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Introduction

A RF is usually built using macroscopic bodies B with N ≫ 1 atoms.
Given two RFs R,R′, we can distinguish:

i) a set X ≡ {XA} of “collective” observables that pinpoint their relative
position and orientation for all t;

ii) sets Y ≡ {Ya}, Y ′ ≡ {Y ′
a} of “internal” observables used to record

(e.g. on notebooks) the results of observations of other systems S
(including other RFs) resp. made by R,R′.

E.g., for inertial RFs in flat spacetime, choose the origins O,O ′ as the
CMs of B1,B

′
1 (‘the labs’), X = {relative displacement y , velocity v⃗ ,...}.

N ≫ 1 ensures that: observations made by R,R′ do not significantly
affect X (while of course affect Y ,Y ′ via the recording processes);
Y ,Y ′ are “large enough”. Classical (i.e. ideal) RFs: N = ∞.

But the ultimate quantum nature of these bodies will spoil their classical
(i.e. idealized) properties, via UR, etc; particularly manifest if N ∼ O(1).

Can we formulate a consistent theory of QRFs?



The idea of QRFs was first proposed by Aharonov & Susskind 1967,
Aharonov & Kaufherr 1984. Ever since many hundreds papers.

They mostly use “Relational Quantum Mechanics” (Rovelli 1996,
Loveridge et al 2018, Höhn et al. 2021,...): ∄ unique “absolute” state of
a system S; rather, ∃ one state relative to each observer.

Consequently, a composite system can be in an entangled state wrt QRF
R, a factorized state wrt QRF R′, see e.g. “Quantum mechanics and the
covariance of physical laws in quantum reference frames”, by F.
Giacomini, E. Castro-Ruiz, Č. Brukner, Nat. Commun. 10, 494 (2019).

Use of spacetime observables relative to QRFs can heal QFT divergences:

- Chandrasekaran, Longo, Penington, Witten, JHEP02(2023)082;
- E. Witten, JHEP03(2024)077;
- Fewster, Janssen, Loveridge, Rejzner, Waldron, Comm. Math. Phys.
402 (2024), 1-41;
- De Vuyst, Eccles, Höhn, Kirklin, arXiv:2405.00114; arXiv:2412.15502;

propose operational frameworks for local measurements of QFs on a
symmetric background wrt a QRF: under suitable assumptions the
algebra of (relative) observables is a type II factor (instead of type III1),
i.e. has a semifinite, or even finite, (instead of an infinite) trace, what
allows e.g. computing entropy.



The approach to investigate properties of a QRF can be:

1. bottom-up: start from quantum properties of its microscopic
constituents, operationally measuring spacetime coords wrt it.

2. top-down: study which classical properties of RFs are compatible
with their quantum nature, or must be generalized, and how

Here we adopt 2., focusing on the group structure of changes of RFs.



Preliminaries, paradoxes for CRFs. Need generalized groups

Changes of classical reference frames (RF)
g :R 7→R′ in space(time) make up a
Lie group G :
the product gg ′ is the composition of g ,g ′;
the unit is 1 : R 7→ R;
the inverse of g is g−1 :R′ 7→R.

g sharply specifies where R is located and how it moves wrt R′.

Let x ,x ′ resp. be the (sets of) spacetime coordinates of a generic event
wrt R,R′; g determines the 1-to-1 map x 7→ x ′ . By pull-back the latter
induces a map (passive transf.) between the dynamical variables used by
R,R′ to describe a physical system S; e.g. for scalar fields the map

U(g) : ϕ 7→ ϕ
′

is determined by the eq. ϕ(x)
!
= ϕ ′[x ′(x)].

Enforcing this map assumes R′ has: i) got information about the de-
scription of S by R; ii) sharply determined g , i.e. how R moves wrt R′.



Cartesian coords wrt inertial RFs on M ≡
Minkowski spacetime: x ′µ =(xg)µ ≡xν λ ν

µ +aµ

, g≡(λ ,a)∈G ≡ Poincaré group P,

U(g) : ϕ 7→ ϕ ′ ≡ ϕ ◁g ,

ϕ ′(x ′)≡ ϕ
(
x ′g−1

)
.

(1)

These maps apply also if S is quantum, e.g. a 0-spin elementary particle:

x̂ 7→ x̂ ′ = x̂λ+a, p̂ 7→ p̂′ = p̂λ , ρ 7→ ρ
′, ψ 7→ ψ

′. (2)

All pure (resp. mixed) states ρS (≡density
operator) wrtR are mapped into pure (resp.
mixed) states ρ ′

S wrt R′.

The wavefunctions ψ(x) = R⟨x |Ψ⟩R,
ψ ′(x ′) = R′⟨x ′|Ψ′⟩R′ of S wrt resp. R,R′

fulfill |ψ ′(x ′)|2 = |ψ(x)|2, and by Wigner
Thm can be chosen so that ψ ′(x ′) = ψ(x).



However, if R′ has a coarse (i.e., probabilistic) knowledge about R, then
a pure state ρS = |Ψ⟩RR⟨Ψ| is mapped into a mixed state ρ ′

S .

If e.g. R′ knows exactly λ , i.e. the rel-
ative orientation and velocity of R, and
that the origins’ displacement is a1,a2
with probabilities 1/2, then

ρ ′
S =

1
2 |Ψ

′
a1
⟩R′R′⟨Ψ′

a1
| + 1

2 |Ψ
′
a2
⟩R′R′⟨Ψ′

a2
|,

P(x ′) = 1
2

∣∣ψ ′
a1
(x ′)

∣∣2 + 1
2

∣∣ψ ′
a2
(x ′)

∣∣2; (3)

here ψ ′
a(x

′) = ψ(x ′−a), P(x ′) = Tr
(
|x ′⟩R′R′⟨x ′|ρ ′) is the probability

density to find the particle at position x ′ wrt R′.

More generally, if R′ knows that the origins’ displacement is y with
probability density ρ̃R(y), then the state of S wrt R′ will be

ρ
′
S =

∫
d4a ρ̃R(a) |Ψ′

a⟩R′R′⟨Ψ′
a|=

∫
d4a ρ̃R(a)U(a) |Ψ⟩⟨Ψ|U−1(a); (4)

this is pure iff ρ̃R(a) = δā(a)≡ δ (a− ā), for some ā ∈ R4.

Thus, purity of states is a frame-dependent notion!
To explain the paradox: ρ̃R is a classical state (probability distribution) of
R wrt R′; if it is mixed, so is the state of S∪R wrt R′.



For generic states ρS of S wrt R and ρR of R wrt R′ (4) generalizes to

ρ
′
S =

∫
dg ρ̃R(g)U(g)ρS U

−1(g); (5)

dg is the (left and right G -invariant) Haar measure on G .
As known, for G = P we can realize U(g) = (λ ,a) as the operator

U(λ ,a) = exp
[(

lnλ
)σ

ρ

i
2 m

ρ

σ

]
exp

(
aρ ip

ρ
)
, (6)

where the diff. operators pρ =−i∂ ρ , m
ρ

σ = i(xρ ∂ σ −xσ ∂ ρ) are the

images under the Schrödinger representation r of the generators Pρ ,M
ρ

σ

of translations, Lorentz transformations in the Poincaré Lie algebra g .

Let yρ ,Λ
σ
ρ be the coordinate functions on G defined on g = (λ ,a) by

yρ(g) = aρ , Λ
σ
ρ (g) = λ σ

ρ . Denoting by H0 the abelian algebra of
functions on G , which is generated by yρ ,Λ

σ
ρ , and by H ′

0 ≡ Ug the UEA
of g , we may rewrite (6) in the form U(λ ,a) = U [Λ(λ ),y(a)], where

U = U (Λ,y) := exp
[
i
2 m

ρ

σ⊗
(
lnΛ

)σ

ρ

]
exp

(
ipρ⊗yρ

)
∈ r

(
H ′

0

)
⊗H0. (7)

H0,H
′
0 are actually dual Hopf algebras, and U = (r⊗id )(T ), where T is

the canonical element of the pair (H0,H
′
0). Eq. (5) can be rephrased as

ρ
′
S = (id⊗ρ

c
R′)

[
U (ρS⊗1)U −1

]
. (8)



The set of states of classical R wrt R′ gets a semigroup with product
defined by convolution. δe plays the role of the unit element. Only pure
states δg have inverse, δg−1 . G ↔ the set of pure states of CRFs.

Alternatively, it is more convenient to encode the group structure of G in
the Hopf algebra structure of Fun(G ), as this allows to replace Fun(G )
by a noncommutative algebra, as we may need for dealing with Quantum
Reference Frames (QRFs; i.e. RF whose ultimate quantum nature cannot
be ignored) and for describing symmetries of a NC spacetime.

Generalizing (8), we postulate that the state ρ ′
S of S w.r.t. R′ is

obtained as
ρ
′
S = TrHR

[
(1⊗ρR)U (ρS⊗1)U −1

]
. (9)

Below NC θ -deformations of: Euclidean space R3 and group G = E 3,
ideally relating relatively immobile QRFs; Minkowski spacetime M and
Poincaré group G = P, ideally relating inertial QRFs. One can show that
U (Λ̂, ŷ) has exactly the same form as (7):

U (Λ̂, ŷ) = exp
[
i
2 m

ρ

σ⊗
(
ln Λ̂

)σ

ρ

]
exp

(
ipρ⊗ŷρ

)
∈ r

(
H ′)⊗H. (10)



Why NC spacetime?

Idea of noncommutative (NC) spacetime is rather old [Heisenberg].
Possible motivations:

1. framework where to reconcile the principles of QM and GR;

2. inthrinsic regularization mechanism of UV divergences in QFT
(Heisenberg’s motivation);

3. due to the quantum nature of RFs (new!);

4. effective description in some low energy regime of string theory (e.g.
D3-brane with a large B-field) or LQG (in flat spacetime limit).

1. In usual QFT no universal minimum for the localization ∆x of events:
∆x ∼ h̄/∆p can be reduced at will by increasing the energy of the probe.
On the other hand (argument due to [Bronstein,Mead,Wheeler]), by GR
the energy concentration should not cause the formation of a black hole

⇒ ∆x ≳ lp (Planck length). (11)

Doplicher, Fredenhagen & Roberts [DFR95] propose more sophisticated
bounds, and noncommuting xi that could naturally imply such bounds.



NC ϑ -spaces (or “Moyal”); QFT attempts on them

Simplest NC spacetime: constant commutators

[x̂µ , x̂ν ] = i1ϑµν , (12)

ϑµν =−ϑνµ. Theoretical laboratory to investigate QM, QFT on NC
spaces. Note that (12) are translation invariant, not Lorentz-invariant.

Algebra X̂ of functions on Moyal space: generated by 1, x̂µ fulfilling (12),

with ϑµν ∈R (suitably extended). In [DFR95] ϑµν ∈Z (X̂ ) is dynamical.

Various inequivalent approaches to QFT on Moyal spaces. I would divide
them according to: quantization approach, spacetime symmetries.

1. Path-integral quantization on Moyal-Euclidean spacetime: T. Filk ,
M. Douglas, A.S. Schwarz, N. Nekrasov, N. Seiberg, E. Witten, S.
Minwalla, M. Van Raamsdonk, J. Gomis, L. Alvarez-Gaume, T.
Mehen, M. Vazquez-Mozo, ....,R. Oeckl, J. Wess, P. Aschieri, P.
Schupp, R.J. Szabo, M. Dimitrijevic,..., H. Grosse, R. Wulkenhaar,...

2. Field=operator-valued, Moyal-Minkowski spacetime. Quantization:
canonical; or á la Wightman; ... DFR, Bahns, Piacitelli, Chaichian,
Balachandran et al, Aschieri, Lizzi,Vitale, Abe, Zahn, GF & Wess,...



Various problems, some interesting features.
E.g. in 1: causality violation, non-unitarity (for ϑ0i ̸= 0), UV-IR mixing of
divergences, non-renormalizability, claimed changes of statistics, etc.
Some problems may arise because naively deformed Euclidean Feynman
rules are not justified by a Wick rotation.

Standard or deformed Poincaré covariance? ...?

Doplicher-Fredenhagen-Roberts, et Bahns, Piacitelli,...: since 1995:
First canonical quantization of the free fields. ϑµν ;Qµν central Lorentz
tensor (obeying some conditions), becoming on each irrep a set of fixed
constants ϑµν (joint spectrum of Qµν). ⇒ Poincaré-covariant.
But with interacting fields Lorentz covariance is sooner or later lost.
Doplicher’s speculations: Qµν finally related to v.e.v. of Rµν , in turn
influenced by matter quantum fields through quantum eq.s of motion.

Oeckl 2000, Chaichian et al 2004, Wess 2004, Koch et al 2004:
(12) are not Poincaré -invariant; but “twisted Poincaré” invariant.

Then attempts to construct twisted Poincaré covariant quantum fields
started: Chaichian et al, Balachandran et al, Lizzi-Vitale, Abe, Zahn,
F.-Wess, F.,... Our framework.



The Hopf algebra
(
H0 ≡ Fun (P),ε,∆,S

)
xµ 7→ x ′µ = (xg)µ = xνΛ

ν
µ + yµ ≡ xν⊗Λν

µ +1⊗yµ =: ∆r (xµ). (13)

Regard: 1,xµ as generators of X0 := Fun(M); 1H0
,Λν

µ ,yµ as generators
of the algebra H0 ≡ Fun (P) of functions on P. The transf. rule (13) is
extended to all of X an algebra map (i.e. ∆r (fg) = ∆r (f )∆r (g), etc.),
the coaction ∆r : X → X ⊗H0, f (x) 7→ f (x ′) =:

[
∆r (f )

]
(x).

The group structure of P is encoded in the counit ε : H0 → C, coproduct
∆ : H0 → H0⊗H0, antipode S : H0 → H0, defined on the generators by

ε(Λν
µ) = δ ν

µ, ∆(Λν
µ) = Λν

ρ⊗Λ
ρ

µ, S(Λν
µ) = (ηΛTη)ν

µ ≡ Λ−1ν
µ,

ε(yµ) = 0, ∆(yµ) = yν⊗Λν
µ +1H0

⊗yµ , S(yµ) =−yνΛ
−1ν

µ ,
(14)

which resp. give the identical, (twice) repeated, inverse change of frame.
ε,∆, S are extended as (anti-)algebra maps; fulfill many properties, e.g.

(id⊗ε)◦∆r = id , (∆⊗id )◦∆r = (id⊗∆r )◦∆r . (15)

Transf. (13) preserves [xµ ,xν ] = 0. Does it preserve [x̂µ , x̂ν ] = i1ϑµν?

Yes, if we ”quantize” H0, i.e. make it a NC Hopf algebra Ĥ, such that
[x̂ ′µ , x̂

′
ν ] = i1ϑµν holds as well ⇒ all inertial QRFs are equivalent!

[Λ
ρ

µ , ·] = 0, Λ
ρ

µΛ
σ
ν ηρσ =ηµν1H , [ŷµ , ŷν ] = i(ϑµν1H −ϑρσΛ

ρ

µΛ
σ
ν );

(16)
[Oeckl 00] for the Euclidean version. Restricted Lorentz: add
detΛ = 1, Λ0

0 > 0. SL(2,C): [Podleś-Woronowicz 96].



The Hopf algebra
(
H0 ≡ Fun (P),ε,∆,S

)
xµ 7→ x ′µ = (xg)µ = xνΛ

ν
µ + yµ ≡ xν⊗Λν

µ +1⊗yµ =: ∆r (xµ). (13)

Regard: 1,xµ as generators of X0 := Fun(M); 1H0
,Λν

µ ,yµ as generators
of the algebra H0 ≡ Fun (P) of functions on P. The transf. rule (13) is
extended to all of X an algebra map (i.e. ∆r (fg) = ∆r (f )∆r (g), etc.),
the coaction ∆r : X → X ⊗H0, f (x) 7→ f (x ′) =:

[
∆r (f )

]
(x).

The group structure of P is encoded in the counit ε : H0 → C, coproduct
∆ : H0 → H0⊗H0, antipode S : H0 → H0, defined on the generators by

ε(Λν
µ) = δ ν

µ, ∆(Λν
µ) = Λν

ρ⊗Λ
ρ

µ, S(Λν
µ) = (ηΛTη)ν

µ ≡ Λ−1ν
µ,

ε(yµ) = 0, ∆(yµ) = yν⊗Λν
µ +1H0

⊗yµ , S(yµ) =−yνΛ
−1ν

µ ,
(14)

which resp. give the identical, (twice) repeated, inverse change of frame.
ε,∆, S are extended as (anti-)algebra maps; fulfill many properties, e.g.

(id⊗ε)◦∆r = id , (∆⊗id )◦∆r = (id⊗∆r )◦∆r . (15)

Transf. (13) preserves [xµ ,xν ] = 0. Does it preserve [x̂µ , x̂ν ] = i1ϑµν?

Yes, if we ”quantize” H0, i.e. make it a NC Hopf algebra Ĥ, such that
[x̂ ′µ , x̂

′
ν ] = i1ϑµν holds as well ⇒ all inertial QRFs are equivalent!

[Λ
ρ

µ , ·] = 0, Λ
ρ

µΛ
σ
ν ηρσ =ηµν1H , [ŷµ , ŷν ] = i(ϑµν1H −ϑρσΛ

ρ

µΛ
σ
ν );

(16)
[Oeckl 00] for the Euclidean version. Restricted Lorentz: add
detΛ = 1, Λ0

0 > 0. SL(2,C): [Podleś-Woronowicz 96].



The Hopf algebra
(
Ĥ ≡ Funϑ (P),ε,∆,S

)
x̂µ 7→ x̂ ′µ = x̂νΛ

ν
µ + ŷµ ≡ x̂ν⊗Λν

µ +1⊗ŷµ =: ∆r (x̂µ). (13)

Regard: 1, x̂µ as generators of X̂ ; 1H ,Λ
ν
µ , ŷµ as generators of the

algebra Ĥ = Funϑ (P). The transf. rule (13) is extended to all of X̂ an
algebra map (i.e. ∆r (fg) = ∆r (f )∆r (g), etc.), the coaction

∆r : X̂ → X̂ ⊗ Ĥ, f (x̂) 7→ f (x̂ ′). The counit ε : Ĥ → C, coproduct
∆ : Ĥ → Ĥ⊗ Ĥ, antipode S : Ĥ → Ĥ, defined on the generators by

ε(Λν
µ) = δ ν

µ, ∆(Λν
µ) = Λν

ρ⊗Λ
ρ

µ, S(Λν
µ) = (ηΛTη)ν

µ ≡ Λ−1ν
µ,

ε(ŷµ) = 0, ∆(ŷµ) = ŷν⊗Λν
µ +1H⊗ŷµ , S(ŷµ) =−ŷνΛ

−1ν
µ ,

(14)

resp. give the identical, (twice) repeated, inverse change of frame.
ε,∆, S are extended as (anti-)algebra maps; fulfill many properties, e.g.

(id⊗ε)◦∆r = id , (∆⊗id )◦∆r = (id⊗∆r )◦∆r . (15)

Transf. (13) preserves [x̂µ , x̂ν ] = i1ϑµν if [Oeckl 2000]:

[Λ
ρ

µ , ·] = 0, Λ
µ

ρΛ
ν
σ η

ρσ = η
µν1H , [ŷµ , ŷν ] = i(ϑµν1H −ϑρσΛ

ρ

µΛ
σ
ν ).
(16)



E 3
ϑ
-covariant 1-particle QM on R3

ϑ
. Coherent states

As a warm-up, first E 3
ϑ
-covariant 1-p QM on R3

ϑ
with commutative time:

A : [x̂i , x̂j ] = i ϑij , [p̂i , p̂j ] = 0, [x̂i , p̂
j ] = i δ

j
i (17)

H : [Q j
i , ·] = 0, Q−1 = QT , [ŷi , ŷj ] = i

(
ϑij1−ϑjkQ

j
iQ

k
j

)
=: i χij . (18)

∆r : x̂i 7→ x̂ ′i = x̂jQ
j
i + ŷi , p̂i 7→ p̂′i = Q−1i

j p̂
j (19)

A ≃ 3D Heisenberg algebra has a faithful irrep on C∞(R3) via

x̂i ψ(x) =
(
xi +

i
2ϑij∂

j
)

ψ(x), p̂i ψ(x) =−i ∂
i
ψ(x), (20)

where ∂ j ≡ ∂

∂xj
. As ϑ → 0 we recover Schrödinger irrep of A 0.

As for ϑ = 0: S (R3) carries a highly reducible (resp. irreducible)
representation of X ⊂ A (resp. A ); endowed with the scalar product

⟨φ ,φ ′⟩ :=
∫
R3

φ(x)φ ′(x)d3x , (21)

is a pre-Hilbert space whose completion is L 2(R3)≃ Hilbert space of S .
Each of the x̂i , p̂

i has spectrum R.



There is C ∈ O(3) s.t. for x̂i = Ch
i x̂h the only nontrivial (17a) and UR

are
[
x̂1, x̂2

]
= iζ , ∆x̂1∆x̂2 ≥ ζ

2 . Setting ∂ j ≡ ∂

∂xj
, eq. (20) becomes

x̂1ψ = x1ψ + i
2ζ ∂2ψ, x̂2ψ = x2ψ − i

2ζ ∂1ψ, x̂3ψ = x3ψ. (22)

Proposition. For all ξ ≡ (ξ1,ξ2,ξ3) ∈ R3 and ν ∈ R+ the Gaussian

ψξ ,ν(x) =

(
8

π3ζ 2ν

)1/4

exp

[
− (x1−ξ1)

2+(x2−ξ2)
2

ζ
− (x3−ξ3)

2

ν

]
(23)

is an eigenvector of b = x̂1+i x̂2 with eigenvalue z ≡ ξ1+iξ2 and has

⟨x̂i ⟩= ξi , ∆x̂1 =∆x̂2 =

√
ζ

2 . ∆x̂3 =
√

ν

2 . (24)

{ψξ ,ν}ξ∈R3 is a complete [in L 2(R3)] family of states centered around

ξ ∈ R3, which labels all classical translations. The generalized functions

ψξ (x) := lim
ν→0

ψξ ,ν(x) =

√
2

πζ
exp

[
− (x1−ξ1)

2+(x2−ξ2)
2

ζ

]
δ (x3−ξ3) (25)

in addition saturate the URs

∆x̂1∆x̂2 ≥ ζ

2 ,
3

∑
i=1

∆x̂2i ≥ ζ =
√
− 1

2 tr(ϑ
2). (26)

.



Remarks:

- The ψξ ,ν are also Schrödinger coherent states for x̂i , p̂i , i.e. saturate
also the HUR, with ⟨p̂i ⟩= 0, ∆p̂1 =∆p̂2 = 1/

√
2ζ , ∆p̂3 = 1/

√
2ν .

- As ϑ → 0 we have ζ → 0, and each ψξ goes to a Dirac delta,

ψξ (x)→ δ
(3)(x−ξ ). (27)

The algebra H (18) is faithfully represented on the space V of smooth
functs f (y ,q) of commuting variables yi ,q

i
j , with q ∈ SO(3), via

Q i
j f (y ,q) = qij f (y ,q), ŷi f (y ,q) =

(
yi +

i
2χij∂

j
)
f (y ,q); (28)

is a reducible representation of Ĥ with correct commutative limit ϑ → 0.
In fact, rhs(28b) is the star-product yi ⋆ f (y ,q) induced by the twist
F = exp[ i2ϑijp

i ⊗pj ], leading to ŷi ⋆ ŷj − ŷj ⋆ ŷi = iχij .

We require f ∈ V a fast decay f (y ,q)
|y |→∞−→ 0; the scalar product

⟨f , f ′⟩ :=
∫
E3

f (g)f ′(g)dg , (29)

where dg is the Haar measure on E 3, makes V a pre-Hilbert space, whose
completion is L 2(E 3)≃ HR′ ≡ Hilbert space of states of R′ w.r.t. R.



∃D(q) ∈O(3) s.t. the only nontrivial (18c) for ŷi ≡Dh
i ŷh is

[
ŷ1, ŷ2

]
= iµ.

Proposition. If χ(q) ̸= 0, for all α ∈ R3 and ν ∈ R+ the Gaussian

ψ
T
α,ν ,q(y) =

(
8

π3µ2(q)ν

)1/4

exp

[
− (y1−α1)

2+(y2−α2)
2

µ(q)
− (y3−α3)

2

ν

]
(30)

is and eigenvector of b = ŷ1+i ŷ2 with eigenvalue z ≡ α1+iα2 and has

⟨ŷi ⟩= αi , ∆ŷ3 =
√

ν

2 , ∆ŷ1 =∆ŷ2 =
√

µ

2 . (31)

{ψT
α,ν ,q}α∈R3 is a complete family of states in L 2(GT ) (GT ≃ R3

y is the

translation subgroup) centered around α ∈ R3. The generalized functions

ψ
T
α,q(y) :=

√
2

πµ(q)
exp

[
− (y1−α1)

2+(y2−α2)
2

µ(q)

]
δ (y3−α3), (32)

obtained from (30) taking the limit ν → 0, saturate the URs

∆ŷ1∆ŷ2 ≥ µ/2,
3

∑
i=1

∆ŷ2
i ≥ µ =

√
− 1

2 tr(χ
2). (33)

Remark As q→ I3 (or ϑ →0), µ→0, and the RF change gets ”classical”

ψ
T
α,q(y)→ δ

(3)(y−α). (34)



The rhs(33), as χij , depends on q; here is a q-independent upper bound:

Proposition. The uncertainties of the coherent states (32) satisfy

3

∑
i=1

∆ŷ2
i ≤ 2ζ =

√
−2 tr(ϑ 2). (35)

Assume that S is in a pure state ψ ∈L 2(R3) w.r.t. R, and R is w.r.t. R′

in the (pure) product state ψT
α,ν ,q0

⊗Φq0,ν ′ ∈ L 2(GT )⊗L 2(GH), where

q0 ∈ SO(3) and
{
Φq0,ν ′

}
ν ′∈R is a family s. t. |Φq0,ν ′ |2 ν ′→0−→ δ (q−q0).

We find that for q0 ̸= 13 and generic ψ the state of S wrt R′ is mixed; in
fact, the kernel ρ ′

S(x ,x
′)≡ ⟨x |ρ ′

S |x ′⟩ of the state (density operator) ρ ′
S of

S w.r.t. R′ cannot be put in a factorized form ρ ′
S(x ,x

′) = φ(x)φ(x ′).

However, if ψ(x) = N e ixjk
j
= eigenstate of momentum, then ρ ′

S is pure,

because ρ ′
S(x ,x

′) = |N|2 e i(xiq0
i
jk

j )
[
e i(xiq0

i
jk

j )
]
.



Regular repr. of Ĥ ≡ Funϑ (P); coherent states for QRFs

Abbreviating χ := 1Hϑ −ΛTϑΛ, Ĥ is generated by Λν
µ , ŷµ fulfilling

[Λν
µ , · ] = 0, ΛηΛT = 1Hη , [ŷµ , ŷν ] = i χµν . (36)

It can be faithfully represented on the space V of smooth functions
f (y ,λ ) of real commuting variables yµ ,λ

ν
µ with λ ∈ SO(1,3), e.g. by

Λν
µ f (y ,λ ) = λ

ν
µ f (y ,λ ), ŷµ f (y ,λ ) =

(
yµ +

i

2
χµρ

∂

∂yρ

)
f (y ,λ ); (37)

reducible representation of Ĥ with the correct commutative limit ϑ → 0.
In fact, rhs(37b) is the star-product yµ ⋆ f (y ,Λ) induced by the twist

F = exp[ i2ϑµρp
µ ⊗pρ ], leading to ŷµ ⋆ ŷν − ŷν ⋆ ŷµ = iχµν .

There is λ -dependent D ∈ O(4) with only nontrivial (36c) for ŷµ = ŷρD
ρ

µ[
ŷ0, ŷ3

]
=−

[
ŷ3, ŷ0

]
= iκ,

[
ŷ1, ŷ2

]
=−

[
ŷ2, ŷ1

]
= iµ, (38)

where κ,µ are λ -dependent linear combinations of the ϑµν ; (37) gets

ŷ0 = y0+
iκ

2

∂

∂y3
, ŷ3 = y3−

iκ

2

∂

∂y0
, ŷ1 = y1+

iµ

2

∂

∂y2
, ŷ2 = y2−

iµ

2

∂

∂y1
.



b0 =
ŷ0+i ŷ3√

2κ
, b†

0 =
ŷ0−i ŷ3√

2κ
, b1 =

ŷ1+i ŷ2√
2µ

, b†
1 =

ŷ1−i ŷ2√
2µ

(39)

are ladder operators fulfilling the CCR

[ba,bb] = [b†
a,b

†
b] = 0, [ba,b

†
b] = δab. (40)

Proposition. If detχ ̸= 0, then ∀α ≡ (α0,α3,α1,α2) ∈ R4 the Gaussian

ψ
T
α,λ (y) =

2

π

√
κ(λ )µ(λ )

exp

[
− (y0−α0)

2+(y3−α3)
2

κ
(
λ
) − (y1−α1)

2+(y2−α2)
2

µ(λ )

]
(41)

is an eigenvector of b0 ≡ (ŷ0+i ŷ3)/
√
2κ, b1 = (ŷ1+i ŷ2)/

√
2µ with

eigenvalues z0 ≡ (α0+iα3)/
√
2κ, z1 ≡ (α1+iα2)/

√
2µ. Correspondingly,

⟨ŷµ⟩= αµ , ∆ŷ0 =∆ŷ3 =
√

κ

2
, ∆ŷ1 =∆ŷ2 =

√
µ

2
. (42)

It saturates the URs, following from (38),

∆ŷ0∆ŷ3 ≥ κ

2 , ∆ŷ1∆ŷ2 ≥ µ

2 ,
3

∑
µ=0

∆ŷ2
µ ≥ µ +κ =

√
2Pf(χ)− 1

2 tr(χ2). (43)

{ψα,λ}α∈R4 is a complete family of coherent states for the ŷi centered
around the 4 parameters α ∈ R4, which label all classical translations.



Rhs(43) depends on the specific Lorentz transformation λ . Remarks:

- To compute the rhs(43) no need to put (36c) in canonical form (38).

- As λ → I4 (or ϑ → 0) the κ,µ → 0, and the RF change gets “classical”:

ψ
T
α,λ (y)→ δ

(4)(y−α). (44)

Proposition. The ψT
α,λ satisfy the rotation-independent upper bounds

3

∑
µ=0

∆ŷ2
µ ≤

[√
γ2−1+ γ +1

]
(b+ e), (45)

3

∑
µ=0

∆ŷ2
µ ≤ 2(e+b) if λ =pure rotation, (46)

3

∑
µ=0

∆ŷ2
µ ≤

√
2γ(γ −1) (b+ e) if λ = pure boost, (47)

where γ ≡ λ 0
0 = 1/

√
1−v2/c2, v ≡ speed of the origin of R′ wrt R, e,b

are the norms of the 3-vectors e,b of components e i ≡ ϑ0i , b
i ≡ 1

2ε ijkϑjk .

Note: the upper bounds at the rhs depend on λ only via λ 0
0 ≡ γ.



Summary and conclusions
Physical theories are covariant under changes of reference frames (RFs).
An ordinary change R 7→R′ of classical RFs can be seen as a point g in
a Lie group manifold G .

If the state of R w.r.t. R′ is mixed (a statistical distribution on G ), or
more generally if R or R′ are quantum RFs (i.e., use “clocks”, “rulers”
that are themselves quantum systems), then one can describe the associa-
ted “unsharp” changes of RFs only via some generalized group structure.

The notion of a Hopf algebra, and of its (co)representation, is a possible
one, naturally associated with NC spacetimes. We have shown the first
steps in formulating quantum theories on the NC (”Moyal”) ϑ -Minkowski
space, which is covariant the under the ϑ -Poincaré Hopf algebra (here
formulated as NC algebra Ĥ of ”functions on the group”); in particular,
coherent states for Ĥ best approximate sharp changes of classical RFs.

We have also shown that the state of a generic system S may be pure
relative to a RF R and mixed relative to another one R′: for CRFs this
occurs if the state of R w.r.t. R′ is mixed; for QRFs, this in general
occurs even if the latter state is pure.

Thank you for your attention!
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