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Introduction

@ So far in the gauge theoretic approach of gravity, general relativity is
described by gauging the symmetry of the tangent manifold in four
dimensions.

@ Usually the dimension of the tangent space is considered to be equal to the
dimension of the curved manifold. However, the tangent group of a manifold
of dimension d is not necessarily SOy. Weinberg '84

@ It has been suggested that by gauging an enlarged symmetry of the tangent
space in four dimensions one could unify gravity with internal interactions.
Chamseddine, Mukhanov '10

@ We aim to unify FG as a gauge theory with internal interactions under one
unification gauge group.
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4D Conformal Gravity as a Gauge Theory

o Group parameterizing the symmetry: SO(2,4)

15 generators:

[/\A/IABa MCD] = nACMDB - nBCMDA - nADMCB + nBDMCA

Indices splitting — 6 LT My, 4 translations P,, 4 conformal boosts K, and
1 dilatation D

@ Action is taken of SO(2,4) invariant quadratic form

Initial symmetry breaks spontaneously by introducing a scalar in the adjoint
rep fixed in the dilatation direction Roumelioti, S, Zoupanos '24
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SSB by using a scalar in the adjoint representation

Gauge connection:

1
A, = 5wuab/\/lab + €,°P, + b,°K, + §,D,
Field strength tensor:

1
Fu ==

2R,u1/abMab + R,uuapa + R;LuaKa + RuuDa

where
leab _ 8,uwuab _ 8ywuab _ W,uacwucb + wyacwucb _ Se[M[abu]b]
0)ab b

= ;(w) — 8ey, by )

R’W,a =0ue’ —0,e,° + wuabeub — wyabeub —23,e,°
= T(e) — 2aye”,

Ru® = 0ub,° — 0ub,” + w.®byy — w, b + 23,b,)°
= T02(b) + 23p,b,°%,

Ry 8“5,, - 81/5,u + 4e[#"’bl,]a,

> Rﬁ?,)ab, T,S?,)a(e): Curvature and Torsion of 4D Poincaré grav.
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We start with the following action, which is quadratic in terms of the field
strength tensor and introduce a scalar in the adjoint rep.

Sw@@:%Q/MAUWmepafw&—m*hﬂ,
The scalar expanded on the generators is:
¢ = 6™ Map + 7P, + ¢7Ky + 4D,

We pick the specific gauge in which ¢ is only in the direction of the dilatation
generator D:

0 _ 7 ¢72:m72]14 o _1
6= =D L= 4 oD,

The resulting broken action is (after employing anticommutator relations and the
traces over the generators):

ace 4 b d
SSO(1,3) = 4 /d XﬁuypaeabcdR,uua Rpcrc
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The 3, and R, are not present in the action, so we can set both equal to zero.
~ - R 3,=0
Ruv = 0,3, — 0,3, + 4e,° by, =0 ——
e.°bys — e, b =0
We examine two possible solutions of the above equation:
° bua = ae,’, Chamseddine '03

) bua = —% (Rua + %Reﬂa) Kaku, Townsend, van Nieuwenhuizen, 78
Freedman, Van Proyen ‘Supergravity’ '12

The first choice leads to the Einstein-Hilbert action, while the second leads to
Weyl action.
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Einstein-Hilbert action

@ When b,? = ae,?, the broken action becomes:

ace 4 b d
SSO(1,3) = 4 d XeuypoeabcdRp,Va Rpac -

850(1’3) = % / d4X€le<7€ade [legl)abRég)cd _ 16m23RP(L(IJ/)abepceUd+

b d

+ 64m*a’e,%e, e, e,

This action consists of three terms: one G-B topological term, the E-H
action, and a cosmological constant. For a < 0 describes GR in AdS space.
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Weyl action

e When b,? = —1(R,? + L Re,?), the broken action becomes

S= % / d4X6uupaeabcd[R§L{)y)ab N % (EH[aRyb] B é,,[aR#b]) N
+ %Réulaéybl}
[r2 =5 (2t -2 R,%) +
+ %Ré,,[cégd]],
where €,% = me,? is the rescaled vierbein. The above action is equal to

ace 4 b d
S = —4 /d XE“VPUEadeCMVa Cpo’c 5

where C#,,ab is the Weyl conformal tensor.
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The NC framework & gauge theories

e Noncommutative space — replace coordinates with operators X' (€ A)
satisfying: [X', X/] = i©Y(X)
Connes '94, Madore '99

Antisymmetric tensor ©7(X) - defines the NC of the space

@ Introduction of covariant NC coordinate:
X, =X+ A,
Madore, Schraml, Schupp, Wess '00

Obeys a covariant gauge transformation rule: 6X, = i[e, X,,]

@ Definition of a NC covariant field strength tensor:

Fab = [XEH Xb] - i@ab
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Non-Abelian case

@ Let us consider the commutator of two elements of an algebra:
1 1
[e, A = [ATA ABTE] = E{GA, ABMTA TB) + 5[6*‘, AB|{TA, TBY}

@ Not possible to restrict to a matrix algebra:

> last term neither vanishes in NC nor is an algebra element

@ There are two options to overpass the difficulty:

> Consider the universal enveloping algebra

> Fix the rep and expand algebra so that the anticommutators close
Aschieri, Castellani '09

Cirié, Gocanin, Konjik, Radovanovi¢ '18

> We will later employ the second option
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The 4d covariant noncommutative space

@ Constructing field theories on NC spaces is non-trivial: NC deformations
break Lorentz invariance

@ Such an example is the Fuzzy Sphere (2d space) - coords are identified as
rescaled SU(2) generators Madore '92, Hammou, Lagraa, Sheikh Jabbari '02
Vitale, Wallet 13, Vitale '14, Jurman, Steinacker '14
Chatzistavrakidis, Jonke, Jurman, Manolakos, Manousselis, Zoupanos '18

@ We will need a 4d covariant NC space to construct a gravity gauge theory

o We will aim for a NC version of dS,, described by the embedding
nABXAXB = R? into Ms
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Snyder’s Model '47 Snyder '47

@ The SO(1,4) generators, Jp,,m,n =0, ... 4 satisfy the commutation
relation:

[Jmm Jrs] - i(nmrJns + nnstr - nners - 77manr)

Consider decomposition of SO(1,4) to maximal subgroup, SO(1, 3)

Introduce a length parameter A\ and convert the generators to physical
quantities by identifying ©; = hJj, X; = AJja

Thus, the commutation relations regarding the operators ©,,,, and X, are:

[, @] = i (Nik®j + MOk — MOi — NuOjk) ,
(O35, Xi] = ih (i Xj — njxXi)

iX2
[Xf7 XJ] = ?elj

The noncommutativity of coordinates becomes manifest
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Yang's Model '47

@ Extending covariance, also including momenta as generators — use a group
with larger symmetry — minimum extension: SO(1,4) C SO(1,5)
Yang '47
Kimura '02, Heckman, Verlinde '15
Steinacker '16
Sperling, Steinacker '17,'19
Buri¢-Madore '14,’15
Manousselis, Manolakos, Zoupanos ‘19,21
@ The SO(1,5) generators, Jyn, M, N =0,...,5, satisfy the commutation
relation:

[Yun, Ips] = i(nmpIns + mvsIvp — v Ivs — s Ine)

e Employ a 2-step decomposition SO(1,5) D SO(1,4) D SO(1,3)
@ Introducing a length parameter A (like in Snyder’s case) we convert the

generators to physical quantities by identifying
Oy = hdj, Xi=Xis, Pi=%Ja, h=lis
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Yang's Model '47 (Continued)

@ Thus, the commutation relations regarding all the operators ©,,,,, X,,, P, h
are:

(O, ©po] = iM(1upOvo + Mo Oup — MNwpOuo — NuaOup) »
[©0, Xol = iR(10p X — 10pX,1)
[@;w» 'Dp] = ih(nupPV - 771/,0'Du)

. h A?
[’Dua Pl/] - ’peuuv [X/L7Xl/] - ’Eeuua
A A2
[Pu,h] :—IFX,“ [Xu,h] :/fPM,
[P, X,] = il h, [©u,h] =0

@ Momenta are seamlessly included in algebra

> Momentum space becomes quantized
> Heisenberg type CR between momenta and coords

@ The above relations describe the noncommutative space
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The 4d covariant noncommutative space (Continued)

We begin by considering the isometry group of dS; —SO(1,4)
Extending covariance — extension of SO(1,4) to SO(1,5)

Following Yang's example — minimal extension of SO(1,5) to SO(1,6)
looking for interesting results

Perform three step decomposition by indices splitting to reach 4d language:
50(1,6) D SO(1,5) D SO(1,4) D SO(1,3)

@ Introduce length parameter and convert generators to physical quantities.
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The commutation relations regarding all the operators ©;;, Xi, P;, Q;, q, p, h are:

. ﬁ
[©4,0u] = ’h(ﬁik@j/ + 019 — k@i — MiOu), [Qi, Q] = IOy,
(O, Q] = (WQJ nk@i), Oy Xe] = (Tth Uiji),
. h K2
[ede:;ﬁmﬂﬁ—nﬂH% (@i, X)] = —igmya,  [Qi Pl = —izmsp,
2

h . A
[th]:’pxia [th]:IPl') [X’7)<J]:I€@’J7
A2 A2
[Xi, Pil = —ifmgh,  [Xi,q] = —i—Q;,  [Xi,h] = i—P;,
[PiaIDj]:Iﬁ@"ﬁ [Pi>p]:_lQi7 ['Dl"h]:_lp)ﬂl7

[q,p] = —ih, [q,h] =ip, [p,h]=—

They closely resemble conformal algebra!

> On top of NC coords and momenta, as well as Heisenberg type relation
between them, we also get bonus info regarding group that shall be gauged
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Noncommutative gauge theory of 4d gravity

We want to formulate gravitation theory on the above space

@ We make use of NC gauge theory toolbox combined with the procedure
described in the 4d conformal gravity case
Kimura '02, Heckman, Verlinde '15

Begin by gauging the isometry group of the space, SO(1,4)

Anticommutators do not close — fix the representation + enlargement of the

algebra Aschieri, Castellani '09
Chatzistavrakidis, Jonke, Jurman, Manolakos, Manousselis, Zoupanos '18

e Noncommutative gauge theory of SO(2,4) x U(1)

Manolakos, Manousselis, Zoupanos '19, '21

Roumelioti, S, Zoupanos '24
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@ The generators of SO(2,4) x U(1) are represented by combinations of the
4 x 4 gamma matrices:

. i
o six Lorentz rotation generators: M,, = ~2 [Vas 5]

1
o four generators for conformal boosts: K, = 5%(1 +7s)

1
e four generators for translations: P, = _5%(1 —5)
. . 1
e one generator for special conformal transformations: D = —57s
e one U(1) generator: 1
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@ The above expressions of the generators allow the calculation of the algebra
they satisfy:
[Mab7 Mcd] = 77bcl\/lad + 77adlwb:: - 77a¢:lVIbd - nbdMaca
[Kav Pb] =-2 (77abD+ Mab), [Paa D] = ’Dav [Kaa D] = 7K37
[Maba Kc] = ncha - nacha [Maba PC] = nbc'Da - nac'Db

o Generators satisfy the following anticommutation relations:
Smolin '03

{Map, Mea} = % (NacTbd — NMbeMad) — i€abed D,
{Map, P} = +icapea P,
{Map, K} = —i€ancaK®,
{Map, D} = 2M, D,
{Pa, Ko} = 4MapD + 1ap,
{Ka, Kb} = {Pa, P} = —1ab,
{P., D} ={K,,D} = 0.
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Noncommutative Gauge Theory

@ Since the gauge group is determined to be SO(2,4) x U(1), we can move on
with the gauging procedure.

Manolakos, Manousselis, Zoupanos '21
@ Consider the covariant coordinate X, = X, + A,
@ Determine appropnate covariant field strength tensor
Ruw = [ 1 Xu] = 9 O,
where @W =0, + BW, the covariant noncommutative tensor
For the SSB to take place we:

— Introduce scalar field ®(X) belonging in the 2nd rank antisym. of SO(4),
charged under U(1) — U(1) breaks and doesn’t appear in final action

— Gauge fix ®(X) in the direction that leads to Lorentz group
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Gauge connection and field strength tensor decompose as:
AuX)=e/@Ps+w @M+ b ®Ka+3, @D+ 2, ® 1sg.

Ruwv(X) = R,2 ® Pa+ R, @ Map + R,.J © Ko+ Ruw @ D+ Ry ® 14
The component curvatures:

.. 1
Ruw = Xur av] = [Xv, aul + (o, 3] + b7, bual + [30, 3] + 5 [0, wyan]

+ lensr 7]~ 53 Buv
'T?w’ = [Xu, 3] + [ap, 3] — [Xo, 3u] — [av, 3.] — i{bpa, .7} + i{bua, eua}
+ 3 apeal 2,0, — 15 B
Ru = X b1+ (31 5,71 — X 5,71 — [0, b,2] + Hbps 0,2} — i{bus,w, )
+ o e} — (a6} + cosealle ] — [0, D) — 3B

R,u,ua = [XH7 eua] + [akh ez/a] - [XV7 epa] - [31’7 eua] + i{bp,a7 éV} - i{buav EH}
. . ih ~
- ([bubzqud] - [bub’w;fd])eabcd - ’{wp,ab’ eub} + ’{wuabv e,ub} - FBHUB
R,u,uab = [XI—L7 wnab] + [alh wyab] - [XV7 wﬂab] - [3V7 wn?b] + 2i{bp,av bl/b} + ([b/,fv eud]
1, - .
- [bucv eud])eade + 5([3M7w1/6d] - [al’vaCd])eabcd + 2’{wuac7wubc}
. ih
+ 2’{6;1,87 evb} - ﬁBuuab
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Symmetry Breaking

Introduction of auxiliary field ®(X) charged under U(1):
O=0"@P,+ P OMap+ " @Ko+ 62 Ls+ 6@ D
into the action:
S = Trtrg A\O(X)RuwRpoe P + n(P(X)? — A 21y ® 1y),
when the auxiliary field is gauge fixed as:
O(X) = (X) @ Dlg__pp 1 =221y @D

it induces a symmetry breaking:

4

2 .
S = Tr (feabcdRWabRp;d - 4R,“,Rpg> chwp

Residual symmetry: SO(1,3) x U(1)

The following components do not appear in the action, so we can take the constraints:

Rj = éf?lfy =0 leading to 3, =0, b7 = é‘eif and B,J = éémj’ Chamseddine '02
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Unification of FG with Internal Interactions

o Fuzzy gravity is based on gauging SO(2,4) x U(1).
o Internal Interactions by SO(10) (GUT).
@ Spontaneous symmetry breaking is used to reach wanted gauge groups.

In order to have a chiral theory we need an SO(4n + 2) group. The smallest
unification group in which we can accommodate chiral fermions is SO(2,16) from
which:

50(2,16) =5 50(2,4) x SO(12)

and

50(12) 222 50(10) x [U(1)].
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Breakings and branching rules

e We start from SO(2,16) ~ SO(18) (Euclidean signature)

50(18) O SU(4) x SO(12)

18 =(6,1) + (1,12) vector
153 = (15,1) + (6,12) + (1,66) adjoint
256 = (4,32) + (4,32) spinor
170 = (1,1) + (6,12) + (20",1) + (1,77) 2nd rank symmetric

Giving VEV in the (1,1) component of a scalar in 170 leads to
SU(4) x SO(12).
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Breakings and branching rules (Continued)

@ Moving on with the SO(12):

50(12) D SO(10) x U(1)
66 = (1)(0) + (10)(2) + (10)(—2) + (45)(0)

we break it down to SO(10) x U(1) by giving VEV to the {(1)(0)) of the 66

rep.
o Lastly, regarding SU(4):

SuU(4 ) D SU(2) x 5U(2) u(1)
=2 1)(1)+(1,2)(-1)

15—( ,1)(0) +(2,2)(2) +(2,2)(=2) + (3, 1)(0) + (1, 3)(0),

we break it down to SU(2) x SU(2) x U(1) by giving VEV to a scalar in the
((1,1)) direction of the 15 rep.

AA
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Fermions in Fuzzy Gravity and Unification with Internal
Interactions

@ Fermions should be chiral in the original theory to have a chance to survive in
low energies and also appear in a matrix representation since FG is a matrix
model

> Instead of using fermions in fundamental, spinor or adjoint reps of an SU(N),
we can use bi-fundamental reps of cross product of gauge groups.
Chatzistavrakidis, Steinacker, Zoupanos '10

Interesting example N = 1, SU(N)* models:
SU(N)1 x SU(N)z x ... x SU(N)
with matter content
(N,N, 1, 1) + (LN, N, . 1) 4+ (N, 1,1, N)

with successful phenomenology, N = 1, SU(3)3.
Ma, Mondragon, Zoupanos '04
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Fermions in Fuzzy Gravity and Unification with Internal
Interactions (Continued)

> In FG choosing to start with the SU(4) x SO(12) as the initial gauge theory
with fermions in the (4,32) + (4, 32) we satisfy the criteria to obtain chiral
fermions in tensorial representation.

> The gauge U(1) of FG due to the anticommutation relations, is identified
with the one appearing in the SO(12) D SO(10) x U(1).
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Fermions

We start with fermions in the (4,32) + (4, 32) of the SU(4) x SO(12).
Then

50(12) D SO(10) x U(1)
32 = (16)(1) + (16)(~1)
On the other hand

SU(4) S SU(2) x SU(2) x U(1)
4=(2,1)(1)+ (1,2)(~1).

Following the full sequence of symmetry breakings, by imposing the Weyl
condition, we will be left with four families of fermions

4 x 16[_(—1)

Finally, it is noted that the corresponding U(1) gauge boson will in turn vanish
using the recipe presented in the 4d conformal case.
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Thank you for your attention! I
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