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In both the classical and quantum cases, continuous symmetries are described

by Lie groups, or in the case of infinitesimal transformations, Lie algebras.

This generalises to quantum symmetries of quantum spaces.

For most of this talk I will nevertheless be dealing with usual group symmetries

of usual spaces. Gaetano in the next talk will discuss the quantum angle. For

most of the talk I will be in the simplest possible case: translations on the

line.

Groups are topological Hausdorff spaces, manifolds, with an extra structure

which enables the multiplications of two elements, the presence of the identity

and of the inverse.

Any topological space can be described by the relations among its points,

which sets are open, closed, the concept of convergence and the like.
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Many of the people in this audience like the alternative, and equivalent, de-

scription given by the commutative algebras of continuous function on the

space. Given a commutative algebra over the complexes, with an involution

(conjugation) and a Banach norm, this is always the algebra of continuous

functions over a topological space

For the sake of completeness and to fix notations I recap some key concepts

Given an algebra A the set of points of the topological space
can be reconstructed as states: maps ρ : f ∈ A → C with the
following properties:

ρ(f∗f) ≥ 0 , unit norm, i.e. ‖ρ‖ = sup‖f‖≤1 ρ(f) = 1 , if the algebra contains

the identity ρ(1) = 1 .

States can be combined, given a number 0 < λ < 1 the sum
λρ1 + (1− λ)ρ2 is still a state.

2



Some states cannot be written as sum of two other states. Those

are called pure states.

Pure states correspond to the points. Namely, at each pure state

δ corresponds a point.

The topology of the set of points is defined by the concept of

convergence. A set of points/states δn converges to δ if

lim
n
δn = δ if ∀f ∈ A then lim

n
δn(f) = δ(f)

The second limit is well defined since it is the convergence of complex numbers, and this is

used for the definition.
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Let us look at the example of the real line R .

We show that pure states are the points for the algebra of continuous func-

tions vanishing at infinity.

The norm of the function f(a) is the sup norm: ‖f‖ = supa |f(a)|

A positive normalised density distribution ρ̃(a) defines a state ρ as

ρ(f) =
∫
da ρ̃(a)f(a)

These states can be the sum of two other states. In several different ways in

fact

Also δ distributions define states.

δa0(f) =
∫

da δ(a− a0)f(a) = f(a0)

They cannot be written as sum of two other states. They are pure states.

4



Let us now apply this point of view to Lie Groups

A Lie group is not just a topological space and a manifold, it has further

structures: product, identity, inverse.

Given two points a1, a2 ∈ G the product µ : G⊗G→ G defines a third element µ(a1, a2) .

In the case of translations we use the notation a1 + a2 .

Given a point there exists the inverse map: G→ G indicated a−1
0 , or for

translations −a1 .

There is a special point, the identity, which for translations we call 0 .

At the level of the algebra this structure is encoded in the properties of a

Hopf Agebra
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Groups are important because they act as symmetries on physical
systems. This is done via a representations on vector spaces.

A representation associates to any element of the group a unitary
operators acting on a vector space. For our translations we will
use as vector space L2 functions on the line Ψ(x)

To each element of the group we associate a unitary operator
as

π(a0)Ψ(x) = Ua0Ψ(x) = ea0∂xΨ(x) = Ψ(x + a0)

Interpreting Ψ(x) = 〈x|Ψ〉 as a “wave function”, we have the
representation of pure states of the group over pure states of
the vector space. We will call the vector space of the Ψ ’s the
carrier space.

6



We can also act with the element of the group on density ma-

trices of the carrier space.

To distinguish the density matrices we use the notation ρ for

these other density matrices.

Do not confuse the states ρ on the group introduced earlier, with the states ρ on the

carrier space.

Then

π(a0)(ρ) = ea
µ
0
∂
∂xµρe−a

µ
0
∂
∂xµ = U(a0)ρU(a0)†

For ρ = |Ψ〉〈Ψ| it reduces to the previous case, and of course 〈x |Ψ〉〈Ψ| x〉 = |Ψ(x)|2 .

Being unitary the representation transforms pure states in pure states. All

this is well known.
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We have therefore associated a transformation to the pure states i.e. to the

points of the manifold. If we want to understand the action of quantum

groups, and somehow connect them to some classical limit, we need to gen-

eralise this action to states which are not the evaluation map at a point.

Consider therefore nonpure states for the algebra of functions on the group.

We are not considering a single point on the group manifold, which corre-

sponds to an element of the group, but a density probability on the group.

In other words we are not considering translations by a definite amount, but

rather a certain probability to have a particular translation.

We want to find an action of these mixed states on the carrier space, some

sort of “ π(ρ) ”. We will see that there is no group structure for the space

of states, and therefore we cannot find a representation as unitary operators.

We will nevertheless define an action of the space of state on the carrier space

and use the same symbol π .
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Start with the simplest nonpure state

ρ̃a1,a2(a) =
1

2
δ(a− a1) +

1

2
δ(a− a2)

This state is just the average of the function f in two different points. We

are averaging two different translations.

ρa1,a2(f) =
1

2
f(a1) +

1

2
f(a2)

Consider now the action on the carrier space. We need reproduce the

weighted sum of two translation. The action is:

π(ρa1,a2)(ρ) =
1

2
U(a1)ρU(a1)† +

1

2
U(a2)ρU(a2)†
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For the case ρ = |Ψ〉〈Ψ| , in the position representation.

〈x|π(ρa1,a2)ρ |x〉 = Tr |x〉〈x|π(ρa1,a2)ρ =
1

2
|Ψ(x + a1)|2 +

1

2
|Ψ(x + a2)|2

This is still a density matrix, but even if we started with a pure state, we end

up with a mixed state!

There is no contradiction in this, because the whole state we started with (group plus

representation space) was mixed.
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We can easily generalise this to a generic ρ(a) :

π(ρ)ρ =
∫

daρ̃(a)U(a)ρU(a)†

and for pure states

Tr |x〉〈x|π(ρ) |Ψ〉〈Ψ| =
∫

da ρ̃(a) |Ψ(x + a)|2

Smeared translations smear states.
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Are these transformations another group?

We should look for the product, the identity and the inverse.

The group I am considering is abelian, therefore certain aspects are simplified, but the

substance will remain in the nonabelian case.

At the level of the algebra the product among points is dually reflected in the

coproduct in the algebra:

∆f =
∑
i

fi ⊗ fi ⇒∆f(a1, a2) = f(a1 + a2)

In the generic case the + must be substituted by the group product.

Given two generic states ρ1, ρ2 , we define the product state as

(ρ1ρ2)(f) =

∫
dada′ρ̃1(a)ρ̃2(a′)∆f(a, a′) =

∫
dada′ρ̃1(a)ρ̃2(a′)f(a+ a′)
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For pure states ρ̃i(a) = δ(a− ai)

(ρ1ρ2)(f) = f(a1 + a2)

It is straightforward to check that (ρ1ρ2)(f) can be written as a single ρ

with a density function ρ̃(a) given by the convolution:

(̃ρ1ρ2)(a) =
∫
db ρ̃1(b) ρ̃2(a− b)

this expression is generic. Purity of the states plays no role.
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The identity functional has the density ρ̃(a) = δ(a) as before.

It reflects the counit, and is denoted by ε , i.e. ε(f) = f(0) .

It remains to verify the existence of the inverse to give a full

group structure.

This is given by the antipode which in this simple case is S(f)(a) = f(−a) .

To the pure state with density δ(a− a1) there corresponds the inverse pure

state with density δ(−a− a1) . This corresponds to a transaltions of −a1 .
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This does not work for mixed states!

Take the simplest example ρa1,a2 . If we act first with the state, and then

with the state ρ−a1,−a2 the result is

ρ−a1,−a2 (ρa1,a2(ρ)) = ρ−a1,−a2

(
1

2
U(a1)ρU(a1)† +

1

2
U(a2)ρU(a2)†

)

=
1

2
ρ +

1

4
U(a1 − a2)ρU(a1 − a2)† +

1

4
U(a2 − a1)ρU(a2 − a1)†

Therefore instead than a group we have a semigroup.

In the dual algebraic setting, a semigroup amounts to a bialgebra, i.e. an algebra endowed

with compatible coproduct and counit. The antipode is missing with respect to the Hopf

algebra case.
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As an example start from a pure gaussian state in the carrier space:

Ψ(x) =
1√

α
√

2π
e−

x2

4α2

Consider ρ̃a1,a2 we considered earlier, with a1 = 0 . The translated mixed

state has the following probability density of finding the particle in x :

1

2
|Ψ(x)|2 +

1

2
|Ψ(x + a2)|2 =

e−
(x−a2)2

2α2 + e−
x2

2α2

2
√

2πα

Compare with the pure state case of a single wave functions sum of two

Gaussians

|Ψa2(x)|2 =

(
e−

(x−a2)2

4α2 + e−
x2

4α2

)2

2
√

2πα

(
e−

a2
2

8α2 + 1

)
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The absence of the mixed terms in the mixed state has the effect

to divide the two maxima in a sharper way. It is more “classical”.
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The probability density for the pure and mixed states. The chosen parameters are α = 0.75, a2 = 2.5 .
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The case in which also the non pure translation is a Gaussian: ρ̃(a) = 1
σ
√

2π
e−

(a−a0)2

2σ2

The probability is position space is:
∫
da ρ̃(a) |Ψ(x + a)|2 = 1√

σ2+α2
√

2π
e−

(x−a0)2

2(σ2+α2)

This appears as a simple spreading of the wave packet, but this would be

misleading, the state resulting from the nonpure translation is non pure and

cannot be described by a single function of x .

Comparing with the pure state obtained translating in a similar Gaussian way

a Gaussian wave function Ψtransl(x) = N
∫
da ρ̃(a)Ψ(x + a)

In this case we have
∣∣Ψtransl(x)

∣∣2 = e
−

(a0−x)2

σ2+2α2

√
π
√
σ2+2α2

Since 2(σ2 + α2) > σ2 + 2α2 we see that the pure state is more localised

than the mixed one.
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Consider now time translations for a free particle.

Let us go in the momentum representation, for which the time

evolution is particularly simple, since momentum is conserved.

The improper state of momentum p is described by the density

matrix |p〉〈p|

The vectors |p〉 are also eigenvectors of the Hamiltonian Ĥ

since

Ĥ |p〉 = E |p〉 =
p2

2m
|p〉
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In this basis translations by a fixed time t0 and energy E are
given by the multiplicative operator

U(E, t0) |p〉 = ei
Et0
~ |p〉

Consider now the one parameter translation group parametrised
by the energy E , not by time, which we fix once for all at the
value t0 .

Physically we are considering an ensemble of particles at different
energies and considering their time translated states.

The value E = 0 is the particle at rest. Conventionally we can consider also

negative values of E as evolving back in time. In this way we have a group.

Since the evolution is a multiplication by a phase, the density matrix |p〉〈p| is

invariant. This is conservation of momentum and energy for a pure eigenstate.
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Adapt the previous reasoning to this case, namely assume that

we do not know precisely the energy for the translation, but we

have a spread of energies which depends on a parameter β with

the dimensions of time.

In particular consider

ρ̃(β) =

√
β

4πE~
e−

Eβ
~

Such that ∫ ∞
0

dE ρ̃(β) = 1
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The seemingly strange form of this density is explained if we

express the two relations in terms of p (taking into account the

difference in the measure):

ρ̃(β) =

√
β

2m~π
e−

p2

2m~β

which is properly normalised with the transformed measure:∫ ∞
−∞

dp ρ̃(β) = 1

This latest expression shows that we are considering a smeared

translation for which the overall momentum vanishes, since the

Gaussian is centered in 0.
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Since we are in the basis in which p̂ and Ĥ are diagonal, the

steps which lead to the new density matrix are trivial.

The unitary operators U(E, t0) are just multiplicative, and can-

cel each other

ρ =
∫

dp

√
β

2m~π
e−

p2

2m~β |p〉〈p|

In the p basis the time t0 does not appear anymore. All we

needed was that the translation was smeared.

As before we started with a pure state and ended up with a

mixed one
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Make the standard identification ( KB Boltzmann constant)

β =
~

KBT

We have found a state with a thermal distribution of
momenta: a thermal state!√

1

2πmKBT
e
− p2

2mKBT

This is the distribution of momenta in a gas at temperature T .
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The appearance of a thermal state in this context has a very
suggestive interpretation.

For a free particle precise knowledge of momentum implies pre-
cise knowledge of energy.

This is in conflict with the generalised energy/time uncertainty
for which

∆H∆t ≥
~
2

As in the case of coherent states the best we can do is to consider
a Gaussian smearing.

The analogy is only heuristic, there is not time operator conju-
gated to the Hamiltonian by a commutation relation.
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Since t0 has disappeared, no matter the time we consider for the evolution,

if there is a time translation it has to be smeared, and this leads to thermal

state.

The free parameter we still have is the amount of smearing:

β . A large β means a precise knowledge of the energy (nearly

zero),and consequently a low temperature. β small gives a high

temperature, and a poor knowledge of the energy.

We have therefore found the relation between time, energy and

temperature in a novel way, without the usual techniques of going

to a strip in the complex plane, or other similar techniques. In

this case the thermal state is a necessary consequence of the

time energy uncertainty.
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Final Considerations

The original motivation of this work was the description of the
action of quanum groups, and in particular θ-Poincaré which will
be discussed in the next talk.

We needed to comprehend the action of a group (or its gener-
alisation) in the cases in which we could not (or wanted not)
identify the transformation with a single point of a topological
space.

Nevertheless I feel that the semigroup we stumbled across is
very interesting, and can have applications even outside of the
quantum group context.

Thermal states are a first application, but there can be others.
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