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Introduction

So far in the gauge theoretic approach of gravity, general relativity is
described by gauging the symmetry of the tangent manifold in four
dimensions.
Usually the dimension of the tangent space is considered to be equal to the
dimension of the curved manifold. However, the tangent group of a manifold
of dimension d is not necessarily SOd . Weinberg ’84

It has been suggested that by gauging an enlarged symmetry of the tangent
space in four dimensions one could unify gravity with internal interactions.
Chamseddine, Mukhanov ’10

We aim to unify FG as a gauge theory with internal interactions under one
unification gauge group.
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4D Conformal Gravity as a Gauge Theory

Group parameterizing the symmetry: SO(2, 4)

15 generators:

[M̂AB , M̂CD] = ηAC M̂DB − ηBC M̂DA − ηADM̂CB + ηBDM̂CA

Indices splitting → 6 LT Mab, 4 translations Pa, 4 conformal boosts Ka and
1 dilatation D
Action is taken of SO(2, 4) invariant quadratic form

Initial symmetry breaks spontaneously by introducing a scalar in the adjoint
rep fixed in the dilatation direction Roumelioti, S, Zoupanos ’24
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SSB by using a scalar in the adjoint representation
Gauge connection:

Aµ = 1
2ωµ

abMab + eµ
aPa + bµ

aKa + ãµD,

Field strength tensor:

Fµν = 1
2Rµν

abMab + R̃µν
aPa + Rµν

aKa + RµνD,

where
Rµν

ab = ∂µων
ab − ∂νωµ

ab − ωµ
acωνc

b + ων
acωµc

b − 8e[µ
[abν]

b]

= R(0)ab
µν − 8e[µ

abν]
b],

R̃µν
a = ∂µeν

a − ∂νeµ
a + ωµ

abeνb − ων
abeµb − 2ã[µeν]

a

= T (0)a
µν (e) − 2ã[µeν]

a,

Rµν
a = ∂µbν

a − ∂νbµ
a + ωµ

abbνb − ων
abbµb + 2ã[µbν]

a

= T (0)a
µν (b) + 2ã[µbν]

a,

Rµν = ∂µãν − ∂ν ãµ + 4e[µ
abν]a,

▷ R(0)ab
µν , T (0)a

µν (e): Curvature and Torsion of 4D Poincaré grav.
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We start with the following action, which is quadratic in terms of the field
strength tensor and introduce a scalar in the adjoint rep.

SSO(2,4) = aCG

∫
d4x

[
tr ϵµνρσmϕFµνFρσ +

(
ϕ2 − m−2

14
)]

,

The scalar expanded on the generators is:

ϕ = ϕabMab + ϕ̃aPa + ϕaKa + ϕ̃D,

We pick the specific gauge in which ϕ is only in the direction of the dilatation
generator D:

ϕ = ϕ0 = ϕ̃D ϕ2=m−2
14−−−−−−→ ϕ = −2m−1D.

The resulting broken action is (after employing anticommutator relations and the
traces over the generators):

SSO(1,3) = aCG
4

∫
d4xϵµνρσϵabcdRµν

abRρσ
cd
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The ãµ and Rµν are not present in the action, so we can set both equal to zero.

Rµν = ∂µãν − ∂ν ãµ + 4e[µ
abν]a = 0 ãµ=0−−−→

eµ
abνa − eν

abµa = 0

We examine two possible solutions of the above equation:
bµ

a = aeµ
a, Chamseddine ’03

bµ
a = − 1

4
(
Rµ

a + 1
6 Reµ

a) Kaku, Townsend, van Nieuwenhuizen, 78
Freedman, Van Proyen ‘Supergravity’ ’12

The first choice leads to the Einstein-Hilbert action, while the second leads to
Weyl action.
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Einstein-Hilbert action

When bµ
a = aeµ

a, the broken action becomes:

SSO(1,3) = aCG
4

∫
d4xϵµνρσϵabcdRµν

abRρσ
cd =⇒

SSO(1,3) = aCG
4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν R(0)cd
ρσ − 16m2aR(0)ab

µν eρ
ceσ

d+

+ 64m4a2eµ
aeν

beρ
ceσ

d
]

This action consists of three terms: one G-B topological term, the E-H
action, and a cosmological constant. For a < 0 describes GR in AdS space.
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Weyl action

When bµ
a = − 1

4 (Rµ
a + 1

6 Reµ
a), the broken action becomes

S = aCG
4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν − 1
2

(
ẽµ

[aRν
b] − ẽν

[aRµ
b]
)

+

+ 1
3Rẽµ

[aẽν
b]
]

[
R(0)cd

ρσ − 1
2

(
ẽρ

[cRσ
d] − ẽσ

[cRρ
d]
)

+

+ 1
3Rẽρ

[c ẽσ
d]
]
,

where ẽµ
a = meµ

a is the rescaled vierbein. The above action is equal to

S = aCG
4

∫
d4xϵµνρσϵabcdCµν

abCρσ
cd ,

where Cµν
ab is the Weyl conformal tensor.
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The NC framework & gauge theories

Noncommutative space → replace coordinates with operators X i (∈ A)
satisfying: [X i , X j ] = iΘij(X )

Connes ’94, Madore ’99

Antisymmetric tensor Θij(X ) - defines the NC of the space

Introduction of covariant NC coordinate:

Xµ = Xµ + Aµ

Madore, Schraml, Schupp, Wess ’00

Obeys a covariant gauge transformation rule: δXµ = i [ϵ, Xµ]

Definition of a NC covariant field strength tensor:

Fab = [Xa, Xb] − iΘab
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Non-Abelian case

Let us consider the commutator of two elements of an algebra:

[ϵ, A] = [ϵAT A, ABT B] = 1
2{ϵA, AB}[T A, T B] + 1

2 [ϵA, AB]{T A, T B}

Not possible to restrict to a matrix algebra:
▷ last term neither vanishes in NC nor is an algebra element

There are two options to overpass the difficulty:
▷ Consider the universal enveloping algebra
▷ Fix the rep and expand algebra so that the anticommutators close

Aschieri, Castellani ’09
Ćirić, Gočanin, Konjik, Radovanović ’18

▷ We will later employ the second option
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The 4d covariant noncommutative space

Constructing field theories on NC spaces is non-trivial: NC deformations
break Lorentz invariance

Such an example is the Fuzzy Sphere (2d space) - coords are identified as
rescaled SU(2) generators Madore ’92, Hammou, Lagraa, Sheikh Jabbari ’02

Vitale, Wallet ’13, Vitale ’14, Jurman, Steinacker ’14
Chatzistavrakidis, Jonke, Jurman, Manolakos, Manousselis, Zoupanos ’18

We will need a 4d covariant NC space to construct a gravity gauge theory

We will aim for a NC version of dS4, described by the embedding
ηABXAXB = R2 into M5
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Snyder’s Model ’47 Snyder ’47

The SO(1,4) generators, Jmn, m, n = 0, . . . , 4, satisfy the commutation
relation:

[Jmn, Jrs ] = i(ηmr Jns + ηnsJmr − ηnr Jms − ηmsJnr )

Consider decomposition of SO(1, 4) to maximal subgroup, SO(1, 3)
Introduce a length parameter λ and convert the generators to physical
quantities by identifying Θij = ℏJij , Xi = λJi4

Thus, the commutation relations regarding the operators Θµν and Xµ are:

[Θij , Θkl ] = iℏ (ηikΘjl + ηjlΘik − ηjkΘil − ηilΘjk) ,

[Θij , Xk ] = iℏ (ηikXj − ηjkXi) ,

[Xi , Xj ] = iλ2

ℏ
Θij

The noncommutativity of coordinates becomes manifest
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Yang’s Model ’47

Extending covariance, also including momenta as generators → use a group
with larger symmetry → minimum extension: SO(1, 4) ⊂ SO(1, 5)

Yang ’47
Kimura ’02, Heckman, Verlinde ’15

Steinacker ’16
Sperling, Steinacker ’17,’19

Burić-Madore ’14,’15
Manousselis, Manolakos, Zoupanos ’19,’21

The SO(1,5) generators, JMN , M, N = 0, . . . , 5, satisfy the commutation
relation:

[JMN , JPΣ] = i(ηMPJNΣ + ηNΣJMP − ηNPJMΣ − ηMΣJNP)

Employ a 2-step decomposition SO(1, 5) ⊃ SO(1, 4) ⊃ SO(1, 3)
Introducing a length parameter λ (like in Snyder’s case) we convert the
generators to physical quantities by identifying
Θij = ℏJij , Xi = λJi5, Pi = ℏ

λ Ji4, h = J45
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Yang’s Model ’47 (Continued)
Thus, the commutation relations regarding all the operators Θµν , Xµ, Pµ, h
are:

[Θµν , Θρσ] = iℏ(ηµρΘνσ + ηνσΘµρ − ηνρΘµσ − ηµσΘνρ) ,

[Θµν , Xρ] = iℏ(ηµρXν − ηνρXµ)
[Θµν , Pρ] = iℏ(ηµρPν − ηνρPµ)

[Pµ, Pν ] = i ℏ
λ2 Θµν , [Xµ, Xν ] = i λ2

ℏ
Θµν ,

[Pµ, h] = −i ℏ
λ2 Xµ , [Xµ, h] = i λ2

ℏ
Pµ ,

[Pµ, Xν ] = iℏηµνh , [Θµν , h] = 0

Momenta are seamlessly included in algebra
▷ Momentum space becomes quantized
▷ Heisenberg type CR between momenta and coords

The above relations describe the noncommutative space
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The 4d covariant noncommutative space (Continued)

We begin by considering the isometry group of dS4 →SO(1, 4)
Extending covariance → extension of SO(1, 4) to SO(1, 5)
Following Yang’s example → minimal extension of SO(1, 5) to SO(1, 6)
looking for interesting results
Perform three step decomposition by indices splitting to reach 4d language:

SO(1, 6) ⊃ SO(1, 5) ⊃ SO(1, 4) ⊃ SO(1, 3)

Introduce length parameter and convert generators to physical quantities.
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The commutation relations regarding all the operators Θij , Xi , Pi , Qi , q, p, h are:

[Θij , Θkl ] = iℏ (ηikΘjl + ηjlΘik − ηjkΘil − ηilΘjk) , [Qi , Qj ] = i ℏ
λ2 Θij ,

[Θij , Qk ] = i
ℏ

(ηikQj − ηjkQi) , [Θij , Xk ] = i
ℏ

(ηikXj − ηjkXi) ,

[Θij , Pk ] = i
ℏ

(ηikPj − ηjkPi) , [Qi , Xj ] = −i ℏ
λ2 ηijq, [Qi , Pj ] = −i ℏ

2

λ2 ηijp,

[Qi , q] = i ℏ
λ2 Xi , [Qi , p] = iPi , [Xi , Xj ] = i λ2

ℏ
Θij ,

[Xi , Pj ] = −iℏηijh, [Xi , q] = −i λ2

ℏ
Qi , [Xi , h] = i λ2

ℏ
Pi ,

[Pi , Pj ] = i ℏ
λ2 Θij , [Pi , p] = −iQi , [Pi , h] = −i ℏ

λ2 Xi ,

[q, p] = −ih, [q, h] = ip, [p, h] = −iq

They closely resemble conformal algebra!
▷ On top of NC coords and momenta, as well as Heisenberg type relation

between them, we also get bonus info regarding group that shall be gauged
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Noncommutative gauge theory of 4d gravity

We want to formulate gravitation theory on the above space
We make use of NC gauge theory toolbox combined with the procedure
described in the 4d conformal gravity case

Kimura ’02, Heckman, Verlinde ’15

Begin by gauging the isometry group of the space, SO(1, 4)
Anticommutators do not close → fix the representation + enlargement of the
algebra Aschieri, Castellani ’09

Chatzistavrakidis, Jonke, Jurman, Manolakos, Manousselis, Zoupanos ’18

Noncommutative gauge theory of SO(2, 4) × U(1)
Manolakos, Manousselis, Zoupanos ’19, ’21

Roumelioti, S, Zoupanos ’24
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The generators of SO(2, 4) × U(1) are represented by combinations of the
4 × 4 gamma matrices:

six Lorentz rotation generators: Mab = − i
4 [γa, γb]

four generators for conformal boosts: Ka = 1
2γa(1 + γ5)

four generators for translations: Pa = −1
2γa(1 − γ5)

one generator for special conformal transformations: D = −1
2γ5

one U(1) generator: 1
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The above expressions of the generators allow the calculation of the algebra
they satisfy:

[Mab, Mcd ] = ηbcMad + ηadMbc − ηacMbd − ηbdMac ,

[Ka, Pb] = −2 (ηabD + Mab) , [Pa, D] = Pa, [Ka, D] = −Ka,

[Mab, Kc ] = ηbcKa − ηacKb, [Mab, Pc ] = ηbcPa − ηacPb

Generators satisfy the following anticommutation relations:
Smolin ’03

{Mab, Mcd} = 1
2 (ηacηbd − ηbcηad) − iϵabcdD,

{Mab, Pc} = +iϵabcdPd ,

{Mab, Kc} = −iϵabcdK d ,

{Mab, D} = 2MabD,

{Pa, Kb} = 4MabD + ηab,

{Ka, Kb} = {Pa, Pb} = −ηab,

{Pa, D} = {Ka, D} = 0.
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Noncommutative Gauge Theory

Since the gauge group is determined to be SO(2, 4) × U(1), we can move on
with the gauging procedure.

Manolakos, Manousselis, Zoupanos ’21

Consider the covariant coordinate Xµ = Xµ + Aµ

Determine appropriate covariant field strength tensor
Rµν = [Xµ, Xν ] − i λ2

ℏ Θ̂µν ,
where Θ̂µν = Θµν + Bµν , the covariant noncommutative tensor

For the SSB to take place we:
↪→ Introduce scalar field Φ(X ) belonging in the 2nd rank antisym. of SO(4),

charged under U(1) → U(1) breaks and doesn’t appear in final action
↪→ Gauge fix Φ(X ) in the direction that leads to Lorentz group
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Gauge connection and field strength tensor decompose as:
Aµ(X) = e a

µ ⊗ Pa + ω ab
µ ⊗ Mab + b a

µ ⊗ Ka + ãµ ⊗ D + aµ ⊗ 14 .

Rµν(X) = R̃ a
µν ⊗ Pa + R ab

µν ⊗ Mab + R a
µν ⊗ Ka + R̃µν ⊗ D + Rµν ⊗ 14 .

The component curvatures:

Rµν = [Xµ, aν ] − [Xν , aµ] + [aµ, aν ] + [b a
µ , bνa] + [ãµ, ãν ] +

1
2

[ω ab
µ , ωνab ]

+ [eµa, e a
ν ] −

iℏ
λ2 Bµν

R̃µν = [Xµ, ãν ] + [aµ, ãν ] − [Xν , ãµ] − [aν , ãµ] − i{bµa, e a
ν } + i{bνa, e a

µ }

+
1
2

ϵabcd [ω ab
µ , ω cd

ν ] −
iℏ
λ2 B̃µν

R a
µν = [Xµ, b a

ν ] + [aµ, b a
ν ] − [Xν , b a

µ ] − [aν , b a
µ ] + i{bµb , ω ab

µ } − i{bνb , ω ab
µ }

+ i{ãµ, e a
ν } − i{ãν , e a

µ } + ϵabcd ([e b
µ , ω cd

ν ] − [e b
ν , ω cd

µ ]) −
iℏ
λ2 B a

µν

R̃ a
µν = [Xµ, e a

ν ] + [aµ, e a
ν ] − [Xν , e a

µ ] − [aν , e a
µ ] + i{b a

µ , ãν} − i{b a
ν , ãµ}

− ([b b
µ , ω cd

ν ] − [b b
ν , ω cd

µ ])ϵabcd − i{ω ab
µ , eνb} + i{ω ab

ν , eµb} −
iℏ
λ2 B̃ a

µν

R ab
µν = [Xµ, ω ab

n ] + [aµ, ω ab
ν ] − [Xν , ω ab

µ ] − [aν , ω ab
m ] + 2i{b a

µ , b b
ν } + ([b c

µ , e d
ν ]

− [b c
ν , e d

µ ])ϵabcd +
1
2

([ãµ, ω cd
ν ] − [ãν , ω cd

µ ])ϵabcd + 2i{ω ac
µ , ω b

ν c}

+ 2i{e a
µ , e b

ν } −
iℏ
λ2 B ab

µν
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Symmetry Breaking
Introduction of auxiliary field Φ(X ) charged under U(1):

Φ = ϕ̃a ⊗ Pa + ϕab ⊗ Mab + ϕa ⊗ Ka + ϕ ⊗ 14 + ϕ̃ ⊗ D
into the action:

S = TrtrG λΦ(X )RµνRρσεµνρσ + η(Φ(X )2 − λ−2
1N ⊗ 14) ,

when the auxiliary field is gauge fixed as:
Φ(X ) = ϕ̃(X ) ⊗ D|ϕ̃=−2λ−1 = −2λ−1

1N ⊗ D
it induces a symmetry breaking:

Sbr = Tr
(√

2
4 εabcdR ab

µν R cd
ρσ − 4RµνR̃ρσ

)
εµνρσ

Residual symmetry: SO(1, 3) × U(1)

The following components do not appear in the action, so we can take the constraints:

R a
µν = i

2 R̃ a
µν = 0 leading to ãµ = 0, b a

µ = i
2 e a

µ and B a
µν = i

2 B̃ a
µν Chamseddine ’02
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Unification of FG with Internal Interactions

Fuzzy gravity is based on gauging SO(2, 4) × U(1).
Internal Interactions by SO(10) (GUT).
Spontaneous symmetry breaking is used to reach wanted gauge groups.

In order to have a chiral theory we need an SO(4n + 2) group. The smallest
unification group in which we can accommodate chiral fermions is SO(2, 16) from
which:

SO(2, 16) SSB−−→ SO(2, 4) × SO(12)

and

SO(12) SSB−−→ SO(10) × [U(1)].

S. Stefas 4D Fuzzy Gravity on a Covariant Noncommutative Space and Unification with Internal Interactions 23 / 29



Breakings and branching rules

We start from SO(2, 16) ∼ SO(18) (Euclidean signature)

SO(18) ⊃ SU(4) × SO(12)
18 = (6, 1) + (1, 12) vector

153 = (15, 1) + (6, 12) + (1, 66) adjoint
256 = (4, 32) + (4, 32) spinor
170 = (1, 1) + (6, 12) + (20′, 1) + (1, 77) 2nd rank symmetric

Giving VEV in the ⟨1, 1⟩ component of a scalar in 170 leads to
SU(4) × SO(12).
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Breakings and branching rules (Continued)

Moving on with the SO(12):

SO(12) ⊃ SO(10) × U(1)
66 = (1)(0) + (10)(2) + (10)(−2) + (45)(0)

we break it down to SO(10) × U(1) by giving VEV to the ⟨(1)(0)⟩ of the 66
rep.
Lastly, regarding SU(4):

SU(4) ⊃ SU(2) × SU(2) × U(1)
4 = (2, 1)(1) + (1, 2)(−1)

15 = (1, 1)(0) + (2, 2)(2) + (2, 2)(−2) + (3, 1)(0) + (1, 3)(0),

we break it down to SU(2) × SU(2) × U(1) by giving VEV to a scalar in the
⟨(1, 1)⟩ direction of the 15 rep.
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Fermions in Fuzzy Gravity and Unification with Internal
Interactions

Fermions should be chiral in the original theory to have a chance to survive in
low energies and also appear in a matrix representation since FG is a matrix
model

▷ Instead of using fermions in fundamental, spinor or adjoint reps of an SU(N),
we can use bi-fundamental reps of cross product of gauge groups.

Chatzistavrakidis, Steinacker, Zoupanos ’10
Interesting example N = 1, SU(N)k models:

SU(N)1 × SU(N)2 × ... × SU(N)k

with matter content

(N, N, 1, ..., 1) + (1, N, N, ..., 1) + ... + (N, 1, 1, ..., N)

with successful phenomenology, N = 1, SU(3)3.
Ma, Mondragon, Zoupanos ’04
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Fermions in Fuzzy Gravity and Unification with Internal
Interactions (Continued)

▷ In FG choosing to start with the SU(4) × SO(12) as the initial gauge theory
with fermions in the (4, 32) + (4, 32) we satisfy the criteria to obtain chiral
fermions in tensorial representation.

▷ The gauge U(1) of FG due to the anticommutation relations, is identified
with the one appearing in the SO(12) ⊃ SO(10) × U(1).
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Fermions

We start with fermions in the (4, 32) + (4, 32) of the SU(4) × SO(12).
Then

SO(12) ⊃ SO(10) × U(1)
32 = (16)(1) + (16)(−1)

On the other hand

SU(4) ⊃ SU(2) × SU(2) × U(1)
4 = (2, 1)(1) + (1, 2)(−1).

Following the full sequence of symmetry breakings, by imposing the Weyl
condition, we will be left with four families of fermions

4 × 16L(−1)

Finally, it is noted that the corresponding U(1) gauge boson will in turn vanish
using the recipe presented in the 4d conformal case.
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Thank you for your attention!
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