Codifferential Calculi and Quantum Homogeneous Spaces

Julius Benner

Charles University Prague

CaLISTA General Meeting Corfu September 19, 2025

The Heckenberger-Kolb Differential Calculi

Theorem (Heckenberger–Kolb '06)

Let $B=\mathcal{O}_q(G/L_S)$ be a quantized irreducible flag manifold (e.g. $G/L_S=S^2$ or $G/L_S=\mathrm{Gr}(m,n)$). Then there exist q-deformations $\Omega_q^{(\bullet,0)}(G/L_S)$ and $\Omega_q^{(0,\bullet)}(G/L_S)$ of the holomorphic and antiholomorphic algebraic Dolbeault complex.

The Heckenberger-Kolb Differential Calculi

Theorem (Heckenberger-Kolb '06)

Let $B=\mathcal{O}_q(G/L_S)$ be a quantized irreducible flag manifold (e.g. $G/L_S=S^2$ or $G/L_S=\operatorname{Gr}(m,n)$). Then there exist q-deformations $\Omega_q^{(\bullet,0)}(G/L_S)$ and $\Omega_q^{(0,\bullet)}(G/L_S)$ of the holomorphic and antiholomorphic algebraic Dolbeault complex.

Theorem (Heckenberger–Kolb '07)

There exists an isomorphism

$$\Omega_q^{(0,\bullet)}(G/L_S)\cong \left(\underline{C_\bullet^S}\right)^\circ$$

where C_{\bullet}^{S} denotes the parabolic BGG resolution of the trivial $U_{q}(\mathfrak{g})$ -module (a similar isomorphism exists for the holomorphic complex).

First Order Differential Calculi

• From now on k is a field with $char(k) \neq 2$.

Definition

Let B be a k-algebra. A first order differential calculus (FODC) over B consists of a B-bimodule Ω^1 and a k-linear derivation $d: B \to \Omega^1$ such that the map

$$B\otimes B o \Omega^1$$
, $a\otimes b\mapsto ad(b)$

is surjective.

First Order Codifferential Calculi

Definition

Let C be a coalgebra over k, and let \mathcal{W}_1 be a C-bicomodule

• A k-linear map $\delta \colon \mathscr{W}_1 \to C$ is called *coderivation* if

$$\Delta(\delta(w)) = \delta(w_{(0)}) \otimes w_{(1)} + w_{(-1)} \otimes \delta(w_{(0)})$$

for all $w \in \mathcal{W}_1$.

• Let $\delta \colon \mathscr{W}_1 \to C$ be a coderivation. The pair (\mathscr{W}_1, δ) is called *first order codifferential calculus (FOCC)* if the map

$$\mathcal{W}_1 \to C \otimes C$$
, $w \mapsto w_{(-1)} \otimes \delta(w_{(0)})$

is injective.

The Universal FOCC

Definition

The *universal FOCC* over C consists of the C-bicomodule $\mathcal{W}_1^u := C \otimes C/\text{im}(\Delta)$, and the coderivation

$$\delta^{u} \colon \mathscr{W}_{1}^{u} \to C, \quad [c \otimes d] \mapsto \varepsilon(c)d - \varepsilon(d)c.$$

The Universal FOCC

Definition

The *universal FOCC* over C consists of the C-bicomodule $\mathcal{W}_1^u := C \otimes C/\text{im}(\Delta)$, and the coderivation

$$\delta^u \colon \mathscr{W}_1^u \to C, \quad [c \otimes d] \mapsto \varepsilon(c)d - \varepsilon(d)c.$$

Proposition (Doi '81)

Let \mathscr{W}_1 be a C-bicomodule and let $\delta\colon \mathscr{W}_1\to C$ be a coderivation, then there exists a unique C-bicolinear map φ such that the diagram

commutes. Moreover, if (W_1, δ) is a FOCC, then φ is injective, that is every FOCC is a subspace of the universal FOCC.

Higher Order Codifferential Calculi

Definition

A differential graded coalgebra (DGC) is a graded coalgebra $C_{\bullet} = \bigoplus_{n \in \mathbb{Z}_{\geq 0}} C_n$ together with a degree -1 differential $\delta \colon C_{\bullet} \to C_{\bullet}$ such that

$$\Delta(\delta(c)) = \delta(c_{(1)}) \otimes c_{(2)} + (-1)^{|c_{(1)}|} c_{(1)} \otimes \delta(c_{(2)})$$

for all homogeneous elements $c \in C_{ullet}$.

Remark

- The degree zero part C_0 together with the restriction of Δ to C_0 is a regular (non graded) coalgebra, and every component C_n , $n \geq 0$ is a bicomodule over C_0 .
- The degree 1 differential $\delta_1 \colon C_1 \to C_0$ is a coderivation.
- If (C_1, δ_1) is a FOCC, and C_{\bullet} is conilpotently cogenerated by C_1 relativ to C_0 , we call $(C_{\bullet}, \delta_{\bullet})$ a codifferential calculus.

CaLISTA General Meeting Corfu

The Maximal Prolongation

Problem

Given a FOCC (W_1, δ) , can we find a canonical dg coalgebra $(C_{\bullet}, \delta_{\bullet})$ such that $(C_1, \delta_1) = (W_1, \delta)$, mimicking maximal prolongations for FODC's?

The Maximal Prolongation

Problem

Given a FOCC (W_1, δ) , can we find a canonical dg coalgebra $(C_{\bullet}, \delta_{\bullet})$ such that $(C_1, \delta_1) = (W_1, \delta)$, mimicking maximal prolongations for FODC's?

Definition

The *C-relative tensor coalgebra* of a *C*-bicomodule M is given by $T^c_C(M) := \bigoplus_{n \in \mathbb{Z}_{>0}} M^{\square_C \, n}$ together with the coproduct

$$\Delta(\underline{m}) = \underline{m}_{(-1)} \otimes \underline{m}_{(0)} + \underline{m}_{(0)} \otimes \underline{m}_{(1)} + \sum_{i=1}^{n-1} m_1 \square \ldots \square m_i \otimes m_{i+1} \square \ldots \square m_n$$

where $\underline{m} = m_1 \square ... \square m_n \in M^{\square_C n}$ (recall: For *C*-bicomodules M, N we have $m \otimes n \in M \square_C N$ if $\Delta_M(m) \otimes n = m \otimes_N \Delta(n)$).

• The maximal prolongation of an arbitrary FOCC (\mathscr{W}_1, δ) will be constructed as a graded sub coalgebra of $T_C^c(\mathscr{W}_1)$. By universality of \mathscr{W}_1^u , we can assume $\mathscr{W}_1 \subseteq \mathscr{W}_1^u$.

- The maximal prolongation of an arbitrary FOCC (\mathscr{W}_1, δ) will be constructed as a graded sub coalgebra of $T_C^c(\mathscr{W}_1)$. By universality of \mathscr{W}_1^u , we can assume $\mathscr{W}_1 \subseteq \mathscr{W}_1^u$.
- Let \mathcal{W}_2 be the largest C-subbicomodule such that its image under

$$\mathscr{W}_1 \square_{\mathcal{C}} \mathscr{W}_1 \to \mathscr{W}_1^u, \quad w_1 \square w_2 \mapsto [\delta(w_1) \otimes \delta(w_2)]$$

is contained in \mathcal{W}_1 .

8 / 17

- The maximal prolongation of an arbitrary FOCC (\mathscr{W}_1, δ) will be constructed as a graded sub coalgebra of $T_C^c(\mathscr{W}_1)$. By universality of \mathscr{W}_1^u , we can assume $\mathscr{W}_1 \subseteq \mathscr{W}_1^u$.
- Let \mathcal{W}_2 be the largest C-subbicomodule such that its image under

$$\mathcal{W}_1 \square_C \mathcal{W}_1 \to \mathcal{W}_1^u, \quad w_1 \square w_2 \mapsto [\delta(w_1) \otimes \delta(w_2)]$$

is contained in \mathcal{W}_1 .

ullet We define δ_2 as the unique linear map that completes the diagram

- The maximal prolongation of an arbitrary FOCC (W_1, δ) will be constructed as a graded sub coalgebra of $T_C^c(W_1)$. By universality of W_1^u , we can assume $W_1 \subseteq W_1^u$.
- Let \mathcal{W}_2 be the largest C-subbicomodule such that its image under

$$\mathcal{W}_1 \square_C \mathcal{W}_1 \to \mathcal{W}_1^u, \quad w_1 \square w_2 \mapsto [\delta(w_1) \otimes \delta(w_2)]$$

is contained in \mathcal{W}_1 .

ullet We define δ_2 as the unique linear map that completes the diagram

• The component of degree $n \ge 3$ is defined as the following subspace of $\mathcal{W}_1^{\square_C n} \subseteq T_c^c(\mathcal{W}_1)$

$$\mathscr{W}_n := \bigcap_{i+j+2=n} \mathscr{W}_1^{\square_C i} \square_C \mathscr{W}_2 \square_C \mathscr{W}_1^{\square_C j}.$$

• The differential on \mathcal{W}_{\bullet} is defined as follows:

$$\delta_1 := \delta \colon \mathscr{W}_1 \to C, \quad \delta_2 \colon \mathscr{W}_2 \to \mathscr{W}_1 \text{ (as in the previous slide)}$$

$$\delta_n(w_1\square \ldots \square w_n) := \sum_{i=1}^{n-1} (-1)^i w_1 \otimes \cdots \otimes \delta_2(w_i \otimes w_{i+1}) \otimes \cdots \otimes w_n \quad (n \geq 3).$$

• The differential on \mathcal{W}_{\bullet} is defined as follows:

$$\delta_1 := \delta \colon \mathscr{W}_1 \to C, \quad \delta_2 \colon \mathscr{W}_2 \to \mathscr{W}_1 \text{ (as in the previous slide)}$$

$$\delta_n(w_1 \square \ldots \square w_n) := \sum_{i=1}^{n-1} (-1)^i w_1 \otimes \cdots \otimes \delta_2(w_i \otimes w_{i+1}) \otimes \cdots \otimes w_n \quad (n \ge 3).$$

Theorem (B '25)

The pair $(\mathcal{W}_{\bullet}, \delta_{\bullet})$ is a codifferential pre-calculus. Moreover, for any other prolongation $(\Upsilon_{\bullet}, \tilde{\delta}_{\bullet})$ of $(\mathcal{W}_{1}, \delta)$, the identity $id_{C \oplus \mathcal{W}_{1}}$ extends uniquely to a morphism of dg coalgebras $\varphi \colon \Upsilon_{\bullet} \to \mathcal{W}_{\bullet}$.

We call $(\mathcal{W}_{\bullet}, \delta_{\bullet})$ the maximal prolongation of $(\mathcal{W}_1, \delta_1)$.

Quantum Homogeneous Spaces

Definition

Let $\pi: A \twoheadrightarrow \overline{A}$ be a Hopf algebra surjection, and consider the right \overline{A} -coaction

$$A \to A \otimes \overline{A}, \quad a \mapsto a_{(1)} \otimes \pi(a_{(2)}).$$

The coinvariant subalgebra $B:=A^{\operatorname{co}\overline{A}}$ is called *principal quantum homogeneous* spaces if $B\subseteq A$ is a faithfully flat Hopf–Galois extension.

Quantum Homogeneous Spaces

Definition

Let $\pi: A \twoheadrightarrow \overline{A}$ be a Hopf algebra surjection, and consider the right \overline{A} -coaction

$$A o A \otimes \overline{A}, \quad a \mapsto a_{(1)} \otimes \pi(a_{(2)}).$$

The coinvariant subalgebra $B:=A^{\operatorname{co}\overline{A}}$ is called *principal quantum homogeneous* spaces if $B\subseteq A$ is a faithfully flat Hopf–Galois extension.

- For our purpuses we dualize this setup:
- ullet From now on let U be a Hopf algebra and let $H\subseteq U$ be a Hopf subalgebra. Further let

$$C := U \otimes_H k \cong U/UH^+$$

where $H^+ = H \cap \ker(\varepsilon)$.

- We also assume that *U* is faithfully flat over *H*.
- Denote by ${}^{C}_{U}\mathcal{M}^{C}$ respectively ${}_{H}\mathcal{M}^{C}$ the categories of C-bicovariant left U-modules, respectively right C-covariant left H-modules.

Schneider's Categorical Equivalence

Theorem (Schneider '90, B '25)

• The induction and coinvariant functors

$$C_{UM}C$$
 $U\otimes_{H-}$
 $W\otimes_{H-}$
 $W\otimes_{H-}$

form an equivalence of categories.

• Let ${}_H\mathcal{M}^0$ be the full subcategory of ${}_H\mathcal{M}^C$ of objects with trivial right C-action. Then the above equivalence restricts to a monoidal equivalence

$$({}^{C}_{U}\mathcal{M}^{0}, \square_{C}, C) \xrightarrow{{}^{co} {}^{C}(-)} ({}_{H}\mathcal{M}^{0}, \otimes, k) .$$

Equivariant Codifferential Calculi

Definition

- A FOCC (W_1, δ) is *U-equivariant* if $W_1 \in {}^{C}_{U}\mathcal{M}^{C}$ and δ is *U-*linear.
- A codifferential calculus $(C_{\bullet}, \delta_{\bullet})$ is *U-equivariant* if every $C_n \in {}^{C}_{U}\mathcal{M}^{C}$ and the differential δ_{\bullet} is *U*-linear.

Equivariant Codifferential Calculi

Definition

- A FOCC (\mathcal{W}_1, δ) is *U-equivariant* if $\mathcal{W}_1 \in {}^{\mathcal{C}}_{\mathcal{U}}\mathcal{M}^{\mathcal{C}}$ and δ is *U-*linear.
- A codifferential calculus $(C_{\bullet}, \delta_{\bullet})$ is *U-equivariant* if every $C_n \in {}^{C}_{U}\mathcal{M}^{C}$ and the differential δ_{\bullet} is *U*-linear.

Proposition

Let $(C_{\bullet}, \delta_{\bullet})$ be an U-equivariant codifferential calculus, then the FOCC (C_1, δ_1) is U-equivariant. Conversely, if (\mathscr{W}_1, δ) is a U-equivariant FOCC, then its maximal prolongation is U-equivariant.

Hermisson Classification of FOCC's

Definition

A quantum tangent space is a subspace $T \subseteq C^+ = \ker(\varepsilon)$ such that $HT \subseteq T$ and $\Delta(T) \subseteq (T \oplus k[1]) \otimes C$.

Hermisson Classification of FOCC's

Definition

A quantum tangent space is a subspace $T \subseteq C^+ = \ker(\varepsilon)$ such that $HT \subseteq T$ and $\Delta(T) \subseteq (T \oplus k[1]) \otimes C$.

Remark

Any quantum tangent space $T\subseteq C^+$ is a right C-comodule via $t\mapsto t_{(1)}^+\otimes t_{(2)}$ (here $(-)^+$ denotes the projection onto C^+). In addition $T\in {}_H\mathcal{M}^C$.

Hermisson Classification of FOCC's

Definition

A quantum tangent space is a subspace $T \subseteq C^+ = \ker(\varepsilon)$ such that $HT \subseteq T$ and $\Delta(T) \subseteq (T \oplus k[1]) \otimes C$.

Remark

Any quantum tangent space $T \subseteq C^+$ is a right C-comodule via $t \mapsto t_{(1)}^+ \otimes t_{(2)}$ (here $(-)^+$ denotes the projection onto C^+). In addition $T \in {}_H\mathcal{M}^C$.

Theorem (B '25)

There is a 1:1-correspondence

 $\{U$ -equivariant FOCC's $\} \stackrel{1:1}{\leftrightarrow} \{\text{quantum tangent spaces}\}$

given by $(W_1, \delta) \mapsto \delta({}^{co} {}^{C}W_1)$ and $T \mapsto (U \otimes_H T, \delta)$ with $\delta(x \otimes_H t) = xt$. Moreover, the universal FOCC corresponds to $U \otimes_H C^+$.

Remark

If $\mathscr{W}_1 = U \otimes_H T$, with $T \in {}_H \mathcal{M}^0$, then by the monoidality of the categorical equivalence, we have $\mathscr{W}_1 \square_C \mathscr{W}_1 \cong U \otimes_H (T \otimes T)$.

Remark

If $\mathscr{W}_1 = U \otimes_H T$, with $T \in {}_H \mathcal{M}^0$, then by the monoidality of the categorical equivalence, we have $\mathscr{W}_1 \square_C \mathscr{W}_1 \cong U \otimes_H (T \otimes T)$.

Theorem (B '25)

Let $\mathcal{W}_1 = U \otimes_H T$, with $T \in {}_H\mathcal{M}^0$, then the following hold.

Consider the map

$$\hat{\delta} \colon T \otimes T \to U \otimes_H C^+, \quad [x] \otimes [y] \mapsto x_{(1)} \otimes_H [S(x_{(2)})y]$$

and let $R := \hat{\delta}^{-1}(U \otimes_H T) \subseteq T \otimes T$, then $\mathscr{W}_2 \cong U \otimes_H R$.

• The maximal prolongation can be written as

$$\mathscr{W}_{\bullet} \cong U \otimes_{H} C(T,R)$$

where

$$C(T,R) = k \oplus T \oplus R \oplus \bigoplus_{n \geq 3} \bigcap_{i+j+2=n} T^{\otimes i} \otimes R \otimes T^{\otimes j} \subseteq T^{c}(T).$$

The Podles Cocalculus

• Recall that $U := U_q(\mathfrak{sl}_2)$ is the \mathbb{C} -algebra given by the generators E, F, K, K^{-1} together with the relations

$$KK^{-1} = K^{-1}K = 1$$
, $KE = q^2EK$, $KF = q^{-2}FK$
 $[E, F] = \frac{1}{q - q^{-1}}(K - K^{-1})$.

The Podles Cocalculus

• Recall that $U:=U_q(\mathfrak{sl}_2)$ is the \mathbb{C} -algebra given by the generators E,F,K,K^{-1} together with the relations

$$KK^{-1} = K^{-1}K = 1$$
, $KE = q^2EK$, $KF = q^{-2}FK$
 $[E, F] = \frac{1}{q - q^{-1}}(K - K^{-1})$.

• The algebra $U_q(\mathfrak{sl}_2)$ is a Hopf algebra, with coproduct given

$$\begin{split} \Delta(\mathcal{K}^{\pm 1}) &= \mathcal{K}^{\pm 1} \otimes \mathcal{K}^{\pm 1}, \quad \Delta(\mathcal{E}) = \mathcal{E} \otimes \mathcal{K} + 1 \otimes \mathcal{E} \\ \Delta(\mathcal{F}) &= \mathcal{F} \otimes 1 + \mathcal{K}^{-1} \otimes \mathcal{F}. \end{split}$$

The Podles Cocalculus

• Recall that $U:=U_q(\mathfrak{sl}_2)$ is the \mathbb{C} -algebra given by the generators E,F,K,K^{-1} together with the relations

$$KK^{-1} = K^{-1}K = 1$$
, $KE = q^2EK$, $KF = q^{-2}FK$
 $[E, F] = \frac{1}{q - q^{-1}}(K - K^{-1})$.

• The algebra $U_q(\mathfrak{sl}_2)$ is a Hopf algebra, with coproduct given

$$\begin{split} \Delta(\mathcal{K}^{\pm 1}) &= \mathcal{K}^{\pm 1} \otimes \mathcal{K}^{\pm 1}, \quad \Delta(\mathcal{E}) = \mathcal{E} \otimes \mathcal{K} + 1 \otimes \mathcal{E} \\ \Delta(\mathcal{F}) &= \mathcal{F} \otimes 1 + \mathcal{K}^{-1} \otimes \mathcal{F}. \end{split}$$

• Let $H:=U_q(\mathfrak{h})$ be the subalgebra of U generated by K and K^{-1} . Fact: $U_q(\mathfrak{sl}_2)$ is faithfully flat over $U_q(\mathfrak{h})$.

The Podleś Cocalculus

• Recall that $U:=U_q(\mathfrak{sl}_2)$ is the \mathbb{C} -algebra given by the generators E,F,K,K^{-1} together with the relations

$$KK^{-1} = K^{-1}K = 1, \quad KE = q^2EK, \quad KF = q^{-2}FK$$

$$[E, F] = \frac{1}{q - q^{-1}}(K - K^{-1}).$$

• The algebra $U_q(\mathfrak{sl}_2)$ is a Hopf algebra, with coproduct given

$$\begin{split} \Delta(\mathcal{K}^{\pm 1}) &= \mathcal{K}^{\pm 1} \otimes \mathcal{K}^{\pm 1}, \quad \Delta(\mathcal{E}) = \mathcal{E} \otimes \mathcal{K} + 1 \otimes \mathcal{E} \\ \Delta(\mathcal{F}) &= \mathcal{F} \otimes 1 + \mathcal{K}^{-1} \otimes \mathcal{F}. \end{split}$$

- Let $H:=U_q(\mathfrak{h})$ be the subalgebra of U generated by K and K^{-1} . Fact: $U_q(\mathfrak{sl}_2)$ is faithfully flat over $U_q(\mathfrak{h})$.
- The space

$$T := \operatorname{span}_{\mathbb{C}}\{[E], [F]\}.$$

Is a quantum tangent space in the quotient $C:=U_q(\mathfrak{sl}_2)\otimes_{U_q(\mathfrak{h})}\mathbb{C}_{\mathrm{triv}}$, and since [E] and [F] are primitive, we have $T\in {}_H\mathcal{M}^0$.

- Recall the map $\hat{\delta} \colon T \otimes T \to U \otimes_H C^+, \quad [x] \otimes [y] \mapsto x_{(1)} \otimes_{U_q(\mathfrak{h})} [S(x_{(2)})y].$
- Computing the values of $\hat{\delta}$ on the basis elements of $T \otimes T$, we get

$$\begin{split} \hat{\delta}([E] \otimes [E]) &= q^{-2}E \otimes_{U_q(\mathfrak{h})} [E] - q^{-2} \otimes_{U_q(\mathfrak{h})} [E^2] \\ \hat{\delta}([F] \otimes [F]) &= F \otimes_{U_q(\mathfrak{h})} [F] - 1 \otimes_{U_q(\mathfrak{h})} [F^2] \\ \hat{\delta}([E] \otimes [F]) &= q^2E \otimes_{U_q(\mathfrak{h})} [F] - q^2 \otimes_{U_q(\mathfrak{h})} [EF] \\ \hat{\delta}([F] \otimes [E]) &= F \otimes_{U_q(\mathfrak{h})} [E] - 1 \otimes_{U_q(\mathfrak{h})} [EF] \end{split}$$

• It follows that $R = \hat{\delta}^{-1}(U \otimes_H T)$ is given by

$$R = \operatorname{span}_{\mathbb{C}}\{[F] \otimes [E] - q^{-2}[E] \otimes [F]\}.$$

• Letting e := [E], f := [F] and $f \wedge_{q^{-2}} e := f \otimes e - q^{-2} e \otimes f$, the resulting codifferential calculus can be written in the following form:

(here F denotes the map $1 \otimes_{U_q(\mathfrak{h})} f \wedge_{q^{-2}} e \mapsto F \otimes_{U_q(\mathfrak{h})} e$, and similiarly for E)

References

- [1] Y. Doi. Homological coalgebra. J. Math. Soc. Japan, 33, 1981
- [2] I. Heckenberger; S. Kolb. *De Rham complex for quantized irreducible flag manifolds*. J. Algebra, 305(2), 2006
- [3] I. Heckenberger; S. Kolb. *Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds*. J. Geom. Phys., 57(11), 2007
- [4] H.-J. Schneider. *Principal homogeneous spaces for arbitrary Hopf algebras.* Israel j. Math., 72(1-2), 1990

• Letting e := [E], f := [F] and $f \wedge_{q^{-2}} e := f \otimes e - q^{-2} e \otimes f$, the resulting codifferential calculus can be written in the following form:

(here F denotes the map $1 \otimes_{U_q(\mathfrak{h})} f \wedge_{q^{-2}} e \mapsto F \otimes_{U_q(\mathfrak{h})} e$, and similiarly for E)

Thanks for the attention!