4D Fuzzy Gravity on a Covariant Noncommutative Space and Unification with Internal Interactions

Stelios Stefas

17 September 2025, Corfu, Greece

EISA

European Institute for Sciences and Their Applications

Introduction

- So far in the gauge theoretic approach of gravity, general relativity is described by gauging the symmetry of the tangent manifold in four dimensions.
- Usually the dimension of the tangent space is considered to be equal to the dimension of the curved manifold. However, the tangent group of a manifold of dimension d is not necessarily SO_d .

 Weinberg '84
- It has been suggested that by gauging an enlarged symmetry of the tangent space in four dimensions one could unify gravity with internal interactions.
 Chamseddine, Mukhanov '10
- We aim to unify FG as a gauge theory with internal interactions under one unification gauge group.

4D Conformal Gravity as a Gauge Theory

- Group parameterizing the symmetry: SO(2,4)
- 15 generators:

$$[\hat{M}_{AB},\hat{M}_{CD}] = \eta_{AC}\hat{M}_{DB} - \eta_{BC}\hat{M}_{DA} - \eta_{AD}\hat{M}_{CB} + \eta_{BD}\hat{M}_{CA}$$

- Indices splitting \to 6 LT $M_{ab},$ 4 translations $P_{a},$ 4 conformal boosts K_{a} and 1 dilatation D
- Action is taken of SO(2,4) invariant quadratic form
- Initial symmetry breaks spontaneously by introducing a scalar in the adjoint rep fixed in the dilatation direction
 Roumelioti, S, Zoupanos '24

SSB by using a scalar in the adjoint representation

Gauge connection:

$$A_{\mu} = rac{1}{2} \omega_{\mu}{}^{ab} M_{ab} + e_{\mu}{}^{a} P_{a} + b_{\mu}{}^{a} K_{a} + \tilde{a}_{\mu} D,$$

Field strength tensor:

$$F_{\mu\nu} = \frac{1}{2} R_{\mu\nu}{}^{ab} M_{ab} + \tilde{R}_{\mu\nu}{}^{a} P_{a} + R_{\mu\nu}{}^{a} K_{a} + R_{\mu\nu} D,$$

where

$$\begin{split} R_{\mu\nu}{}^{ab} &= \partial_{\mu}\omega_{\nu}{}^{ab} - \partial_{\nu}\omega_{\mu}{}^{ab} - \omega_{\mu}{}^{ac}\omega_{\nu c}{}^{b} + \omega_{\nu}{}^{ac}\omega_{\mu c}{}^{b} - 8e_{[\mu}{}^{[a}b_{\nu]}{}^{b]} \\ &= R_{\mu\nu}^{(0)ab} - 8e_{[\mu}{}^{a}b_{\nu]}{}^{b]}, \\ \tilde{R}_{\mu\nu}{}^{a} &= \partial_{\mu}e_{\nu}{}^{a} - \partial_{\nu}e_{\mu}{}^{a} + \omega_{\mu}{}^{ab}e_{\nu b} - \omega_{\nu}{}^{ab}e_{\mu b} - 2\tilde{a}_{[\mu}e_{\nu]}{}^{a} \\ &= T_{\mu\nu}^{(0)a}(e) - 2\tilde{a}_{[\mu}e_{\nu]}{}^{a}, \\ R_{\mu\nu}{}^{a} &= \partial_{\mu}b_{\nu}{}^{a} - \partial_{\nu}b_{\mu}{}^{a} + \omega_{\mu}{}^{ab}b_{\nu b} - \omega_{\nu}{}^{ab}b_{\mu b} + 2\tilde{a}_{[\mu}b_{\nu]}{}^{a} \\ &= T_{\mu\nu}^{(0)a}(b) + 2\tilde{a}_{[\mu}b_{\nu]}{}^{a}, \\ R_{\mu\nu} &= \partial_{\mu}\tilde{a}_{\nu} - \partial_{\nu}\tilde{a}_{\mu} + 4e_{[\mu}{}^{a}b_{\nu]a}, \end{split}$$

 $ightharpoonup R_{\mu\nu}^{(0)ab}$, $T_{\mu\nu}^{(0)a}$ (e): Curvature and Torsion of 4D Poincaré grav.

We start with the following action, which is quadratic in terms of the field strength tensor and introduce a scalar in the adjoint rep.

$$\mathcal{S}_{SO(2,4)} = a_{CG} \int d^4x \left[\operatorname{tr} \epsilon^{\mu\nu\rho\sigma} m\phi F_{\mu\nu} F_{\rho\sigma} + \left(\phi^2 - m^{-2} \mathbb{1}_4 \right) \right],$$

The scalar expanded on the generators is:

$$\phi = \phi^{ab} M_{ab} + \tilde{\phi}^a P_a + \phi^a K_a + \tilde{\phi} D_a$$

We pick the specific gauge in which ϕ is only in the direction of the dilatation generator D:

$$\phi = \phi^0 = \tilde{\phi}D \xrightarrow{\phi^2 = m^{-2} \mathbb{1}_4} \phi = -2m^{-1}D.$$

The resulting broken action is (after employing anticommutator relations and the traces over the generators):

$$\mathcal{S}_{\mathrm{SO}(1,3)} = rac{a_{CG}}{4} \int d^4x \epsilon^{\mu
u
ho\sigma} \epsilon_{abcd} R_{\mu
u}^{\ ab} R_{
ho\sigma}^{\ cd}$$

The \tilde{a}_{μ} and $R_{\mu\nu}$ are not present in the action, so we can set both equal to zero.

$$\begin{split} R_{\mu\nu} &= \partial_{\mu} \tilde{a}_{\nu} - \partial_{\nu} \tilde{a}_{\mu} + 4 e_{[\mu}^{\ a} b_{\nu]a} = 0 \xrightarrow{\tilde{a}_{\mu} = 0} \\ e_{\mu}^{\ a} b_{\nu a} - e_{\nu}^{\ a} b_{\mu a} = 0 \end{split}$$

We examine two possible solutions of the above equation:

•
$$b_{\mu}{}^{a} = ae_{\mu}{}^{a}$$
,

Chamseddine '03

$$\bullet \ b_{\mu}{}^{a} = -\tfrac{1}{4} \left(R_{\mu}{}^{a} + \tfrac{1}{6} R e_{\mu}{}^{a} \right)$$

Kaku, Townsend, van Nieuwenhuizen, 78 Freedman, Van Proyen 'Supergravity' '12

The first choice leads to the Einstein-Hilbert action, while the second leads to Weyl action.

Einstein-Hilbert action

• When $b_{\mu}{}^{a} = ae_{\mu}{}^{a}$, the broken action becomes:

$$\begin{split} \mathcal{S}_{\mathrm{SO}(1,3)} &= \frac{a_{CG}}{4} \int d^4x \epsilon^{\mu\nu\rho\sigma} \epsilon_{abcd} R_{\mu\nu}{}^{ab} R_{\rho\sigma}{}^{cd} \implies \\ \mathcal{S}_{\mathrm{SO}(1,3)} &= \frac{a_{CG}}{4} \int d^4x \epsilon^{\mu\nu\rho\sigma} \epsilon_{abcd} \Big[R_{\mu\nu}^{(0)ab} R_{\rho\sigma}^{(0)cd} - 16 m^2 a R_{\mu\nu}^{(0)ab} e_{\rho}{}^c e_{\sigma}{}^d + \\ &\quad + 64 m^4 a^2 e_{\mu}{}^a e_{\nu}{}^b e_{\rho}{}^c e_{\sigma}{}^d \Big] \end{split}$$

This action consists of three terms: one G-B topological term, the E-H action, and a cosmological constant. For a < 0 describes GR in AdS space.

Weyl action

• When $b_{\mu}{}^{a}=-\frac{1}{4}(R_{\mu}{}^{a}+\frac{1}{6}Re_{\mu}{}^{a})$, the broken action becomes

$$\begin{split} \mathcal{S} &= \frac{\mathbf{a}_{CG}}{4} \int d^4x \epsilon^{\mu\nu\rho\sigma} \epsilon_{abcd} \Big[R_{\mu\nu}^{(0)ab} - \frac{1}{2} \left(\tilde{\mathbf{e}}_{\mu}{}^{[a}R_{\nu}{}^{b]} - \tilde{\mathbf{e}}_{\nu}{}^{[a}R_{\mu}{}^{b]} \right) + \\ &\quad + \frac{1}{3} R \tilde{\mathbf{e}}_{\mu}{}^{[a} \tilde{\mathbf{e}}_{\nu}{}^{b]} \Big] \\ \Big[R_{\rho\sigma}^{(0)cd} - \frac{1}{2} \left(\tilde{\mathbf{e}}_{\rho}{}^{[c}R_{\sigma}{}^{d]} - \tilde{\mathbf{e}}_{\sigma}{}^{[c}R_{\rho}{}^{d]} \right) + \\ &\quad + \frac{1}{3} R \tilde{\mathbf{e}}_{\rho}{}^{[c} \tilde{\mathbf{e}}_{\sigma}{}^{d]} \Big], \end{split}$$

where ${ ilde e}_{\mu}{}^a = m e_{\mu}{}^a$ is the rescaled vierbein. The above action is equal to

$$\mathcal{S} = rac{a_{CG}}{4} \int d^4x \epsilon^{\mu
u
ho\sigma} \epsilon_{abcd} C_{\mu
u}{}^{ab} C_{
ho\sigma}{}^{cd},$$

where $C_{\mu\nu}^{ab}$ is the Weyl conformal tensor.

The NC framework & gauge theories

• Noncommutative space \to replace coordinates with operators X^i ($\in \mathcal{A}$) satisfying: $[X^i, X^j] = i\Theta^{ij}(X)$

Connes '94, Madore '99

- ullet Antisymmetric tensor $\Theta^{ij}(X)$ defines the NC of the space
- Introduction of covariant NC coordinate:

$$\mathcal{X}_{\mu} = \mathcal{X}_{\mu} + \mathcal{A}_{\mu}$$

Madore, Schraml, Schupp, Wess '00

- \bullet Obeys a covariant gauge transformation rule: $\delta \mathcal{X}_{\mu} = \emph{i}[\epsilon, \mathcal{X}_{\mu}]$
- Definition of a NC covariant field strength tensor.

$$\textit{F}_{ab} = \left[\mathcal{X}_{a}, \mathcal{X}_{b}\right] - i\Theta_{ab}$$

Non-Abelian case

• Let us consider the commutator of two elements of an algebra:

$$[\epsilon,A] = [\epsilon^A T^A,A^B T^B] = \frac{1}{2} \{\epsilon^A,A^B\}[T^A,T^B] + \frac{1}{2} [\epsilon^A,A^B]\{T^A,T^B\}$$

- Not possible to restrict to a matrix algebra:
 - ▷ last term neither vanishes in NC nor is an algebra element
- There are two options to overpass the difficulty:

 - Fix the rep and expand algebra so that the anticommutators close

Aschieri, Castellani '09

Ćirić, Gočanin, Konjik, Radovanović '18

We will later employ the second option

The 4d covariant noncommutative space

- Constructing field theories on NC spaces is non-trivial: NC deformations break Lorentz invariance
- Chatzistaviakidis, Johke, Juhhan, Maholakos, Mahousselis, Zoupanos 1
- We will need a 4d covariant NC space to construct a gravity gauge theory
- We will aim for a NC version of dS_4 , described by the embedding $\eta^{AB}X_AX_B=R^2$ into M_5

• The SO(1,4) generators, J_{mn} , m, n = 0, ..., 4, satisfy the commutation relation:

$$[J_{mn},J_{rs}]=i(\eta_{mr}J_{ns}+\eta_{ns}J_{mr}-\eta_{nr}J_{ms}-\eta_{ms}J_{nr})$$

- Consider decomposition of SO(1,4) to maximal subgroup, SO(1,3)
- Introduce a length parameter λ and convert the generators to physical quantities by identifying $\Theta_{ij} = \hbar J_{ii}$, $X_i = \lambda J_{i4}$
- ullet Thus, the commutation relations regarding the operators $\Theta_{\mu
 u}$ and X_{μ} are:

$$\begin{aligned} [\Theta_{ij}, \Theta_{kl}] &= i\hbar \left(\eta_{ik} \Theta_{jl} + \eta_{jl} \Theta_{ik} - \eta_{jk} \Theta_{il} - \eta_{il} \Theta_{jk} \right), \\ [\Theta_{ij}, X_k] &= i\hbar \left(\eta_{ik} X_j - \eta_{jk} X_i \right), \\ [X_i, X_j] &= \frac{i\lambda^2}{\hbar} \Theta_{ij} \end{aligned}$$

• The noncommutativity of coordinates becomes manifest

Yang's Model '47

• Extending covariance, also including momenta as generators \rightarrow use a group with larger symmetry \rightarrow minimum extension: $SO(1,4) \subset SO(1,5)$

Yang '47 imura '02 Hockman Vorlindo '15

Kimura '02, Heckman, Verlinde '15

Steinacker '16

Sperling, Steinacker '17,'19 Burić-Madore '14.'15

1-1--- 7------- /10

Manousselis, Manolakos, Zoupanos '19,'21

• The SO(1,5) generators, $J_{MN}, M, N = 0, \dots, 5$, satisfy the commutation relation:

$$[J_{MN}, J_{P\Sigma}] = i(\eta_{MP}J_{N\Sigma} + \eta_{N\Sigma}J_{MP} - \eta_{NP}J_{M\Sigma} - \eta_{M\Sigma}J_{NP})$$

- Employ a 2-step decomposition $SO(1,5) \supset SO(1,4) \supset SO(1,3)$
- Introducing a length parameter λ (like in Snyder's case) we convert the generators to physical quantities by identifying $\Theta_{ii} = \hbar J_{ii}, \ X_i = \lambda J_{i5}, \ P_i = \frac{\hbar}{\lambda} J_{i4}, \ h = J_{45}$

Yang's Model '47 (Continued)

• Thus, the commutation relations regarding all the operators $\Theta_{\mu\nu}, X_{\mu}, P_{\mu}, h$ are:

$$\begin{split} \left[\Theta_{\mu\nu},\Theta_{\rho\sigma}\right] &= i\hbar \big(\eta_{\mu\rho}\Theta_{\nu\sigma} + \eta_{\nu\sigma}\Theta_{\mu\rho} - \eta_{\nu\rho}\Theta_{\mu\sigma} - \eta_{\mu\sigma}\Theta_{\nu\rho}\big)\,, \\ \left[\Theta_{\mu\nu},X_{\rho}\right] &= i\hbar \big(\eta_{\mu\rho}X_{\nu} - \eta_{\nu\rho}X_{\mu}\big) \\ \left[\Theta_{\mu\nu},P_{\rho}\right] &= i\hbar \big(\eta_{\mu\rho}P_{\nu} - \eta_{\nu\rho}P_{\mu}\big) \\ \left[P_{\mu},P_{\nu}\right] &= i\frac{\hbar}{\lambda^{2}}\Theta_{\mu\nu}\,, \qquad \left[X_{\mu},X_{\nu}\right] &= i\frac{\lambda^{2}}{\hbar}\Theta_{\mu\nu}\,, \\ \left[P_{\mu},h\right] &= -i\frac{\hbar}{\lambda^{2}}X_{\mu}\,, \qquad \left[X_{\mu},h\right] &= i\frac{\lambda^{2}}{\hbar}P_{\mu}\,, \\ \left[P_{\mu},X_{\nu}\right] &= i\hbar \eta_{\mu\nu}h\,, \qquad \left[\Theta_{\mu\nu},h\right] &= 0 \end{split}$$

- Momenta are seamlessly included in algebra
- The above relations describe the noncommutative space

The 4d covariant noncommutative space (Continued)

- We begin by considering the isometry group of $dS_4 \rightarrow SO(1,4)$
- Extending covariance \rightarrow extension of SO(1,4) to SO(1,5)
- Following Yang's example \rightarrow minimal extension of SO(1,5) to SO(1,6) looking for interesting results
- Perform three step decomposition by indices splitting to reach 4d language:

$$SO(1,6)\supset SO(1,5)\supset SO(1,4)\supset SO(1,3)$$

• Introduce length parameter and convert generators to physical quantities.

The commutation relations regarding all the operators Θ_{ij} , X_i , P_i , Q_i , q, p, h are:

$$\begin{aligned} [\Theta_{ij}, \Theta_{kl}] &= i\hbar \left(\eta_{ik} \Theta_{jl} + \eta_{jl} \Theta_{ik} - \eta_{jk} \Theta_{il} - \eta_{il} \Theta_{jk} \right), \quad [Q_i, Q_j] &= i\frac{\hbar}{\lambda^2} \Theta_{ij}, \\ [\Theta_{ij}, Q_k] &= \frac{i}{\hbar} \left(\eta_{ik} Q_j - \eta_{jk} Q_i \right), \quad [\Theta_{ij}, X_k] &= \frac{i}{\hbar} \left(\eta_{ik} X_j - \eta_{jk} X_i \right), \\ [\Theta_{ij}, P_k] &= \frac{i}{\hbar} \left(\eta_{ik} P_j - \eta_{jk} P_i \right), \quad [Q_i, X_j] &= -i\frac{\hbar}{\lambda^2} \eta_{ij} q, \quad [Q_i, P_j] &= -i\frac{\hbar^2}{\lambda^2} \eta_{ij} p, \\ [Q_i, q] &= i\frac{\hbar}{\lambda^2} X_i, \quad [Q_i, p] &= iP_i, \quad [X_i, X_j] &= i\frac{\lambda^2}{\hbar} \Theta_{ij}, \\ [X_i, P_j] &= -i\hbar \eta_{ij} h, \quad [X_i, q] &= -i\frac{\lambda^2}{\hbar} Q_i, \quad [X_i, h] &= i\frac{\lambda^2}{\hbar} P_i, \\ [P_i, P_j] &= i\frac{\hbar}{\lambda^2} \Theta_{ij}, \quad [P_i, p] &= -iQ_i, \quad [P_i, h] &= -i\frac{\hbar}{\lambda^2} X_i, \\ [q, p] &= -ih, \quad [q, h] &= ip, \quad [p, h] &= -iq \end{aligned}$$

They closely resemble conformal algebra!

○ On top of NC coords and momenta, as well as Heisenberg type relation between them, we also get bonus info regarding group that shall be gauged

Noncommutative gauge theory of 4d gravity

- We want to formulate gravitation theory on the above space
- We make use of NC gauge theory toolbox combined with the procedure described in the 4d conformal gravity case

Kimura '02, Heckman, Verlinde '15

- Begin by gauging the isometry group of the space, SO(1,4)
- ullet Anticommutators do not close o fix the representation + enlargement of the algebra Aschieri, Castellani '09

Chatzistavrakidis, Jonke, Jurman, Manolakos, Manousselis, Zoupanos '18

• Noncommutative gauge theory of $SO(2,4) \times U(1)$

Manolakos, Manousselis, Zoupanos '19, '21

Roumelioti, S, Zoupanos '24

- The generators of $SO(2,4) \times U(1)$ are represented by combinations of the 4 \times 4 gamma matrices:
 - ullet six Lorentz rotation generators: $M_{ab}=-rac{i}{4}\left[\gamma_a,\gamma_b
 ight]$
 - four generators for conformal boosts: $K_a = \frac{1}{2} \gamma_a (1 + \gamma_5)$
 - ullet four generators for translations: $P_a=-rac{1}{2}\gamma_a(1-\gamma_5)$
 - ullet one generator for special conformal transformations: $D=-rac{1}{2}\gamma_5$
 - ullet one U(1) generator: 1

 The above expressions of the generators allow the calculation of the algebra they satisfy:

$$\begin{split} [M_{ab}, M_{cd}] &= \eta_{bc} M_{ad} + \eta_{ad} M_{bc} - \eta_{ac} M_{bd} - \eta_{bd} M_{ac}, \\ [K_a, P_b] &= -2 \left(\eta_{ab} D + M_{ab} \right), \, [P_a, D] = P_a, \, [K_a, D] = -K_a, \\ [M_{ab}, K_c] &= \eta_{bc} K_a - \eta_{ac} K_b, \, [M_{ab}, P_c] = \eta_{bc} P_a - \eta_{ac} P_b \end{split}$$

• Generators satisfy the following anticommutation relations:

Smolin '03

$$\{M_{ab}, M_{cd}\} = \frac{1}{2} (\eta_{ac}\eta_{bd} - \eta_{bc}\eta_{ad}) - i\epsilon_{abcd}D,$$

$$\{M_{ab}, P_c\} = +i\epsilon_{abcd}P^d,$$

$$\{M_{ab}, K_c\} = -i\epsilon_{abcd}K^d,$$

$$\{M_{ab}, D\} = 2M_{ab}D,$$

$$\{P_a, K_b\} = 4M_{ab}D + \eta_{ab},$$

$$\{K_a, K_b\} = \{P_a, P_b\} = -\eta_{ab},$$

$$\{P_a, D\} = \{K_a, D\} = 0.$$

Noncommutative Gauge Theory

• Since the gauge group is determined to be $SO(2,4) \times U(1)$, we can move on with the gauging procedure.

Manolakos, Manousselis, Zoupanos '21

- ullet Consider the *covariant coordinate* $\mathcal{X}_{\mu} = \mathcal{X}_{\mu} + \mathcal{A}_{\mu}$
- Determine appropriate covariant field strength tensor $\mathcal{R}_{\mu\nu} = [\mathcal{X}_{\mu}, \mathcal{X}_{\nu}] i \frac{\lambda^2}{\hbar} \hat{\Theta}_{\mu\nu},$ where $\hat{\Theta}_{\mu\nu} = \Theta_{\mu\nu} + \mathcal{B}_{\mu\nu}$, the covariant noncommutative tensor

For the SSB to take place we:

- \hookrightarrow Introduce scalar field $\Phi(X)$ belonging in the 2nd rank antisym. of SO(4), charged under $U(1) \to U(1)$ breaks and doesn't appear in final action
- \hookrightarrow Gauge fix $\Phi(X)$ in the direction that leads to Lorentz group

Gauge connection and field strength tensor decompose as:

$$A_{\mu}(X) = e_{\mu}^{\ a} \otimes P_a + \omega_{\mu}^{\ ab} \otimes M_{ab} + b_{\mu}^{\ a} \otimes K_a + \tilde{a}_{\mu} \otimes D + a_{\mu} \otimes \mathbb{1}_4$$
.

$$\mathcal{R}_{\mu\nu}(X) = \tilde{R}_{\mu\nu}^{\ a} \otimes P_{a} + R_{\mu\nu}^{\ ab} \otimes M_{ab} + R_{\mu\nu}^{\ a} \otimes K_{a} + \tilde{R}_{\mu\nu} \otimes D + R_{\mu\nu} \otimes \mathbb{1}_{4} \,.$$

The component curvatures:

$$\begin{split} R_{\mu\nu} &= [X_{\mu}, a_{\nu}] - [X_{\nu}, a_{\mu}] + [a_{\mu}, a_{\nu}] + [b_{\mu}^{\ a}, b_{\nu a}] + [\tilde{a}_{\mu}, \tilde{a}_{\nu}] + \frac{1}{2} [\omega_{\mu}^{\ ab}, \omega_{\nu ab}] \\ &+ [e_{\mu a}, e_{\nu}^{\ a}] - \frac{i\hbar}{\lambda^{2}} B_{\mu\nu} \\ \tilde{R}_{\mu\nu} &= [X_{\mu}, \tilde{a}_{\nu}] + [a_{\mu}, \tilde{a}_{\nu}] - [X_{\nu}, \tilde{a}_{\mu}] - [a_{\nu}, \tilde{a}_{\mu}] - i\{b_{\mu a}, e_{\nu}^{\ a}\} + i\{b_{\nu a}, e_{\mu}^{\ a}\} \\ &+ \frac{1}{2} \epsilon_{abcd} [\omega_{\mu}^{\ ab}, \omega_{\nu}^{\ cd}] - \frac{i\hbar}{\lambda^{2}} \tilde{B}_{\mu\nu} \\ R_{\mu\nu}^{\ a} &= [X_{\mu}, b_{\nu}^{\ a}] + [a_{\mu}, b_{\nu}^{\ a}] - [X_{\nu}, b_{\mu}^{\ a}] - [a_{\nu}, b_{\mu}^{\ a}] + i\{b_{\mu b}, \omega_{\mu}^{\ ab}\} - i\{b_{\nu b}, \omega_{\mu}^{\ ab}\} \\ &+ i\{\tilde{a}_{\mu}, e_{\nu}^{\ a}\} - i\{\tilde{a}_{\nu}, e_{\mu}^{\ a}\} + \epsilon_{abcd} ([e_{\mu}^{\ b}, \omega_{\nu}^{\ cd}] - [e_{\nu}^{\ b}, \omega_{\mu}^{\ cd}]) - \frac{i\hbar}{\lambda^{2}} B_{\mu\nu}^{\ a} \\ \tilde{R}_{\mu\nu}^{\ a} &= [X_{\mu}, e_{\nu}^{\ a}] + [a_{\mu}, e_{\nu}^{\ a}] - [X_{\nu}, e_{\mu}^{\ a}] - [a_{\nu}, e_{\mu}^{\ a}] + i\{b_{\mu}^{\ a}, \tilde{a}_{\nu}\} - i\{b_{\nu}^{\ a}, \tilde{a}_{\mu}\} \\ &- ([b_{\mu}^{\ b}, \omega_{\nu}^{\ cd}] - [b_{\nu}^{\ b}, \omega_{\mu}^{\ cd}]) \epsilon_{abcd} - i\{\omega_{\mu}^{\ ab}, e_{\nu b}\} + i\{\omega_{\nu}^{\ ab}, e_{\mu b}\} - \frac{i\hbar}{\lambda^{2}} \tilde{B}_{\mu\nu}^{\ a} \\ R_{\mu\nu}^{\ ab} &= [X_{\mu}, \omega_{n}^{\ ab}] + [a_{\mu}, \omega_{\nu}^{\ ab}] - [X_{\nu}, \omega_{\mu}^{\ ab}] - [a_{\nu}, \omega_{\mu}^{\ cd}]) \epsilon_{abcd} + 2i\{\omega_{\mu}^{\ ac}, \omega_{\nu}^{\ b}\} + ([b_{\mu}^{\ c}, e_{\nu}^{\ d}] - [b_{\nu}^{\ c}, e_{\nu}^{\ d}]) \epsilon_{abcd} + 2i\{\omega_{\mu}^{\ ac}, \omega_{\nu}^{\ b}\} \\ &+ 2i\{e_{\mu}^{\ a}, e_{\nu}^{\ b}\} - \frac{i\hbar}{\sqrt{2}} B_{\mu\nu}^{\ ab} \end{split}$$

Symmetry Breaking

Introduction of auxiliary field $\Phi(X)$ charged under U(1):

$$\Phi = \tilde{\phi}^{a} \otimes P_{a} + \phi^{ab} \otimes M_{ab} + \phi^{a} \otimes K_{a} + \phi \otimes \mathbb{1}_{4} + \tilde{\phi} \otimes D$$

into the action:

$$S = \mathsf{Trtr}_{\mathsf{G}} \, \lambda \Phi(\mathsf{X}) \mathcal{R}_{\mu\nu} \mathcal{R}_{\rho\sigma} \varepsilon^{\mu\nu\rho\sigma} + \eta (\Phi(\mathsf{X})^2 - \lambda^{-2} \mathbb{1}_{\mathsf{N}} \otimes \mathbb{1}_{\mathsf{4}}) \,,$$

when the auxiliary field is gauge fixed as:

$$\Phi(X) = \tilde{\phi}(X) \otimes D|_{\tilde{\phi} = -2\lambda^{-1}} = -2\lambda^{-1} \mathbb{1}_{N} \otimes D$$

it induces a symmetry breaking:

$$oxed{\mathcal{S}_{br} = \operatorname{Tr}\left(rac{\sqrt{2}}{4}arepsilon_{abcd}R_{\mu
u}^{\phantom{\mu
u}ab}R_{
ho\sigma}^{cd} - 4R_{\mu
u} ilde{R}_{
ho\sigma}
ight)}arepsilon^{\mu
u
ho\sigma}}$$

Residual symmetry: $SO(1,3) \times U(1)$

The following components do not appear in the action, so we can take the constraints:

$$R_{\mu\nu}^{~a}=rac{i}{2} ilde{R}_{\mu\nu}^{~a}=0$$
 leading to $ilde{a}_{\mu}=0,~b_{\mu}^{~a}=rac{i}{2}e_{\mu}^{~a}$ and $B_{\mu\nu}^{~a}=rac{i}{2} ilde{B}_{\mu\nu}^{~a}$

Chamseddine '02

Unification of FG with Internal Interactions

- Fuzzy gravity is based on gauging $SO(2,4) \times U(1)$.
- Internal Interactions by SO(10) (GUT).
- Spontaneous symmetry breaking is used to reach wanted gauge groups.

In order to have a chiral theory we need an SO(4n+2) group. The smallest unification group in which we can accommodate chiral fermions is SO(2,16) from which:

$$SO(2,16) \xrightarrow{SSB} SO(2,4) \times SO(12)$$

and

$$SO(12) \xrightarrow{SSB} SO(10) \times [U(1)].$$

Breakings and branching rules

• We start from $SO(2,16) \sim SO(18)$ (Euclidean signature)

$$SO(18)\supset SU(4)\times SO(12)$$
 ${\bf 18}=({\bf 6},{\bf 1})+({\bf 1},{\bf 12})$ vector ${\bf 153}=({\bf 15},{\bf 1})+({\bf 6},{\bf 12})+({\bf 1},{\bf 66})$ adjoint ${\bf 256}=({\bf 4},\overline{\bf 32})+(\overline{\bf 4},{\bf 32})$ spinor ${\bf 170}=({\bf 1},{\bf 1})+({\bf 6},{\bf 12})+({\bf 20}',{\bf 1})+({\bf 1},{\bf 77})$ 2nd rank symmetric

Giving VEV in the $\langle \mathbf{1}, \mathbf{1} \rangle$ component of a scalar in **170** leads to $SU(4) \times SO(12)$.

Breakings and branching rules (Continued)

Moving on with the SO(12):

$$SO(12) \supset SO(10) \times U(1)$$

66 = (**1**)(0) + (**10**)(2) + (**10**)(-2) + (**45**)(0)

we break it down to $SO(10) \times U(1)$ by giving VEV to the $\langle (\mathbf{1})(0) \rangle$ of the **66** rep.

• Lastly, regarding SU(4):

$$\begin{split} SU(4) \supset SU(2) \times SU(2) \times U(1) \\ \mathbf{4} &= (\mathbf{2},\mathbf{1})(1) + (\mathbf{1},\mathbf{2})(-1) \\ \mathbf{15} &= (\mathbf{1},\mathbf{1})(0) + (\mathbf{2},\mathbf{2})(2) + (\mathbf{2},\mathbf{2})(-2) + (\mathbf{3},\mathbf{1})(0) + (\mathbf{1},\mathbf{3})(0), \end{split}$$

we break it down to $SU(2) \times SU(2) \times U(1)$ by giving VEV to a scalar in the $\langle (\mathbf{1},\mathbf{1}) \rangle$ direction of the **15** rep.

Fermions in Fuzzy Gravity and Unification with Internal Interactions

- Fermions should be chiral in the original theory to have a chance to survive in low energies and also appear in a matrix representation since FG is a matrix model
- \triangleright Instead of using fermions in fundamental, spinor or adjoint reps of an SU(N), we can use bi-fundamental reps of cross product of gauge groups.

Chatzistavrakidis, Steinacker, Zoupanos '10

Interesting example N = 1, $SU(N)^k$ models:

$$SU(N)_1 \times SU(N)_2 \times ... \times SU(N)_k$$

with matter content

$$(N, \overline{N}, 1, ..., 1) + (1, N, \overline{N}, ..., 1) + ... + (\overline{N}, 1, 1, ..., N)$$

with successful phenomenology, N = 1, $SU(3)^3$.

Ma, Mondragon, Zoupanos '04

Fermions in Fuzzy Gravity and Unification with Internal Interactions (Continued)

- Description In FG choosing to start with the $SU(4) \times SO(12)$ as the initial gauge theory with fermions in the $(4, \overline{32}) + (\overline{4}, 32)$ we satisfy the criteria to obtain chiral fermions in tensorial representation.
- \triangleright The gauge U(1) of FG due to the anticommutation relations, is identified with the one appearing in the $SO(12) \supset SO(10) \times U(1)$.

Fermions

We start with fermions in the $(4, \overline{32}) + (\overline{4}, 32)$ of the $SU(4) \times SO(12)$. Then

$$SO(12) \supset SO(10) \times U(1)$$

 $\mathbf{32} = (\overline{\mathbf{16}})(1) + (\mathbf{16})(-1)$

On the other hand

$$SU(4) \supset SU(2) \times SU(2) \times U(1)$$

 $\mathbf{4} = (\mathbf{2}, \mathbf{1})(1) + (\mathbf{1}, \mathbf{2})(-1).$

Following the full sequence of symmetry breakings, by imposing the Weyl condition, we will be left with four families of fermions

$$4 \times \mathbf{16}_L(-1)$$

Finally, it is noted that the corresponding U(1) gauge boson will in turn vanish using the recipe presented in the 4d conformal case.

Thank you for your attention!