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Hopf Algebra

Definition
A Hopf algebra is a quadruple (A,∆, ϵ,S) where:

• A is a unital algebra.

• ∆ : A −→ A⊗A and ϵ : A −→ C are algebra homomorphisms
called coproduct and counit respectively.

• S : A −→ A an algebra anti-morphism called antipode.

such that:

• (∆⊗ id) ◦∆ = (id ⊗∆) ◦∆ (coassociativity)

• (ϵ⊗ id) ◦∆ = id = (id ⊗ ϵ) ◦∆ (counit condition)

• m ◦ (S ⊗ id) ◦∆ = ϵ = m ◦ (id ⊗ S) ◦∆ (antipode condition)
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Hopf Algebra

Example
Let G be a finite group. By O(G ) we denote the set of all
complex-valued functions on G .

Together with the pointwise operations O(G ) turns into an algebra:

(f1 + f2)(g) := f1(g) + f2(g)

(f1f2)(g) := f1(g)f2(g)

Moreover, together with the coproduct, counit and antipode defined as
follows:

∆(f )(g , g ′) := f (gg ′), ε(f ) := f (e), S(f )(g) := f (g−1),

for all g , g ′ ∈ G and f ∈ O(G ), and e denotes the identity element of G ,
O(G ) turns into a commutative Hopf algebra.
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Quantum Matrices

Example
Let q ∈ C× be a non-zero complex number and set ν := q − q−1. The
algebra of quantum matrices Cq[Mn] is defined as the quotient algebra:

Cq[Mn] := C⟨uij | i , j = 1, · · · , n⟩/I,

where I is the ideal generated by following relations (often called Manin
relations):

uikujk − qujkuik , ukiukj − qukjuki , 1 ≤ i < j ≤ n, 1 ≤ k ≤ n,

uilujk − ujkuil , uikujl − ujluik − νuilujk , 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n.

Cq[Mn] turns into a bialgebra together with the coproduct and counit
defined as follows:

∆(uij) :=
n∑

k=1

uik ⊗ ukj ε(uij) := δij .
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Quantum Special Linear Group

Define the quantum determinant to be:

detq :=
∑
σ∈Sn

(−q)l(σ)u1σ(1) · · · unσ(n),

where l(σ) denotes the length of σ.

The quantum special linear group Cq[SLn] is defined as the quotient
algebra:

Cq[SLn] := Cq[Mn]/⟨detq − 1⟩

Cq[SLn] turns into a Hopf algebra together with the antipode S defined
as follows:

S(uij) = (−q)i−j
∑

σ∈Sn−1

(−q)l(σ)uk1σ(l1) · · · ukn−1σ(ln−1),

where {k1, · · · , kn−1} := {1, · · · , n} − {j} and
{l1, · · · , ln−1} := {1, · · · , n} − {i} as ordered sets.
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Quantum Special Linear Group

Furthermore, Cq[SLn] also admits a ∗-structure given by:

(uij)
∗ := S(uji ).

Cq[SLn] togther with this ∗-structure is called quantum special unitary
group Cq[SUn].

Example
Let U(g) be the universal enveloping algebra of a Lie algebra g. Then,
together with the following data:

∆(X ) := X ⊗ 1 + 1 ⊗ X , ε(X ) = 0, S(X ) = −X , ∀ X ∈ U(g)

U(g) turns into a Hopf algebra.
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Drinfeld–Jimbo Quantized Enveloping Algebras

Let g be a finite dimensional, complex, semi-simple Lie algebra of rank l ,
and (aij) denotes its Cartan matrix, and we fix qi := q(αi ,αi )/2.

The Drinfeld–Jimbo quantized enveloping algebra Uq(g) is the algebra
generated by the elements Ei ,Fi ,Ki and K−1

i subject to the following
relations:

KiEj = q
aij
i EjKi , KiFj = q

−aij
i FjKi , KiKj = KjKi ,

KiK
−1
i = 1 = K−1

i Ki , EiFj − FjEi = δij
Ki − K−1

i

qi − q−1
i

,

where i , j ∈ {1, · · · , l}, and the quantum Serre relations:

−−−−−−−−−−−−
−−−−−−−−−−−−
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Drinfeld–Jimbo Quantized Enveloping Algebras

Theorem
Uq(g) admits a unique Hopf algebra structure with comultiplication ∆,
counit ε and antipode S defined as:

∆(Ei ) := Ei ⊗ Ki + 1 ⊗ Ei , ∆(Fi ) := Fi ⊗ 1 + K−1
i ⊗ Fi ,

∆(Ki ) := Ki ⊗ Ki , ∆(K−1
i ) := K−1

i ⊗ K−1
i ,

ε(Ki ) := 1, ε(Ei ) := ε(Fi ) = 0,

S(Ei ) := −EiK
−1
i , S(Fi ) := −KiFi , S(Ki ) := K−1

i .

Theorem
Any finite-dimensional irreducible representation of a Drinfeld–Jimbo
algebra is a weight representation and a representation with highest
weight. Such a representation is uniquely determined by its highest
weight. 7



Dual Pairing Between Oq(SUn) And Uq(sln)

Let G and H be two Hopf algebras. A dual pairing is a bilinear map

⟨−,−⟩ : G ⊗ H −→ C

such that, for all g , g ′ ∈ G and h, h′ ∈ H:

⟨g , hh′⟩ = ⟨g(1), h⟩⟨g(2), h′⟩, ⟨gg ′, h⟩ = ⟨g , h(1)⟩⟨g ′, h(2)⟩,
⟨g , 1H⟩ = ε(g), ⟨1G , h⟩ = ε(h), ⟨S(g), h⟩ = ⟨g , S(h)⟩.

Example
A dual pairing of Hopf algebras between Oq(SLn) and Uq(sln) is given
by:

⟨ui+1,i ,Ei ⟩ = 1, ⟨ui,i+1,Fi ⟩ = 1,

⟨uii ,Kj⟩ = qδj+1,i−δij , ⟨uii ,K−1
j ⟩ = qδij−δj+1,i ,

and requiring all other pairings to be zero, where uij denotes the
generators of Oq(SLn) and Ei , Fi , Ki are the generators of Uq(sln).
Furthermore, this pairing respects the ∗-structure.
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Full Flag Manifold Oq(F3)

The dual pairing described above gives a natural Uq(sln+1)-module
structure on Oq(SUn+1):

f ▷ b :=
∑

b(1)⟨f , b(2)⟩ for f ∈ Uq(sln+1), b ∈ Oq(SUn+1).

The full quantum flag manifold Oq(F3) is defined as the subalgebra of
Uq(h)-invariants:

Oq(F3) := Uq(h)Oq(SU3),

=
{
b ∈ Oq(SU3) | f ▷ b = ε(f )b, ∀ f ∈ Uq(h)

}
.

where Uq(h) := span{K±
i } ⊂ Uq(sl3).

Theorem
Oq(F3) as a subalgebra of Oq(SU3) is generated by the following
elements:

zα1
ij := ui1u

∗
j1 = ui1S(u1j), zα2

ij := ui3u
∗
j3 = ui3S(u3j), for i , j = 1, 2, 3.
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First-Order Differential Calculus

A first-order differential calculus over an algebra B is a pair (Ω1, d),
where, Ω1 is an B-bimodule, and,

d : B −→ Ω1,

is a linear map obeying:

(i) d(ab) = da.b + a.db ∀ a, b ∈ B,
(ii) Ω1 = span{adb : a, b ∈ B},
(iii) ker d = K.1.

Example (Universal First-Order Differential Calculus)

Given any algebra B, define:

Ω1
u := ker(m) = {

∑
a⊗ b ∈ B ⊗ B :

∑
ab = 0},

du(a) := 1 ⊗ a− a⊗ 1, ∀ a ∈ B.

It is easy to verify that the pair (Ω1
u, du) is a first-order differential

calculus. 10



Differential Calculus

Theorem
Any FODC (Ω1, d) on B is isomorphic to some quotient calulus
(Ω1

u/N, dN) where N is a sub-bimodule and dN := π ◦ du.

Definition
A differential calculus on an algebra A is a triplet (Ω,∧,d), where
Ω = ⊕nΩ

n is a graded-algebra,

∧ : Ω⊗ Ω −→ Ω and d : Ω −→ Ω

are linear maps, such that:

(i) Ωk ∧ Ωl ⊂ Ωk+l , d(Ωk) ⊂ Ωk+1, ∀ k, l ∈ N0,

(ii) The wedge product ∧ is associative,

(iii) d2 = 0, and d(ω ∧ η) = dω ∧ η + (−1)deg(ω)ω ∧ dη, for all η, ω ∈ Ω,
ω being homogeneous,

(iv) Ω0 = A, Ωn = span{a0da1 ∧ · · · ∧ dan : a0, · · · an ∈ A}.
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Left-Covariant FODC

Let A be a Hopf algebra. A first order differential calculus (Ω1, d) on a
left A-comodule algebra B is called left A-covariant if Ω1 also admit a
left coaction ΦL such that:

ΦL(aσb) = ∆L(a)ΦL(σ)∆L(b) for all a, b ∈ B, σ ∈ Ω1,

and the following diagram commute:

Theorem (Woronowicz, 1989): Let A be a Hopf algebra, R be a right
ideal contained in ker ε and N = r−1(A⊗R) where
r : A⊗A −→ A⊗A defined as: r(a⊗ b) = (a⊗ 1)∆(b). Then, N is a
sub-bimodule of Ω1

u and (Ω1
u/N, dN) is a left-covariant FODC on A.

Moreover, every left-covariant FODC can be obtained in this way. 12



Quantum Homogeneous Space

Let (A,m,∆, η, ε) and (H,mH,∆H, ηH, εH) be Hopf algebras, and
π : A −→ H be a surjective Hopf algebra morphism. We view A as a
right H-comodule algebra via coaction

∆A := (id ⊗ π) ◦∆ : A −→ A⊗H.

With all this datum, the space of coinvariants:

B := Aco(H) = {a ∈ A : ∆A(a) = a⊗ 1}

is a right coideal subalgebra of A. We call B a quantum homogeneous
space, if A is faithfully flat as a right B-module.
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Left-Covariant FODC on quantum homogeneous spaces

Theorem (Hermisson, 2002)
Let B = AcoH be a quantum homogeneous space. For any
I (1) ⊂ B+ := B ∩ ker(ϵ) in MH

B , define:

Ω1 := A□HB+/I (1)

with B-bimodule structure and left A-coaction as:

b(ai ⊗ [c i ])b′ := baib′(1) ⊗ [c ib′(2)], Ω1∆ := ∆⊗ id,

and, d : B −→ Ω1 defined as:

d(b) := b(1) ⊗ πI ((b(2))
+).

Then, (Ω1, d) is a left A-covariant FODC on B. Moreover, every left
A-covariant FODC on B is of this form.
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Quantum Tangent Space

A quantum tangent space for B = WA is a subspace T ⊆ B◦ such that
T ⊕ C1 is a right coideal of B◦ and WT ⊆ T .

For any quantum tangent space T , a right B-ideal of B+ is given by

I (1) :=
{
x ∈ B+ |X (x) = 0, for all X ∈ T

}
.

We call V 1 = B+/I (1), the cotangent space of T .

Theorem (Heckenberger, Kolb, 2003)
There is a bijective correspondence between isomorphism classes of
finite-dimensional tangent spaces and finitely-generated left A-covariant
FODCi on B.

Theorem (Heckenberger, Kolb, 2006)
For quantum grassmannians, there exists a unique covariant differential
calculus of classical dimension.
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Quantum Tangent Space Generated by Lusztig’s Root Vectors

Theorem (R. Ó Buachalla, P. Somberg, 2025)
For a particular choice of reduced decomposition of the longest element
of the Weyl group, the space spanned by the Lusztig’s root vectors is a
quantum tangent space for Oq(SUn), whose restriction to the case of
quantum grassmannians gives the anti-holomorphic HK quantum tangent
space.

Example
For the case of sl3C, and the choice w = w2w1w2 (this is the choice set
by R. Ó B. and P. S.) of reduced decomposition of the longest element w
of the Weyl group W ∼= S3, the list of root vectors is given by:

Eα1 := E1, Eα2 := E2, and Eα1+α2 := [E2,E1]q−1 .

and we denote by:

T (0,1) := span{Eα1 ,Eα2 ,Eα1+α2}
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A Tangent Space for Oq(F3)

We define:

T (1,0) := (T (0,1))∗,

where ∗ is the ∗-structure on Uq(sl3). We see it is spanned by the
elements:

Fα1 := E∗
α1

= K1F1, Fα2 := E∗
α2

= K2F2,

Fα1+α2 := E∗
α1+α2

= q−1K1K2[F1,F2]q−1

Now, we take our quantum tangent space T to be:

T := T (1,0) ⊕ T (0,1)
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Differential Calculus on Oq(F3)

Theorem (A. Carotenuto, R. Ó Buachalla, J. Razzaq, 2025)

Let V • denote the quantum exterior algebra for the maximal
prolongation of Ω1(F3). Then, a full set of relations for V • is given by
following three sets of identities:

eγ∧eβ = −q(β,γ)eβ∧eγ , fγ∧fβ = −q−(β,γ)fβ∧fγ , for all β ≤ γ ∈ ∆+,

eγ∧fβ = −q(β,γ)fβ∧eγ , for all β ̸= γ ∈ ∆+, or for β = γ = α1+α2,

eα1 ∧ fα1 = −q2fα1 ∧ eα1 − νfα1+α2 ∧ eα1+α2 ,

eα2 ∧ fα2 = −q2fα2 ∧ eα2 + νfα1+α2 ∧ eα1+α2 ,

where an order ≤ on the set of positive roots ∆+ = {α1, α2, α1 + α2} is
fixed as follows:

α2 ≤ α1 + α2 ≤ α1.
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Complex Structures

A first-order almost complex structure for a ∗-FODC Ω1(B) over an
algebra B is a direct sum decomposition of B-bimodules,

Ω1(B) ≃ Ω(1,0) ⊕ Ω(0,1)

such that (Ω(1,0))∗ = Ω(0,1) or equivalently (Ω(0,1))∗ = Ω(1,0).

An almost complex structure for a differential ∗-calculus Ω•(A) is an
N2

0-algebra grading Ω•(A) = ⊕(p,q)Ω
(p,q) such that:

(i) Ωk(A) = ⊕p+q=kΩ
(p,q), (ii) (Ω(p,q))∗ = Ω(q,p).

Define the projections of differential operator d as follows:

∂ := projΩ(p+1,q) ◦ d, ∂ := projΩ(p,q+1) ◦ d,

An almost complex structure is said to be integrable if d = ∂ + ∂.
Moreover, an integrable almost complex structure is called a complex
structure.
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Complex Structures on Oq(F3)

Theorem (A. Carotenuto, R. Ó Buachalla, J. Razzaq, 2025)

The first-order differential calculus Ω1
q(F3) admits, up to identification of

opposite structures, two covariant first-order almost complex structures.
Explicitly, one decomposition of V 1 is given by:

V (1,0) = spanC

{
eα1 , eα2 , eα1+α2

}
, V (0,1) := spanC

{
fα1 , fα2 , fα1+α2

}
,

and the other is given by:

V (1,0) = spanC

{
eα1 , fα2 , eα1+α2

}
, V (0,1) := spanC

{
fα1 , eα2 , fα1+α2

}
,

Moreover, both of these FOACSs extends to an integrable almost
complex structure on Ω•

q(F3).
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