Quantum Geometry of Data (& Spacetime)

Harold Steinacker

Department of Physics, University of Vienna

EISA Corfu, september 2025

Motivation:

quantum gravity & quantum structure of spacetime:

OCMI

(most reasonable :) answer is known: IKKT model

→ covariant quantum spacetime, based on quantum geometry

quantum geometry of data:

QCML = Quantum Cognitive Machine Learning

same mathematical framework data science meets quantum geometry

Abanov, Candelori, HS, Wells, Musaelian etal, arXiv:2507.21135

OCMI

Motivation

- <u>framework</u>: quantum (matrix) geometry
- data science application:
 Quantum Cognitive Machine Learning (QCML)
 project in collaboration with Qognitive Inc.
- physics application: quantum spacetime & quantum gravity through IKKT model

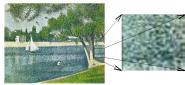
Quantum spaces

core of Quantum Mechanics, appropriate for matrix models

- QM: quantized phase space [Q, P] = ih1
- Moyal-Weyl quantum plane \mathbb{R}^{2n}_{θ}

$$[X^{\mu}, X^{\nu}] = i\theta^{\mu\nu} \mathbf{1}, \qquad X^{\mu} = \begin{pmatrix} Q^i \\ P_j \end{pmatrix}$$

NC algebra of observables = quantized functions quantum cells, uncertainty, finite dof per volume



Examples

```
metric \ structure: \left\{ \begin{array}{c} \ Dirac \ or \ Laplace \ op \rightarrow spectral \ geometry \\ \\ \ or \\ \\ \ matrix \ configuration \ \ (\approx \ embedding, \ local) \end{array} \right.
```

quantum (matrix) geometry

... defined in terms of a matrix configuration $\{X^1, ..., X^D\}$

```
commuting matrices → classical lattice (mildly) noncommuting matrices → quantum geometry
```

efficient, "smooth", suitable for computer (& data science!)

Quantum (matrix) geometry

definitions:

- a matrix configuration is a set of D selfadjoint matrices $\{X^a \in \text{End}(\mathcal{H}), \ a = 1, ..., D\}$ (often: $\mathcal{H} \cong \mathbb{C}^N$)
- for $x \in \mathbb{R}^D$ define

$$H_X = \sum_a (X^a - x^a \mathbf{1})^2 \ge 0$$
 displacement Hamiltonian

(cf. shifted harmonic osc!)

ground states:

$$H_X|X\rangle = \lambda(X)|X\rangle$$
 ...quasi-coherent states

• $\Box := [X^a, [X^b, .]] \delta_{ab}$...Matrix Laplacian (similarly d'Alembertian $\delta_{ab} \to \eta_{ab}$)

Cf. Berenstein-Dzienkowski 1204.2788 Ishiki 1503.01230, HS 2009.03400, HS boek ∽ < ○

Motivation

 $|x\rangle$ smooth on \mathbb{R}^n ... nondeg. ground states abstract quantum space:

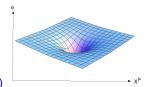
$$\mathcal{B} \coloneqq \bigcup_{\mathbf{x} \in \widetilde{\mathbb{R}}^n} \{ | \mathbf{x} \}$$
 ... $U(1)$ bundle

$$\mathcal{M} \coloneqq \mathcal{B}/_{U(1)} \hookrightarrow \mathbb{C}P^{N-1}$$

quantum manifold if $\mathcal{M} \subset \mathbb{C}P^{N-1}$ submanifold

embedding in target space:

$$\mathbf{x}^a = \langle x | X^a | x \rangle : \ \mathcal{M} \to \mathbb{R}^D$$



embedded quantum space: $\tilde{\mathcal{M}} := \mathbf{x}^a(\mathcal{M})$

matrix configurations $\{X^a\}$ describe quantized embedding map

$$X^a \sim \mathbf{x}^a : \mathcal{M} \to \mathbb{R}^D$$

more general: symbol map

End(
$$\mathcal{H}$$
) $\rightarrow \mathcal{C}(\mathcal{M})$
 $\Phi \mapsto \langle x|\Phi|x\rangle =: \phi(x)$

OCMI

extra structure: U(1) bundle $\mathcal{B} \to \mathcal{M}$

connection 1-form $iA = \langle x|d|x\rangle$, $iA_{\mu} = \langle x|\partial_{\mu}|x\rangle$ (cf. Berry connection)

$$h_{\mu\nu} = \frac{1}{2}(g_{\mu\nu} + i\omega_{\mu\nu}) = (\partial_{\mu} + iA_{\mu})\langle x| (\partial_{\nu} - iA_{\nu})|x\rangle$$

... hermitian tensor

 \mathcal{M} inherits $\left\{\begin{array}{l} \text{closed 2-form } \omega = dA \\ \text{"quantum" metric } g \end{array}\right\}$ via pull-back from $\mathbb{C}P^{N-1}$

note: everything exact, no approx, no limit
expect: "almost-commuting" matrix configurations approximate
embedded symplectic manifolds

examples:

- Moyal-Weyl quantum plane \mathbb{R}^D_{θ} : $[X^a, X^b] = i\theta^{ab}$ $|x\rangle$... standard coherent states
- fuzzy S_N^2

$$X^a = \Pi_N(J^a), \quad a = 1, 2, 3 \quad ...N - \text{dim. irrep of } SU(2)$$

can show:
$$\mathcal{M} = \{|x\rangle\} \cong S^2$$

(no approx! minimal S_N^2 = Bloch sphere)

quantized coadjoint orbits O

$$X^a = \Pi_{\mathcal{H}}(T^a)$$
 ...large irrep of semi-simple *G*

$$\mathcal{M} = \{|x\rangle\} \cong \mathcal{O} \dots$$
 coherent states (Perelomov)

generic deformations thereof

visualization:

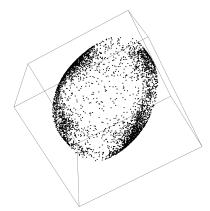
Motivation

choose random point cloud $x_{(i)}$ in some cube $Q \subset \mathbb{R}^D$ plot expectation values $\langle x_{(i)}|X^a|x_{(i)}\rangle$ of corresponding $|x_{(i)}\rangle$

e.g.: deformed fuzzy sphere for N = 11

$$X^1 = J_1$$

 $X^2 = 1.1J_2 + 0.02J_1^3$
 $X^3 = 0.9J_3 + 0.05J_2^2$



$\operatorname{End}(\mathcal{H}) \iff L^2(\mathcal{M})$

OCMI

such that
$$[\Phi, \Psi] \sim i\{\phi, \psi\}$$
 (\mathcal{M}, ω) symplectic

 $\operatorname{End}(\mathcal{H})$ is Hilbert space via $\langle \Phi, \Psi \rangle = \operatorname{Tr}(\Phi^{\dagger} \Psi)$

$$L^2(\mathcal{M})$$
 is Hilbert space via $\langle \phi, \psi \rangle = \int\limits_{\mathcal{M}} \Omega \, \phi^* \psi$

intuition: \mathcal{M} comprises N "quantum cells"

$$\operatorname{Tr}(\Phi) \approx \int_{\mathcal{M}} \Omega \, \phi(\mathbf{x}) \approx \sum_{i} \phi(\mathbf{x}_{i})$$

justified to some extent for "almost-commuting matrix configurations" in subspace of $End(\mathcal{H})$

HS, 2009.03400; HS, book

Examples

almost-local quantum spaces

"almost-local" = approx. diagonal w.r.t. $|x\rangle$

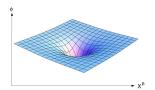
misleading in UV regime! string modes $|x\rangle\langle y|$ dominate

summary: quantum (matrix) geometry

OCMI

= matrix configuration $\{X^a\}$ defines quantized embedding map

$$X^a \sim x^a : \mathcal{M} \hookrightarrow \mathbb{R}^D$$



natural framework for Matrix Models → dynamical quantum spaces

efficient way to encode (high-dimensional) geometric data!

- data involving a large number of features represented as points in feature space \mathbb{R}^D ("target space")
- often: concentration of measure
 data points concentrate near manifold with relatively low intrinsic dimension
- goal: capture underlying data manifold & its properties

new approach (≥ 2024):

QCML = Quantum Cognition Machine Learning

combining concepts & tools of quantum geometry with ideas in quantum cognition

encodes data as quantum geometry, observables as Hermitian matrices

Abanov, Candelori, HS, Wells, Musaelian et al, arXiv:2507.21135

what is QCML?

- dataset $\mathcal{X} = \{x_{(1)}, \dots, x_{(t)}, \dots, x_{(T)}\}$ consisting of T points $\mathbf{x}_{(t)} \in \mathbb{R}^{D}$ (target space, "feature space")
- matrix configuration $X = \{X^1, \dots, X^D\}$ learned from dataset
- associate to each data point x_(t) ∈ X a quantum state:

$$|x_{(t)}\rangle \in \mathcal{H} = \mathbb{C}^N$$
 = ground state of $H_{x_{(t)}}$

(= quasicoherent state)

$$(\text{recall } H_X = \sum (X^a - x^a)^2)$$

expectation values

$$X(x) = (\langle x|X^1|x\rangle, \ldots, \langle x|X^D|x\rangle)$$

(highly non-linear map $\tilde{\mathbb{R}}^D \to \mathbb{R}^D$!)

dataset $\mathcal{X} \rightarrow QCML$ point cloud

$$\mathcal{X}_X = \{X(x_{(t)}) \mid x_{(t)} \in \mathcal{X}\} \subset \mathbb{R}^D$$

• deviation of $X(x_{(t)})$ from data point $x_{(t)}$ measured by displacement

$$d^{2}(x) = \|X(x) - x\|^{2} = \sum_{a} (X^{a}(x) - x^{a})^{2}.$$

Examples

• quantum fluctuations: variance

$$\sigma^2(x) = \sum_a \sigma_a^2(x), \quad \sigma_a^2(x) = \langle x | X_a^2 | x \rangle - \langle x | X_a | x \rangle^2.$$

loss function

$$L[X] = \sum_{x \in \mathcal{X}} \left(d^2(x) + w \cdot \sigma^2(x) \right) \qquad \stackrel{w=1}{=} \lambda(x)$$

training: matrix configuration X optimized to minimize L[X]:

$$X_a = \underset{X_a \in Mat(N)}{\operatorname{argmin}} L[X]$$

trained matrices X^a define quantum geometry,

data points optimally reproduced by QCML point cloud (=expectation values)

key advantages: extra structure from Hilbert space!

optimal approximation of dataset by quantum space

OCMI

- provides smooth non-linear map $x \in \mathbb{R}^D \to \mathbb{R}^D$, \approx projection of x to closest point on data manifold \mathcal{M} , inference
- can extract geometric structure: intrinsic dimension, topology, reduction/abstraction, ...
- allows to model incompatible observables

(cf. quantum cognition)

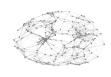
 very efficient, intrinsically smooth, no lattice artifacts may overcome curse of dimensionality

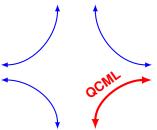
(recovers K-means for commuting matrix configurations)

Motivation

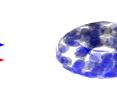
QCML 0000

context of geometric data analysis:





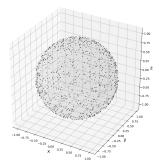
Graph



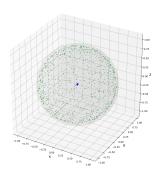
Quantum Ge

Example 1: Fuzzy sphere S_N^2 from random points on a sphere.

dataset: 1000 points distributed uniformly over unit sphere $S^2 \subset \mathbb{R}^3$ train three 4×4 matrices X_1, X_2, X_3 using QCML (N = 4)



(a) 1000 points on the surface of a unit sphere



(b) QCML point cloud

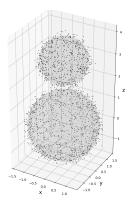
Motivation

OCMI

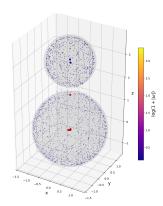
spec(
$$X_3$$
) $\approx \{-1.50, -0.49, +0.51, +1.52\},$
 $\|[X_a, X_b] - i\epsilon_{abc}X_c\| \approx 0.16, \quad \|\sum_a X_a^2 - j(j+1)\| \approx 0.11.$

Example 2: two disconnected spheres with noise

dataset: 2000 points sampled uniformly near surfaces of two spheres, with random noise.



(a) 2000 points near surfaces of two spheres with noise.

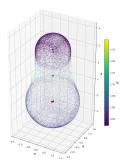


(b) QCML point cloud via trained **X**^a.

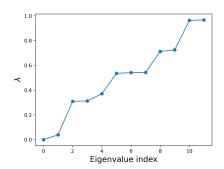
Motivation

quantum geometry:

Motivation



(a) Quantum geometry point cloud, colored by uncertainty $\sigma(x)$.



(b) first eigenvalues of matrix Laplacian. A spectral gap separates the first two eigenvalues, indicating two almost disconnected components.

two nearly perfect spheres connected by a bridge, uncertainty is higher in the bridge region

IKKT matrix model & gravity

The matrix Laplacian

Motivation

given matrix config. $\{X_a\}$, define

$$\nabla_a := [X_a, \cdot] \sim i\{x_a, \cdot\}$$

...quantized Hamiltonian vector fields on \mathcal{M}

$$\Delta = \sum_{a} [X_a, [X_a, \cdot]] = \nabla_a \nabla_a$$

...Hermitian, positive-def. operator acting on Mat(N)

analogous to Laplace-Beltrami operator on classical manifold \mathcal{M} spectrum and eigenmatrices (= eigenmaps):

$$\Delta Y_i = \lambda_i Y_i, \quad \operatorname{spec}(\Delta) = \{\lambda_0, \lambda_1, \dots, \lambda_{\max}\}.$$

can show

$$\Delta \sim \rho^2 \Delta_G$$

 $G_{\mu\nu}$... effective metric (cf. HS 1003.4134), ρ ... dilaton

relevance of matrix Laplacian in data analysis:

- allows to separate disconnected (topolog.) components
- encodes spectral geometry eff. dimension from Weyls law
- lowest eigenmaps $\Delta Y_i = \lambda_i Y_i$ provide reduced (abstract) matrix configuration Y_i reduced quantum space $\mathcal{M}_{Y} \subset \mathbb{C}P^{N-1}$... abstract model for intrinsic quantum geometry,

Examples

0000000000000

zero modes and separating components of ${\cal M}$

consider reducible matrix configuration

$$X^a = \begin{pmatrix} X^a_{(1)} & 0 & 0 \\ 0 & X^a_{(2)} & 0 \\ 0 & 0 & X^a_{(3)} \end{pmatrix}.$$

projectors P_i on irreducible blocks are in 1-to-1 correspondence to **zero modes** of Δ :

$$\Delta P_i = 0$$

cf. example 2!

topological properties of \mathcal{M}

Motivation

$$\mathcal{B} = \{|x\rangle, \ x \in \mathbb{R}^D\}$$
 ... $U(1)$ bundle over \mathcal{M}

 $A = \langle x|d|x\rangle \dots U(1)$ (Berry) connection on hermitian line bundle $\omega = dA \dots$ (Berry) curvature on line bundle

well-defined topological invariants

e.g. Chern numbers:

$$c_1 \coloneqq \int_{S^2} \frac{\omega}{2\pi} \in \mathbb{Z},$$

can be computed numerically: sphere around singularities (=degen.)

e.g.
$$\sum c_i = n$$
 for fuzzy sphere S_n^2

cf. examples 1, 2

well-defined integers (topology) from finite matrix configs

(cf. HS, book)

IKKT matrix model & gravity

Motivation

$$h_{\mu\nu} = \frac{1}{2}(g_{\mu\nu} + i\omega_{\mu\nu}) = (\partial_{\mu} + iA_{\mu})\langle x| (\partial_{\nu} - iA_{\nu})|x\rangle$$

... pull-back of symplectic form ω and (quantum) metric g from $\mathbb{C}P^N$ can be extracted numerically

allows e.g. to measure intrinsic dimension of \mathcal{M} , etc.

Candelori etal, arXiv:2409.12805

overcoming the curse of dimensionality

high-dimensional features (lattices) require exponential growth of ressources

avoided in quantum spaces:

e.g. minimal fuzzy $\mathbb{C}P^{N-1}$: smooth 2(N-1) -dim. quantum manifold encoded using N^2-1 matrices of size N.

(in fact just 2N + 1 matrices)

required resources grow more slowly - often linearly - with dim. & with non-trivial features

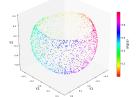
Motivation

Example: high-dimensional data sets

choose 100 reference points $\{z_i = (x_i, y_i)\} \subset \mathbb{C}$ in unit disk $\to \mathbb{R}^{200}$ mapped using 2000 random conformal maps from unit disk to itself

$$z\mapsto e^{i\theta}\frac{a-z}{1-\bar{a}z},$$

 \rightarrow 2000 points on 2-dim manifold $\mathcal{M} \subset \mathbb{R}^{200}$ as input to QCML reduced matrix config. Y1, Y2, Y3 recovers intrinsic disk structure



generalized to conformal maps on \mathbb{C}^n for n=2,3,4,5successfully extract intrinsic dimensions

real-life example: Wisconsin breast cancer data

569 data points, 30 features (characterize cell nucleus)

choose Hilbert space dim. N = 8

QCML gives an intrinsic dimension estimate of 2, using both local quantum metric g as well as spectral dimension from Δ

OCMI

low eigenmaps Y_i comprise most of correlations $Tr(X_aY_i)$,

capture dominant features

further aspects:

• distance on \mathcal{M} from g captures intrinsic proximity between states, encoded in $\langle y|x\rangle$

OCMI

- \neq distance in feature space \mathbb{R}^D ! distinct points on \mathcal{M} may be mapped to same point in \mathbb{R}^D
- → coherent modeling of different objects w/ same features
- non-commuting observable can model incompatible features (cognition!)
- naturally smooth, no lattice artifacts naturally extrapolates smooth manifold structure
- efficient, implemented in practical applications

Motivation

Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$S[Y, \Psi] = Tr([Y^a, Y^b][Y^{a'}, Y^{b'}]\eta_{aa'}\eta_{bb'} + \bar{\Psi}\Gamma_a[Y^a, \Psi])$$

$$Y^a = Y^{a\dagger} \in Mat(N, \mathbb{C}), \qquad a = 0, ..., 9$$

$$\Psi \in Mat(N, \mathbb{C}) \otimes \mathbb{C}^{32} \quad ... \quad Majorana-Weyl spinor$$

gauge symmetry
$$Y^a \rightarrow U^{-1} Y^a U$$
, $ISO(9,1)$, SUSY

- related to IIB string theory
- class. solutions Y^a typically noncommutative
 - \rightarrow quantum spacetime $\mathcal{M}^{3,1}$, dynamical
- \bullet \rightarrow gauge theory. UV finite for dimension $\leq 3 + 1$

for spacetimes Y^a with structure $\mathcal{M}^{3,1} \times \mathcal{K} \subset \mathbb{R}^{9,1}$

SUSY → mild quantum effects:

Einstein-Hilbert action (+ extra) in the 1-loop effective action on $\mathcal{M}^{3,1}$ (cf. Sakharov '67)

$$\Gamma_{1-\text{loop}} \ni \int_{\mathcal{M}} T_{\nu\lambda}^{\mu} T_{\nu\lambda}^{\mu} + \dots \sim \int_{\mathcal{M}} d^4x \sqrt{G} \frac{1}{G_N} \mathcal{R}[G] + \dots$$

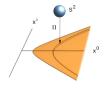
Planck scale

$$G_N \sim \frac{\rho^2}{c_K^2 m_K^2}$$

set by Kaluza-Klein mass scale on K

finite, no UV divergence!

- combination of S_{EH} + S_{YM} leads to modification of gravity in IR
- K. Kumar, HS 2312.01317 in progress Kawai, Ho, HS
- most reasonable $\mathcal{M}^{3,1}$ = (minimal) covariant quantum spacetime



- stabilization of K: either
 - 1-loop effects A. Manta, T. Tran, HS 2411.02598
 - large R charge (internal rotation)

A. Manta, HS 2512.xxxxx.

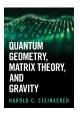
lots to be done, near-realistic, rich & approachable framework

Motivation

Motivation

literature for quantum geometry in physics:

- short introductory review: HS arXiv:1911.03162
- systematic exposition: Book
 "Quantum geometry, Matrix Theory, and Gravity"
- Lorentzian FLRW quantum spacetime M_n^{1,3}:
 M. Sperling, HS 1901.03522
 A. Manta, HS 2502.02498; Ch. Gass, HS 2503.1956
- one-loop effective action & emergent gravvity:
 HS 2303.08012, 2110.03936
- cosmological aspects
 Battista, HS: 2207.01295 ff, Karczmarek, HS 2207.00399
- no-ghost-theorem: HS 1901.03522
 HS, T. Tran 2203.05436, 2305.19351, 2311.14163, 2312.16110
- 1-loop quantization of h₅ Yang-Mills: HS, T. Tran 2405.09804



Quantum geometry = NC operators X^a and (quasi)coherent states $|x\rangle$

powerful & broad framework, huge potential

Thank you

