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Motivation
@000

Motivation:

quantum gravity & quantum structure of spacetime:

(most reasonable :) answer is known:  IKKT model

— covariant quantum spacetime, based on quantum geometry

quantum geometry of data:

QCML = Quantum Cognitive Machine Learning

same mathematical framework
data science meets quantum geometry
Abanov, Candelori, HS, Wells, Musaelian etal, arXiv:2507.21135
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Motivation
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outline:

@ framework:
quantum (matrix) geometry
@ data science application:
Quantum Cognitive Machine Learning (QCML)
project in collaboration with Qognitive Inc.

@ physics application:
quantum spacetime & quantum gravity through IKKT model
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Motivation
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Quantum spaces

core of Quantum Mechanics, appropriate for matrix models

@ QM: quantized phase space [Q,P]=ihl
@ Moyal-Weyl quantum plane R3"

i
(X X7) = 00", X (O)
FJ].

NC algebra of observables = quantized functions

quantum cells, uncertainty, finite dof per volume
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Motivation
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Dirac or Laplace op — spectral geometry
metric structure: or

matrix configuration (» embedding, local)

quantum (matrix) geometry

... defined in terms of a matrix configuration {X, ..., X}

commuting matrices — classical lattice
(mildly) noncommuting matrices — quantum geometry

efficient, “smooth”, suitable for computer (& data science!)
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Quantum geometry
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Quantum (matrix) geometry

definitions:

@ a matrix configuration is a set of D selfadjoint matrices
{X? €End(H), a=1,....D} (often: # = CN)

@ for x ¢ RP define
Hy = (X% - x*1)? >0  displacement Hamiltonian
a
(cf. shifted harmonic osc!)
ground states:

Hy|x) = A(Xx)|x) ...quasi-coherent states

@  o:=[X%[XP .]10a ...Matrix Laplacian
(similarly d’Alembertian 6.4 — 72p)

cf. Berenstein-Dzienkowski 1204.2788 Ishiki 1503.01230, HS 2009.03400, HS boek
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|x) smooth on R” ... nondeg. ground states

abstract quantum space:

B:=J{x)} ..U() bundie

xeRn

M = B/U(1) > (CPI\F1

quantum manifold if M ¢ CPN~" submanifold

embedding in target space: :

x? = (x|Xqx): M ->RP < , :

matrix configurations {X?} describe quantized embedding map

X8~x?: M —>RP

embedded quantum space: M := X3(M)
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Quantum geometry
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more general: symbol map

End(H) —-C(M)
O - (x]P[x) = P(X)

extra structure:  U(1) bundle B -> M

connection 1-form A = (x|d|x), A, = (X]0,]x)
(cf. Berry connection)

M = (G + iwpw) = (O + iAL) (X (9, — iAL)|X)
... hermitian tensor

via pull-back from CPN-"

M inherits { closed 2-form w = dA }

“quantum” metric g

note: everything exact, no approx, no limit
expect: “almost-commuting” matrix configurations approximate
embedded symplectic manifolds
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Quantum geometry
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examples:

@ Moyal-Weyl quantum plane RS: X2 x°] = igab
|x) ... standard coherent states

o fuzzy S5
X2 =NyJ%, a=1,2,3 ...N —dim. irrep of SU(2)

can show: M = {|x)} =~ S?
(no approx! minimal S, = Bloch sphere)

@ quantized coadjoint orbits O
X% =Ny (T?) ...large irrep of semi-simple G

M ={|x)} 2 O ... coherent states (Perelomov)

@ generic deformations thereof
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visualization:

choose random point cloud X(;, in some cube Q c RP

plot expectation values (x| X?x;y) of corresponding [x(;)
e.g.: deformed fuzzy sphere for N = 11

X' =
X?=1.1d> +0.02J3
X3 =0.9J; +0.05J%
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Quantum geometry
00000800

semi-classical correspondence

End(H) <«— L3(M)

such that [, V] ~ i{¢}, ¥} (M, w) symplectic
End(#) is Hilbert space via (¢, V) = Tr(¢Tw)
L2(M) is Hilbert space via (¢, ) = [ Qo*1p

intuition: M comprises N “quantum cells”
Te(®) = [ Q0(x) ~ ¥ 6(x)
M I

justified to some extent for “almost-commuting matrix configurations”
in subspace of End(H)
HS, 2009.03400; HS, book
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Quantum geometry
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almost-local quantum spaces

LOC(H) c End(’H) C[R(M) c LZ(M)

4

® 600 = (MOIx]
X2 ~ x2(x)
[.] ~ i{.,.}
™ ~
O=[X%[Xa,.]] ~ e %0g

"almost-local“ = approx. diagonal w.r.t. |x)

misleading in UV regime! string modes |x)(y| dominate
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Quantum geometry
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summary: quantum (matrix) geometry

= matrix configuration { X@}

defines quantized embedding map o

X% ~x%: Mo RP

XM

natural framework for Matrix Models — dynamical quantum spaces

efficient way to encode (high-dimensional) geometric data !
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Data analysis

@ data involving a large number of features
represented as points in feature space R” (“target space*)

@ often: concentration of measure

data points concentrate near manifold with relatively low intrinsic dimension

@ goal: capture underlying data manifold & its properties

new approach (> 2024):

QCML = Quantum Cognition Machine Learning

combining concepts & tools of quantum geometry
with ideas in quantum cognition

encodes data as quantum geometry,
observables as Hermitian matrices

Abanov, Candelori, HS, Wells, Musaelian etal, arXiv:2507.21135
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what is QCML?

@ dataset X' = {Xx(1),...,X(),--.,X()} consisting of T points
Xty € RP (target space, "feature space”)

@ matrix configuration X = {X',..., XP} learned from dataset
@ associate to each data point x(;y € X a quantum state:

x(y) e =CN  =ground state of Hy

(@]

(= quasicoherent state)
(recall Hy = 3 (X2 - x2)?)
@ expectation values
X(x) = ((x]X"|x), ..., {(x]XP|x))
(highly non-linear map R? — RP 1)
dataset ¥ — QCML point cloud
Xx ={X(x@) | xpyeX}  cRP
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QCML
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@ deviation of X(x(;)) from data point x(;, measured by
displacement

() = [X() - x12= 5 (X200 - x°)

a

@ quantum fluctuations: variance
0?(x) = Y 05(x),  05(x) = (xIXZx) - (x| Xalx)?.
a

@ loss function
LX]= 3 (Bx)+w-0%(x) "= Ax)

XeX

@ training: matrix configuration X optimized to minimize L[ X]:

Xg = argmin L[X]
XaeMat(N)
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trained matrices X2 define quantum geometry,

data points optimally reproduced by QCML point cloud
(=expectation values)

key advantages:  extra structure from Hilbert space!

@ optimal approximation of dataset by quantum space

@ provides smooth non-linear map x € R? » RP,
~ projection of x to closest point on data manifold M, inference

@ can extract geometric structure:
intrinsic dimension, topology, reduction/abstraction, ...

@ allows to model incompatible observables
(cf. quantum cognition)

@ very efficient, intrinsically smooth, no lattice artifacts
may overcome curse of dimensionality

(recovers K-means for commuting matrix configurations)
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QCML
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context of geometric data analysis:

Graph Quantum Ge
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Example 1: Fuzzy sphere S from random points on a sphere.

dataset: 1000 points distributed uniformly over unit sphere S? c R®
train three 4 x 4 matrices Xy, Xz, X3 using QCML (N =4)

(a) 1000 points on the surface (b) QCML point cloud

of a unit sphere
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trained matrices X, are approximately spin g generators of SU(2),
~ recover fuzzy sphere:

spec(Xs) ~ {~1.50,-0.49, +0.51, +1.52},
|[Xa, Xb] — feancXc]| % 0.16, || o X5 —j(j+ 1) ~0.11.
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Example 2: two disconnected spheres with noise

dataset: 2000 points sampled uniformly near surfaces of two spheres,
with random noise.

109(1 + )

(a) 2000 points near (b) QCML point cloud via
surfaces of two trained X®.
spheres with noise.
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quantum geometry:

08

0.6

'\\ i ! " 0.2
\\.»/} > o
/“,n 0 2 4 6 8 10
T Eigenvalue index
(a) Quantum geometry (b) first eigenvalues of matrix
point cloud, colored by Laplacian. A spectral gap separates
uncertainty o(x). the first two eigenvalues, indicating

two almost disconnected components.

two nearly perfect spheres connected by a bridge,
uncertainty is higher in the bridge region
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The matrix Laplacian

given matrix config. { X3}, define
Vai=[Xa, -]~ i{Xa, -}

...quantized Hamiltonian vector fields on M

A = Z[Xa, [Xa,]] = VaVa

...Hermitian, positive-def. operator acting on Mat(N)
analogous to Laplace-Beltrami operator on classical manifold M

spectrum and eigenmatrices (= eigenmaps):
AY,‘:/\,'Y,'7 SpCC(A) = {)\Oy)\17~-~7)\max}~

can show
A~ pPAg
G, ... effective metric (cf. HS 1003.4134), p ... dilaton



Examples
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relevance of matrix Laplacian in data analysis:
@ allows to separate disconnected (topolog.) components

@ encodes spectral geometry
eff. dimension from Weyls law
@ lowest eigenmaps AY; = \;Y; provide
reduced (abstract) matrix configuration Y;
reduced quantum space My c CPN-!
... abstract model for intrinsic quantum geometry,
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zero modes and separating components of M

consider reducible matrix configuration

X4 0 0
xi=1 00 X3 0
o 0 x@

(3)

projectors P; on irreducible blocks are in 1-to-1 correspondence to
zero modes of A:
AP =0

cf. example 2!
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topological properties of M

B={x), xeRP}  ..U(1)bundle over M

A = (x|d|x) ... U(1) (Berry) connection on hermitian line bundle
w =dA ... (Berry) curvature on line bundle

well-defined topological invariants

w
Cq ::—/Z EZ',
S2

can be computed numerically: sphere around singularities (=degen.)

e.g. Chern numbers:

e.g. Y ¢ = n for fuzzy sphere S2 cf. examples 1, 2

well-defined integers (topology) from finite matrix configs |

(cf. HS, book )
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metric properties of M

h/U/ = %(Q/w + iw/w) = (8/L + iA/l)(X| (81/ - iAl/)|X>
... pull-back of symplectic form w and (quantum) metric g from CPV
can be extracted numerically

allows e.g. to measure intrinsic dimension of M, etc.
Candelori etal, arXiv:2409.12805
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overcoming the curse of dimensionality

high-dimensional features (lattices) require exponential growth of
ressources

avoided in quantum spaces:

e.g. minimal fuzzy CPN-': smooth 2(N - 1) -dim. quantum manifold
encoded using N? — 1 matrices of size N.
(in fact just 2N + 1 matrices)

required resources grow more slowly - often linearly - with dim.
& with non-trivial features J
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Example: high-dimensional data sets

choose 100 reference points {z; = (x;, y;)} c C in unit disk - R?%
mapped using 2000 random conformal maps from unit disk to itself

- 2000 points on 2-dim manifold M c R?%° as input to QCML

reduced matrix config. Y. Y2. Y3 recovers intrinsic disk structure

generalized to conformal maps on C" for n=2,3,4,5
successfully extract intrinsic dimensions
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real-life example: Wisconsin breast cancer data

569 data points, 30 features (characterize cell nucleus)

choose Hilbert space dim. N =8

QCML gives an intrinsic dimension estimate of 2, using both
local quantum metric g as well as spectral dimension from A

low eigenmaps Y; comprise most of correlations Tr(X;Y)),

capture dominant features
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further aspects:

@ distance on M from g captures intrinsic proximity between
states, encoded in (y|x)

+ distance in feature space R” !
distinct points on M may be mapped to same point in RP
— coherent modeling of different objects w/ same features

@ non-commuting observable can model incompatible features
(cognition!)

@ naturally smooth, no lattice artifacts
naturally extrapolates smooth manifold structure

@ efficient, implemented in practical applications

‘Q>OGNITIVE
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IKKT matrix model & gravity
[ leJele]e]

The IKKT matrix model

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

S[Y, W] = Tr([Y2, YOILY, Y2 Taarmoer + UTa[ Y2, W])

y2=vya ¢ Mat(N,C), a=0,..,9
W e Mat(N,C) ® C* ... Majorana-Weyl spinor

gauge symmetry Y2 - U~'Y3U, ISO(9,1), SUSY
@ related to IIB string theory

@ class. solutions Y2 typically noncommutative
- quantum spacetime M3, dynamical

@ — gauge theory, UV finite for dimension < 3 + 1

Harold Steinacker Quantum Geometry of Data (& Spacetime)



(o] Jelele]
Gravity is a quantum effect on quantum spacetime
for spacetimes Y? with structure M3" x K€ c R%!

V.

SUSY - mild quantum effects:

Einstein-Hilbert action (+ extra) in the 1-loop effective action on M3
(cf. Sakharov '67)

1
I—lfloop 9]\[ Tl,)\#TD)\H +~A[d4X\/a@VR[G]+

Planck scale )

p
Gy ~ 2 2
Cic My

set by Kaluza-Klein mass scale on

finite, no UV divergence !
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IKKT matrix model & gravity
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@ combination of Sgy + Syy leads to
modification of gravity in IR K. Kumar, HS 2312.01317
in progress Kawai, Ho, HS

@ most reasonable M?%" = (minimal) covariant quantum spacetime

@ stabilization of K: either

e 1-loop effects A. Manta, T. Tran, HS 2411.02598
e large R charge (internal rotation)
A. Manta, HS 2512.xxxxx.

lots to be done, near-realistic, rich & approachable framework )
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IKKT matrix model & gravity
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literature for quantum geometry in physics:

@ short introductory review: HS arXiv:1911.03162

@ systematic exposition: Book
“Quantum geometry, Matrix Theory, and Gravity”

QUANTUM
GEOMETRY,

: : 1,3. MATRIX THEORY,
@ Lorentzian FLRW quantum spacetime M ,”: AND

M. Sperling, HS 1901.03522 GRAVITY
A. Manta, HS 2502.02498; Ch. Gass, HS 2503.1956 [ O ST

@ one-loop effective action & emergent gravvity:
HS 2303.08012, 2110.03936

@ cosmological aspects
Battista, HS : 2207.01295 ff, Karczmarek, HS 2207.00399

@ no-ghost-theorem: HS 1901.03522
HS, T. Tran 2203.05436, 2305.19351 , 2311.14163, 2312.16110

@ 1-loop quantization of hs Yang-Mills: HS, T. Tran 2405.09804
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IKKT matrix model & gravity
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Quantum geometry = NC operators X2 and (quasi)coherent states |x)

powerful & broad framework, huge potential

Thank you
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