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Outline:

I will review recent progress on gauged matrix models including a
sketch of the derivation of the Molien-Weyl formula from path
integrals.
Outline

Black holes in AdS spacetime.

Small black holes have negative specific heat.
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Microcanonical View of Matrix Models

Negative specific heat natural in matrix models at low energy.
Based on DOC, S. Ramgoolam, arXiv:2312.12397,
arXiv:2312.12398, arXiv:2405.13150, arXiv:2506.18813
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Black holes in AdS

Schwarzschild-AdS metric

ds2 = −(1− 2GM

r
+

r2

L2
)dt2 +

dr2

(1− 2GM
r + r2

L2
)
+ r2d2Ω

G = 1
m2

p
and L =

√
− 3

Λ

Thermodynamics—horizon, energy and temperature

rh
L

− 2GM

L
+

r3h
L3

= 0

βAdS = 4πL
rh
L

1 + 3
r2h
L2

with M =
1

2G
rh(1 +

r2h
L2

)

rh is a monotonic increasing function of M.
βAdS has a maximum at rh = L√

3
at M = 2L

3
√
3
.
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Energy vs Temperature in AdS
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Large black holes:

rh ≫ L rh ∼ (2GML2)
1/3

As M (the internal energy
E ) increases, temperature, T ,
increases—a normal system—the
specific heat Cv = dE

dT > 0.

Small Black Holes:
rh ≪ L =⇒ rh ∼ 2GM—
asymptotically flat Schwarzschild.
As M increase, temperature, T ,
decreases =⇒ the specific heat
Cv < 0.
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Result of Charge zero 2-Matrix Model
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Canonical Ensemble
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Gauged Matrix Models

Dimensional Reduction of Yang-Mills

Compactifying SU(N) Yang-Mills from R× R3 → R× T3 :

SYM =
1

4g2

∫
dtd3xtrFµνF

µν −−−−→
VT3→0

VT3

4g2

∫
trFµν(t)F

µν(t)

The spatial gauge fields become N × N matrices Aa → Xa and
only A0 = A remains as a gauge field.
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Reduced Hamiltonian

Lagrangian

L =

∫
T3

d3x
1

2
tr(E⃗ 2−B⃗2) =

VT3

4g2
tr(

1

2
[Dt ,Xa]

2+
1

4
[Xa,Xb][X

a,X b])

Hamiltonian

H =

∫
T3

d3x
1

2
tr(E⃗ 2+B⃗2) =

VT3

4g2
tr(

1

2
[Dt ,Xa]

2−1

4
[Xa,Xb][X

a,X b])

This is now a quantum mechanical system of matrices. The
gauge invariance is
Xa → gXag

−1, A → gAg−1 + ig∂tg
−1.
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Quantization in a Thermal Bath

The gauge field, A, is non-dynamical—the Lagrangian has
no ∂tA dependence.

A is a Lagrange multiplier for a constraint—the Gauss law
constraint.

The constraint requires that the only physical degrees of
freedom are gauge invariant observables.

Canonical Quantization

Z = TrInv(e
−βH)

The physical degrees of freedom are the invariants of the
matrices Xa and Πa = E a, Note [Xa,Xb] ̸= 0.
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Path Integral Quantization

Since this is a quantum mechanical system we can follow the usual
Feynman route to a path integral treatment and perform a Wick
rotation to Euclidean (imaginary) time.

Path Integral Quantization in a Thermal Bath

Z =

∫
[dX ][dA]e−N

∫ β
0 dτ Tr( 1

2
(DτX a)2− 1

4
[X a,X b]2)

One can the evaluate observables with the path integral by
standard techniques.
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Hamiltonian Quantization

The residual gauge field A is not dynamical and appears only in

DτX
a = ∂τX

a − i [A,X a].

It leads to a constraint on the dynamics.

Gauss law constraint

The Lagrange multiplier field, A, multiplies the Gauss law
constraint and forces SU(N) invariant physical states.

From the action we can obtain the Hamiltonian and once we have
the Hamiltonian H we can equally consider thermal ensembles
whose partition function is given by

Z = TrInv(e
−βH) =

∑
E

Ω(E)e−βE .

Inv means SU(N) singlets and Ω(E) the energy degeneracy.
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Simple Model:The gauged Gaussian 2-Matrix Model

S [X ] =

∫ β

0
dτtr

(
|DτX |2 +m2|X |2

)
Dτ = ∂τ − i [A, · ]− iAe1 is the covariant derivative with the gauge
field A(τ) being an N × N hermitian matrix and Ae an abelian
gauge field.

Lattice Version

DτX → eiaAe(n,n+1)gn,n+1Xn+1gn+1,n − Xn

a
=

eaDτ − 1

a2
Xn

gn,n+1 are the link parallel transporters from n+1 back to that at n
and gn+1,n = g−1

n,n+1 and eiaAe(n,n+1) transports the Abelian phase.
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Continuum limit

The partition function is then

ZN,Λ =

∫
U(1)xU(N)

∫
RN2Λ

e−SΛ,g

where

SΛ,g =
Λ∑

n,n′=1

atr(X †
n′(∆Λ,g +m2)n′,nXn) .

ZN,Λ =

∫
µ(g)Det−1MΛ,g where MΛ,g := 2+µ2−eaDτ −e−aDτ

DetMΛ,g = zΛ++zΛ−−g⊗g−1−g−1⊗g = zΛ+(1−zΛ−g⊗g−1)(1−zΛ−g
−1⊗g) .

A continuum limit, Λ → ∞, then leads to the Molien Weyl
formula.

ZN,∞ = e−N2βm

∫
dθ

2π

∫
µ(g)

1

|det(1− eiθxg ⊗ g−1)|2
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Generalizations

Discrete Gauge Group

ZN(x) = e−N2βmẐN(x) with ẐN(x) =
∑
g∈G

1

|det(1− xR(g)|2

Fermions

ZF
N (x) = eN

2βmẐF
N with ẐF

N (x) =
∑
g∈G

|det(1 + xR(g)|2

Expanding ẐN(x) or Z
F
N (x) in x gives integer coefficients— the

ΩN(n) we wish to calculate. Typically for n ≤ N these dimensions
are independent of N.
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Molien Weyl

Molien Weyl: Two matrices with U(1) singlet constraint

ZU(N)(t1, · · · , td ) =
1

N!

∫
dθ

2π

∫ N∏
l=1

dzl

2πizl
∆(z)∆(

1

z
)

N∏
l,m=1

1

1 − 2 cos(θ)xzl z
−1
m

with ∆(z) the Vandermonde determinant. For small N and small d the integrals can be performed exactly and

some results are known.
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A large N analysis

Expanding in the exponential the partition function becomes

Z (x) =

∫
µ(g) exp[

∞∑
n=1

an
n
tr(gn)tr(g−n)]

Keeping only the n = 1 term gives the a1 model

The a1 model.

Z (a1) =

∫
µ(g)ea1tr(g)tr(g

−1)
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The Hagedorn (confining/deconfining) Phase Transition.

High Temperature (small β)

S [X ,A] =
1

2

∫ β

0
dτ Tr

{
(DτX )2 + X 2

}
Dτ = ∂τ + i [A, ·]

for β small becomes the random matrix model

S [X ,A] ≃ β

2
Tr

{
−[A,X ]2 + X 2

}
The eigenvalues of βA, the θi , are distributed roughly with a
Wigner semi-circle distribution.

For β → 0

ZN(t, d) ∼ β(d−1)N2
= e(d−1)N2 ln(− ln t)

dimn(N, d) ∼ eN
2(d−1) ln n
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The transition Point

From

SGG (θ, d) ≃ N2
∞∑
n=1

(1− an)

n
|un|2 ,

we see that the transition occurs at a1 = 1 where the coefficient of
|u1|2 changes sign. For a1 =

∑d
i=1 xi = de−β the transition occurs

at TH = 1
βH

= 1
ln d .

If we integrate over un (Aharoney et al arXiv:hep-th/0310285) and
set Z∞ = 1 for an = 0, we obtain

Z∞ =
∞∏
n=1

1

1− an
=

∞∏
n=1

1

1−
∑d

i=1 x
n
i

F. Dolan arXiv:0704.1038 obtained this for d = 2 by exact
methods. Though the result is exact for d = 1 it breaks down for
a1 → 1, but still allows us to count low energy states count states
at large N.
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There is a phase trasition when the eigenvalue distribution covers
the unit circle.

Gauge/gravity duality =⇒ the transition should be dual to a
Hawking-Page transition in a dual AdS spacetime.
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Stable regime–low energy

Small n generating function

For two Hermitian matrices gauged under U(N) and different
masses one gets

Ẑ∞(x) =
∞∏
n=1

1

1− xn − yn

Charge neutral is equivalent to x → zx y → z−1x and a contour
integral over z .
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Z 0
∞(x) =

∮
dz

2πiz

∞∏
n=1

1

1− (zn + z−n)xn
=

∫
dθ

2π

∞∏
n=1

1

1− 2 cos(nθ)xn

This expression is well approximated by the first term in the
product and on doing the integral one finds

Z 0
∞(x) ≃ 1

ϕ(12)

1√
1− 4x2

with ϕ(x) = (x , x)∞ the Euler function and (a, q)∞ is the
q-Pochhammer symbol.
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Result of Charge zero 2-Matrix Model

0.71 0.72 0.73 0.74
T

5

10

15

E=k

N=13, E=k vs T, 2-matrix, charge=0

0.71 0.72 0.73 0.74
T

10

20

30

40

E=k

E=k vs T, 2-matrix, k < N, charge=0

Gauged Matrix Models



Thanks for Your Attention!
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