLISTA General Meeting 2025
Corfu Summer Institute, Greece.

Hopf Algebra

Definition

A Hopf algebra is a quadruple (A, Δ, ϵ, S) where:

- \bullet \mathcal{A} is a unital algebra.
- $\Delta: \mathcal{A} \longrightarrow \mathcal{A} \otimes \mathcal{A}$ and $\epsilon: \mathcal{A} \longrightarrow \mathbb{C}$ are algebra homomorphisms called coproduct and counit respectively.
- $S: A \longrightarrow A$ an algebra anti-morphism called antipode.

such that:

- $\bullet \ (\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta \qquad \qquad \text{(coassociativity)}$
- $(\epsilon \otimes id) \circ \Delta = id = (id \otimes \epsilon) \circ \Delta$ (counit condition)
- $m \circ (S \otimes id) \circ \Delta = \epsilon = m \circ (id \otimes S) \circ \Delta$ (antipode condition)

1

Hopf Algebra

Example

Let G be a finite group. By $\mathcal{O}(G)$ we denote the set of all complex-valued functions on G.

Together with the pointwise operations $\mathcal{O}(G)$ turns into an algebra:

$$(f_1 + f_2)(g) := f_1(g) + f_2(g)$$

 $(f_1f_2)(g) := f_1(g)f_2(g)$

Moreover, together with the coproduct, counit and antipode defined as follows:

$$\Delta(f)(g,g') := f(gg'), \qquad \varepsilon(f) := f(e), \qquad S(f)(g) := f(g^{-1}),$$

for all $g, g' \in G$ and $f \in \mathcal{O}(G)$, and e denotes the identity element of G, $\mathcal{O}(G)$ turns into a commutative Hopf algebra.

2

Quantum Matrices

Example

Let $q\in\mathbb{C}^{\times}$ be a non-zero complex number and set $\nu:=q-q^{-1}$. The algebra of quantum matrices $\mathbb{C}_q[\mathrm{M}_n]$ is defined as the quotient algebra:

$$\mathbb{C}_q[\mathbf{M}_n] := \mathbb{C}\langle u_{ij}|\ i,j=1,\cdots,n\rangle/\mathrm{I},$$

where I is the ideal generated by following relations (often called Manin relations):

$$\begin{aligned} u_{ik}u_{jk} - qu_{jk}u_{ik}, & u_{ki}u_{kj} - qu_{kj}u_{ki}, & 1 \leq i < j \leq n, \ 1 \leq k \leq n, \\ u_{il}u_{jk} - u_{jk}u_{il}, & u_{ik}u_{jl} - u_{jl}u_{ik} - \nu u_{il}u_{jk}, & 1 \leq i < j \leq n, \ 1 \leq k < l \leq n. \end{aligned}$$

 $\mathbb{C}_q[\mathrm{M}_n]$ turns into a bialgebra together with the coproduct and counit defined as follows:

$$\Delta(u_{ij}) := \sum_{k=1}^n u_{ik} \otimes u_{kj} \qquad \varepsilon(u_{ij}) := \delta_{ij}.$$

Quantum Special Linear Group

Define the quantum determinant to be:

$$\det_q := \sum_{\sigma \in S_n} (-q)^{l(\sigma)} u_{1\sigma(1)} \cdots u_{n\sigma(n)},$$

where $I(\sigma)$ denotes the length of σ .

The quantum special linear group $\mathbb{C}_q[\operatorname{SL}_n]$ is defined as the quotient algebra:

$$\mathbb{C}_q[\mathrm{SL}_n] := \mathbb{C}_q[\mathrm{M}_n]/\langle \det_q - 1 \rangle$$

 $\mathbb{C}_q[\operatorname{SL}_n]$ turns into a Hopf algebra together with the antipode S defined as follows:

$$S(u_{ij})=(-q)^{i-j}\sum_{\sigma\in\mathrm{S}_{n-1}}(-q)^{l(\sigma)}u_{k_{\mathbf{1}}\sigma(l_{\mathbf{1}})}\cdots u_{k_{n-1}\sigma(l_{n-1})},$$

where
$$\{k_1, \dots, k_{n-1}\} := \{1, \dots, n\} - \{j\}$$
 and $\{l_1, \dots, l_{n-1}\} := \{1, \dots, n\} - \{i\}$ as ordered sets.

Quantum Special Linear Group

Furthermore, $\mathbb{C}_q[\operatorname{SL}_n]$ also admits a *-structure given by:

$$(u_{ij})^* := S(u_{ji}).$$

 $\mathbb{C}_q[\operatorname{SL}_n]$ together with this *-structure is called quantum special unitary group $\mathbb{C}_q[\operatorname{SU}_n]$.

Example

Let $U(\mathfrak{g})$ be the universal enveloping algebra of a Lie algebra \mathfrak{g} . Then, together with the following data:

$$\Delta(X) := X \otimes 1 + 1 \otimes X, \qquad \varepsilon(X) = 0, \qquad S(X) = -X, \qquad \forall \ X \in \mathrm{U}(\mathfrak{g})$$

 $U(\mathfrak{g})$ turns into a Hopf algebra.

Drinfeld-Jimbo Quantized Enveloping Algebras

Let $\mathfrak g$ be a finite dimensional, complex, semi-simple Lie algebra of rank l, and (a_{ij}) denotes its Cartan matrix, and we fix $q_i := q^{(\alpha_i, \alpha_i)/2}$.

The Drinfeld–Jimbo quantized enveloping algebra $U_q(\mathfrak{g})$ is the algebra generated by the elements E_i , F_i , K_i and K_i^{-1} subject to the following relations:

$$\begin{split} K_{i}E_{j} &= q_{i}^{a_{ij}}E_{j}K_{i}, \qquad K_{i}F_{j} = q_{i}^{-a_{ij}}F_{j}K_{i}, \qquad K_{i}K_{j} = K_{j}K_{i}, \\ K_{i}K_{i}^{-1} &= 1 = K_{i}^{-1}K_{i}, \qquad E_{i}F_{j} - F_{j}E_{i} = \delta_{ij}\frac{K_{i} - K_{i}^{-1}}{q_{i} - q_{i}^{-1}}, \end{split}$$

where $i, j \in \{1, \dots, l\}$, and the quantum Serre relations:

Drinfeld-Jimbo Quantized Enveloping Algebras

Theorem

 $U_q(\mathfrak{g})$ admits a unique Hopf algebra structure with comultiplication Δ , counit ε and antipode S defined as:

$$\Delta(E_i) := E_i \otimes K_i + 1 \otimes E_i, \qquad \Delta(F_i) := F_i \otimes 1 + K_i^{-1} \otimes F_i,$$

$$\Delta(K_i) := K_i \otimes K_i, \qquad \Delta(K_i^{-1}) := K_i^{-1} \otimes K_i^{-1},$$

$$\varepsilon(K_i) := 1, \qquad \varepsilon(E_i) := \varepsilon(F_i) = 0,$$

$$S(E_i) := -E_i K_i^{-1}, \qquad S(F_i) := -K_i F_i, \qquad S(K_i) := K_i^{-1}.$$

Theorem

Any finite-dimensional irreducible representation of a Drinfeld–Jimbo algebra is a weight representation and a representation with highest weight. Such a representation is uniquely determined by its highest weight.

Dual Pairing Between $\mathcal{O}_q(SU_n)$ And $U_q(\mathfrak{sl}_n)$

Let G and H be two Hopf algebras. A dual pairing is a bilinear map

$$\langle -, - \rangle : G \otimes H \longrightarrow \mathbb{C}$$

such that, for all $g, g' \in G$ and $h, h' \in H$:

$$\langle g, hh' \rangle = \langle g_{(1)}, h \rangle \langle g_{(2)}, h' \rangle, \qquad \langle gg', h \rangle = \langle g, h_{(1)} \rangle \langle g', h_{(2)} \rangle,$$

 $\langle g, 1_H \rangle = \varepsilon(g), \qquad \langle 1_G, h \rangle = \varepsilon(h), \qquad \langle S(g), h \rangle = \langle g, S(h) \rangle.$

Example

A dual pairing of Hopf algebras between $\mathcal{O}_q(\mathrm{SL}_n)$ and $\mathrm{U}_q(\mathfrak{sl}_\mathfrak{n})$ is given by:

$$\langle u_{i+1,i}, E_i \rangle = 1, \qquad \langle u_{i,i+1}, F_i \rangle = 1,$$

$$\langle u_{ii}, K_j \rangle = q^{\delta_{j+1,i} - \delta_{ij}}, \qquad \langle u_{ii}, K_j^{-1} \rangle = q^{\delta_{ij} - \delta_{j+1,i}},$$

and requiring all other pairings to be zero, where u_{ij} denotes the generators of $\mathcal{O}_q(\mathrm{SL}_n)$ and E_i , F_i , K_i are the generators of $\mathrm{U}_q(\mathfrak{sl}_\mathfrak{n})$. Furthermore, this pairing respects the *-structure.

Full Flag Manifold $\mathcal{O}_q(\mathbf{F}_3)$

The dual pairing described above gives a natural $U_q(\mathfrak{sl}_{n+1})$ -module structure on $\mathcal{O}_q(SU_{n+1})$:

$$f \triangleright b := \sum \, b_{(1)} \langle f, b_{(2)} \rangle \qquad \text{for } f \in \mathrm{U}_q(\mathfrak{sl}_{n+1}), \ b \in \mathcal{O}_q(\mathrm{SU}_{n+1}).$$

The full quantum flag manifold $\mathcal{O}_q(F_3)$ is defined as the subalgebra of $U_q(\mathfrak{h})$ -invariants:

$$\mathcal{O}_{q}(\mathbf{F}_{3}) := \overset{\mathbf{U}_{q}(\mathfrak{h})}{\mathcal{O}_{q}}(\mathbf{SU}_{3}),
= \left\{ b \in \mathcal{O}_{q}(\mathbf{SU}_{3}) \mid f \triangleright b = \varepsilon(f)b, \ \forall \ f \in \mathbf{U}_{q}(\mathfrak{h}) \right\}.$$

where $U_q(\mathfrak{h}) := \operatorname{span}\{K_i^{\pm}\} \subset U_q(\mathfrak{sl}_3)$.

Theorem

 $\mathcal{O}_q(\mathrm{F}_3)$ as a subalgebra of $\mathcal{O}_q(\mathrm{SU}_3)$ is generated by the following elements:

$$z_{ij}^{\alpha_1} := u_{i1}u_{j1}^* = u_{i1}S(u_{1j}), \qquad z_{ij}^{\alpha_2} := u_{i3}u_{j3}^* = u_{i3}S(u_{3j}), \qquad \text{for } i, j = 1, 2, 3.$$

First-Order Differential Calculus

A first-order differential calculus over an algebra \mathcal{B} is a pair (Ω^1, d) , where, Ω^1 is an \mathcal{B} -bimodule, and,

$$d: \mathcal{B} \longrightarrow \Omega^1$$
,

is a linear map obeying:

- (i) d(ab) = da.b + a.db $\forall a, b \in \mathcal{B}$,
- (ii) $\Omega^1 = \operatorname{span} \{ \operatorname{ad} b : a, b \in \mathcal{B} \},$
- (iii) $\ker d = \mathbb{K}.1$.

Example (Universal First-Order Differential Calculus)

Given any algebra \mathcal{B} , define:

$$\begin{split} \Omega_u^1 := \text{ker}(m) &= \{ \sum \textbf{\textit{a}} \otimes \textbf{\textit{b}} \in \mathcal{B} \otimes \mathcal{B} : \sum \textbf{\textit{ab}} = 0 \}, \\ d_u(\textbf{\textit{a}}) := 1 \otimes \textbf{\textit{a}} - \textbf{\textit{a}} \otimes 1, \qquad \forall \ \textbf{\textit{a}} \in \mathcal{B}. \end{split}$$

It is easy to verify that the pair (Ω_u^1, d_u) is a first-order differential calculus.

Differential Calculus

Theorem

Any FODC (Ω^1, d) on $\mathcal B$ is isomorphic to some quotient calulus $(\Omega^1_u/N, d_N)$ where N is a sub-bimodule and $d_N := \pi \circ d_u$.

Definition

A differential calculus on an algebra \mathcal{A} is a triplet (Ω, \wedge, d) , where $\Omega = \bigoplus_n \Omega^n$ is a graded-algebra,

$$\wedge: \Omega \otimes \Omega \longrightarrow \Omega$$
 and $d: \Omega \longrightarrow \Omega$

are linear maps, such that:

(i)
$$\Omega^k \wedge \Omega^l \subset \Omega^{k+l}$$
, $d(\Omega^k) \subset \Omega^{k+1}$, $\forall k, l \in \mathbb{N}_0$,

- (ii) The wedge product \wedge is associative,
- (iii) $d^2 = 0$, and $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{\deg(\omega)}\omega \wedge d\eta$, for all $\eta, \omega \in \Omega$, ω being homogeneous,

(iv)
$$\Omega^0 = \mathcal{A}$$
, $\Omega^n = \operatorname{span}\{a_0 da_1 \wedge \cdots \wedge da_n : a_0, \cdots a_n \in \mathcal{A}\}.$

Left-Covariant FODC

Let \mathcal{A} be a Hopf algebra. A first order differential calculus (Ω^1, d) on a left \mathcal{A} -comodule algebra \mathcal{B} is called left \mathcal{A} -covariant if Ω^1 also admit a left coaction Φ_L such that:

$$\Phi_L(a\sigma b) = \Delta_L(a)\Phi_L(\sigma)\Delta_L(b) \qquad \text{for all } a,b \in \mathcal{B}, \ \sigma \in \Omega^1,$$

and the following diagram commute:

$$\begin{array}{ccc} \mathcal{B} & \stackrel{\Delta_L}{\longrightarrow} \mathcal{A} \otimes \mathcal{B} \\ \downarrow^d & & \downarrow^{id \otimes d} \\ \Omega^1 & \stackrel{\Phi_L}{\longrightarrow} \mathcal{A} \otimes \Omega^1. \end{array}$$

Theorem (Woronowicz, 1989): Let \mathcal{A} be a Hopf algebra, \mathcal{R} be a right ideal contained in $\ker \varepsilon$ and $\mathcal{N} = r^{-1}(\mathcal{A} \otimes \mathcal{R})$ where $r: \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A} \otimes \mathcal{A}$ defined as: $r(a \otimes b) = (a \otimes 1)\Delta(b)$. Then, \mathcal{N} is a sub-bimodule of Ω^1_u and $(\Omega^1_u/\mathcal{N}, \mathrm{d}_\mathcal{N})$ is a left-covariant FODC on \mathcal{A} . Moreover, every left-covariant FODC can be obtained in this way.

Quantum Homogeneous Space

Let $(\mathcal{A}, m, \Delta, \eta, \varepsilon)$ and $(\mathcal{H}, m_{\mathcal{H}}, \Delta_{\mathcal{H}}, \eta_{\mathcal{H}}, \varepsilon_{\mathcal{H}})$ be Hopf algebras, and $\pi: \mathcal{A} \longrightarrow \mathcal{H}$ be a surjective Hopf algebra morphism. We view \mathcal{A} as a right \mathcal{H} -comodule algebra via coaction

$$\Delta_{\mathcal{A}} := (\mathrm{id} \otimes \pi) \circ \Delta : \mathcal{A} \longrightarrow \mathcal{A} \otimes \mathcal{H}.$$

With all this datum, the space of coinvariants:

$$\mathcal{B} := \mathcal{A}^{co(\mathcal{H})} = \{ a \in \mathcal{A} : \Delta_{\mathcal{A}}(a) = a \otimes 1 \}$$

is a right coideal subalgebra of \mathcal{A} . We call \mathcal{B} a quantum homogeneous space, if \mathcal{A} is faithfully flat as a right \mathcal{B} -module.

Left-Covariant FODC on quantum homogeneous spaces

Theorem (Hermisson, 2002)

Let $\mathcal{B}=\mathcal{A}^{\grave{c}\circ\mathcal{H}}$ be a quantum homogeneous space. For any $I^{(1)}\subset\mathcal{B}^+:=\mathcal{B}\cap\ker(\epsilon)$ in $\mathcal{M}^\mathcal{H}_\mathcal{B}$, define:

$$\Omega^1 := \mathcal{A} \square_{\mathcal{H}} \mathcal{B}^+ / I^{(1)}$$

with \mathcal{B} -bimodule structure and left \mathcal{A} -coaction as:

$$b(a^i\otimes [c^i])b':=ba^ib'_{(1)}\otimes [c^ib'_{(2)}],\qquad {_{\Omega^1}\Delta}:=\Delta\otimes \operatorname{id},$$

and, $d: \mathcal{B} \longrightarrow \Omega^1$ defined as:

$$d(b) := b_{(1)} \otimes \pi_I((b_{(2)})^+).$$

Then, (Ω^1, d) is a left A-covariant FODC on \mathcal{B} . Moreover, every left A-covariant FODC on \mathcal{B} is of this form.

Quantum Tangent Space

A quantum tangent space for $\mathcal{B} = {}^{W}\mathcal{A}$ is a subspace $T \subseteq \mathcal{B}^{\circ}$ such that $T \oplus \mathbb{C}1$ is a right coideal of \mathcal{B}° and $WT \subseteq T$.

For any quantum tangent space T, a right \mathcal{B} -ideal of \mathcal{B}^+ is given by

$$I^{(1)} := \{ x \in \mathcal{B}^+ \, | \, X(x) = 0, \text{ for all } X \in \mathcal{T} \}.$$

We call $V^1 = \mathcal{B}^+/I^{(1)}$, the cotangent space of T.

Theorem (Heckenberger, Kolb, 2003)

There is a bijective correspondence between isomorphism classes of finite-dimensional tangent spaces and finitely-generated left A-covariant FODCi on B.

Theorem (Heckenberger, Kolb, 2006)

For quantum grassmannians, there exists a unique covariant differential calculus of classical dimension.

Quantum Tangent Space Generated by Lusztig's Root Vectors

Theorem (R. Ó Buachalla, P. Somberg, 2025)

For a particular choice of reduced decomposition of the longest element of the Weyl group, the space spanned by the Lusztig's root vectors is a quantum tangent space for $\mathcal{O}_q(\mathrm{SU}_n)$, whose restriction to the case of quantum grassmannians gives the anti-holomorphic HK quantum tangent space.

Example

For the case of $\mathfrak{sl}_3\mathbb{C}$, and the choice $w=w_2w_1w_2$ (this is the choice set by R. Ó B. and P. S.) of reduced decomposition of the longest element w of the Weyl group $W\cong S_3$, the list of root vectors is given by:

$$E_{\alpha_1} := E_1, \qquad E_{\alpha_2} := E_2, \qquad \text{and} \qquad E_{\alpha_1 + \alpha_2} := [E_2, E_1]_{q^{-1}}.$$

and we denote by:

$$T^{(0,1)} := \operatorname{span}\{E_{\alpha_1}, E_{\alpha_2}, E_{\alpha_1 + \alpha_2}\}$$

A Tangent Space for $\mathcal{O}_q(\mathbf{F}_3)$

We define:

$$T^{(1,0)} := (T^{(0,1)})^*,$$

where * is the *-structure on $U_q(\mathfrak{sl}_3)$. We see it is spanned by the elements:

$$\begin{split} F_{\alpha_1} &:= E_{\alpha_1}^* = K_1 F_1, & F_{\alpha_2} &:= E_{\alpha_2}^* = K_2 F_2, \\ F_{\alpha_1 + \alpha_2} &:= E_{\alpha_1 + \alpha_2}^* = q^{-1} K_1 K_2 [F_1, F_2]_{q^{-1}} \end{split}$$

Now, we take our quantum tangent space T to be:

$$T := T^{(1,0)} \oplus T^{(0,1)}$$

Differential Calculus on $\mathcal{O}_q(\mathbb{F}_3)$

Theorem (A. Carotenuto, R. Ó Buachalla, J. Razzaq, 2025)

Let V^{\bullet} denote the quantum exterior algebra for the maximal prolongation of $\Omega^1(F_3)$. Then, a full set of relations for V^{\bullet} is given by following three sets of identities:

$$\begin{split} e_{\gamma} \wedge e_{\beta} &= -q^{(\beta,\gamma)} e_{\beta} \wedge e_{\gamma}, \qquad f_{\gamma} \wedge f_{\beta} = -q^{-(\beta,\gamma)} f_{\beta} \wedge f_{\gamma}, \qquad \text{for all } \beta \leq \gamma \in \Delta^{+}, \\ e_{\gamma} \wedge f_{\beta} &= -q^{(\beta,\gamma)} f_{\beta} \wedge e_{\gamma}, \qquad \text{for all } \beta \neq \gamma \in \Delta^{+}, \text{ or for } \beta = \gamma = \alpha_{1} + \alpha_{2}, \\ e_{\alpha_{1}} \wedge f_{\alpha_{1}} &= -q^{2} f_{\alpha_{1}} \wedge e_{\alpha_{1}} - \nu f_{\alpha_{1} + \alpha_{2}} \wedge e_{\alpha_{1} + \alpha_{2}}, \\ e_{\alpha_{2}} \wedge f_{\alpha_{2}} &= -q^{2} f_{\alpha_{2}} \wedge e_{\alpha_{2}} + \nu f_{\alpha_{1} + \alpha_{2}} \wedge e_{\alpha_{1} + \alpha_{2}}, \end{split}$$

where an order \leq on the set of positive roots $\Delta^+ = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2\}$ is fixed as follows:

$$\alpha_2 \leq \alpha_1 + \alpha_2 \leq \alpha_1.$$

Complex Structures

A first-order almost complex structure for a *-FODC $\Omega^1(\mathcal{B})$ over an algebra \mathcal{B} is a direct sum decomposition of \mathcal{B} -bimodules,

$$\Omega^1(\mathcal{B}) \simeq \Omega^{(1,0)} \oplus \Omega^{(0,1)}$$

such that $(\Omega^{(1,0)})^* = \Omega^{(0,1)}$ or equivalently $(\Omega^{(0,1)})^* = \Omega^{(1,0)}$.

An almost complex structure for a differential *-calculus $\Omega^{\bullet}(A)$ is an \mathbb{N}_0^2 -algebra grading $\Omega^{\bullet}(A) = \bigoplus_{(p,q)} \Omega^{(p,q)}$ such that:

(i)
$$\Omega^k(A) = \bigoplus_{p+q=k} \Omega^{(p,q)}, \quad \text{(ii) } (\Omega^{(p,q)})^* = \Omega^{(q,p)}.$$

Define the projections of differential operator ${\rm d}$ as follows:

$$\partial := \operatorname{proj}_{\Omega^{(p+1,q)}} \circ d, \qquad \overline{\partial} := \operatorname{proj}_{\Omega^{(p,q+1)}} \circ d,$$

An almost complex structure is said to be integrable if $d=\partial+\overline{\partial}$. Moreover, an integrable almost complex structure is called a complex structure.

Complex Structures on $\mathcal{O}_q(F_3)$

Theorem (A. Carotenuto, R. Ó Buachalla, J. Razzaq, 2025)

The first-order differential calculus $\Omega_q^1(F_3)$ admits, up to identification of opposite structures, two covariant first-order almost complex structures. Explicitly, one decomposition of V^1 is given by:

$$V^{(1,0)} = \operatorname{span}_{\mathbb{C}} \Big\{ e_{\alpha_{1}}, \ e_{\alpha_{2}}, \ e_{\alpha_{1} + \alpha_{2}} \Big\}, \quad V^{(0,1)} := \operatorname{span}_{\mathbb{C}} \Big\{ f_{\alpha_{1}}, \ f_{\alpha_{2}}, \ f_{\alpha_{1} + \alpha_{2}} \Big\},$$

and the other is given by:

$$V^{(1,0)} = \mathrm{span}_{\mathbb{C}} \Big\{ e_{\alpha_1}, \; f_{\alpha_2}, \; e_{\alpha_1 + \alpha_2} \Big\}, \quad V^{(0,1)} := \mathrm{span}_{\mathbb{C}} \Big\{ f_{\alpha_1}, \; e_{\alpha_2}, \; f_{\alpha_1 + \alpha_2} \Big\},$$

Moreover, both of these FOACSs extends to an integrable almost complex structure on $\Omega^{\bullet}_{\sigma}(F_3)$.

Bibliography

- S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phy. 125-170, (1989).
- U. Hermisson, Derivations with quantum group, Commun. Alg, 30, (2002).
- I. Heckenberger and S. Kolb, Differential Calculus on Quantum Homogeneous Spaces, Letters in Mathematical Physics 63: 255–264, (2003).
- R. Ó Buachalla and P. Somberg, Lusztig's positive root vectors and a Dolbeault complex for the A-series full quantum flag manifolds, Journal of Algebra, (2025).
- A. Carotenuto, R. Ó Buachalla, J. Razzaq, Noncommutative Complex Structures for the Full Quantum Flag Manifold of Quantum SU(3), Letters in Mathematical Physics, (2025).

THANK YOU VERY MUCH!