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1. Introduction and motivations

o Supergravity theories can be naturally formulated in a
super-Lie group-geometric framework.

o Tangent vectors { 4 on the G group manifold , defined by the

infinitesimal action of G on itself, satisy the Lie commutation
relations

ta.ts] = Cptc

e The dual cotangent basis of one-forms o (with o (t5) = 67 )
satisfies the Cartan-Maurer eq.s.

1
do™ + §C'ABC c® No® =0

e The basic fields correspond to the o' . For p-form fields:
generalize Cartan-Maurer eq.s to Free Differential Algebras
(FDA). Their dual formulation is given by L. algebras, a
generalization of Lie algebras with higher brackets.



2. Group geometric approach
to (super) gauge and gravity theories

- To interpret all (local) symmetries as
coordinate transformations

> Thus diff.s, supersymmetry, gauge transformations are
all diffeomorphisms in the (super)group manifold G

- They are invariances of an action invariant under
group manifold diff.s

Dynamical fields: Vielbein (components) on G




Group geometric construction of supergravity theories, Torino group 80’s

originates from Ne’eman and Regge (1978), then D’Adda, D’ Auria, Fré, LC,
van Nieuwenhuizen, Townsend, ...

Reviews: D’ Auria Fré LC 1991, LC 2018, D’ Auria 2019

Related approaches: Chamseddine, West 1977



Basic steps

e Lie (super)algebra G
T, Tp) = C%pTc

On the group manifold G: basis of tangent vectors t 4 closes
on the same Lie algebra.

e Cartan-Maurer eq.s

Dual (cotangent) basis: left-invariant one-forms O'A , Vielbeine
of the group manifold

1
do® + §CABC cB AN® =0

Jacobiid.s  d? =0<«= C%cC'hp =0



e fundamental fields < > O’A

More precisely the dynamical fields are the vielbeins of G
a smooth deformation of G , with curvature

1
RAzd&A+§C“}BC B ANGC £0

measuring the deformation

e Bianchi identities

dR* — C5cRP5° =0



Example: N=1, D=4 supergravity

e |ie algebra (superPoincaré)

Pa, Py] =0 My, M%) = 45: M,
{Qa,Qs} = i(CTYapP,  [Map, P =267, Py
1
— B
[Qaa Pb] =0 [Mab, Qa] — 4(Fab)a Q/B
* Dynamical fields G-coordinates
V& +— P, vierbein X
o :
w® «— M,  spin connection Y
A= (a,ab, a)

Y% +— Qq gravitino el



e Curvatures

R*=dV* —wa%V° — %&Faw Torsion

R%® = dw®® — @ we Lorentz curvature
1 .
0=di — Z wabrab¢ gravitino curvature

¢ Bianchi identities
dR* — w%R° + R%V° —iyI'%p = 0

dR® + 2wl® RPle = (

1 1
dp — Zwabrab'@b + Zrawaab =0



Geometric action

Task: construct an action, invariant under the
diffeomorphisms on the G-group manifold

Then the symmetries of the theory are given
by the G-diffeomorphisms

The group-geometric approach provides a systematic
and algorithmic procedure to construct locally
supersymmetric actions



N=1 supergravity in d=4

Action

Ferrara, Friedman, van Nieuwenhuizen 1976
Deser, Zumino 1976

Isq = / (Rv—g + @Z/L/VFY&DV@DPVJGEMWOU)CZZLZL’
M4

in form language:

Isc = [1;a RO AVEANV%eqpea +4 0 Aysyap AV

with R — dwb — @ /\wa
2 dw _w Vaw

Invariances
diffeomorphisms

local Lorentz rotations

local supersymmetry

Q\G(\O Q\(\ ©

Va dZC'u _ ab dx? . @: ¢’udx/i

Rab R“b Ldxt A dx” ( [Mwy] — wp, W VI]) ydxt A dz”

0.V =1 ey®
0.y = de — —w fya




2025: ~ 50 years of supergravity
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Progress toward a theory of supergravity *

Daniel Z. Freedman and P. van Nieuwenhuizen
Institute for Theoretical Physics, State Univevsity of New Yovrk at Stony Brook, Stony Brook, New York 11794

S. Ferrara

Labovatoive de Physique Théorique de I’Ecole Normale Supérieure, 24 vue Lhomond, 75231 Paris Cedex 05, France
(Received 29 March 1976)

As a new approach to supergravity, an action containing only vierbein and Rarita-Schwinger
fields (V,, and 'pu) is presented together with supersymmetry transformations for these fields.
The action is explicitly shown to be invariant except for a y° term in its variation. This term
may also vanish, depending on a complicated calculation. (Added note: This term has now
been shown to vanish by a computer calculation, so that the action presented here does

possess full local supersymmetry.)

Even early in the development of the Fermi-
Bose supersymmetry concept, it was thought that
the new fermionic symmetry transformation might
be important for the theory of gravitation.®! Two
similar but apparently inequivalent approaches to
this theory of “supergravity” have been formulated
by Arnowitt, Nath, and Zumino® and by Zumino.?
These approaches exploit the geometry of “super-
space, ”* a manifold parametrized by four anti-
commuting spinor coordinates 6, in addition to the
normal Riemannian coordinates x*. The theories
are formulated in terms of superfields which con-
tain a very large number of ordinary fields—i.e.,
vectors, tensors, spinors, etc. Although it is ex-
pected that some component fields are merely gen-
eralized gauge excitations and not true physical
fields, the physical content of the Arnowitt-Nath-
Zumino theories has never been spelled out, but
there are indications® that, as is perhaps desir-
able, the approaches necessarily bring in gauge
vector and spin-3 particles in addition to tensor
and spin-$ particles.

In this note we report on progress in a very dif-
ferent approach to supergravity in which we com-
mit ourselves from the start to a formulation with-
out superspace in which the only fields in the grav-
itational supermultiplet are the metric tensor
gu,(x) [or, equivalently, the vierbein field V,,(x)]
and a Rarita-Schwinger field ,(x). If fully suc-
cessful, we would then expect to adjoin matter su-
permultiplets of lower-spin fields in much the
same way as matter fields are treated in conven-
tional gravitation.

There is a theorem?® in the usual theory of global
supersymmetry which demonstrates the existence
of irreducible representations of the graded Lie
algebra of supersymmetry charges and Poincaré
group generators. Some of these representations
act in the Hilbert space of helicity states of two

13

massless particles, one neutral boson and one
Majorana fermion of adjacent spins J and J+%
(for any J=0,3%,1,...). It is therefore known that
a representation exists containing states of mass-
less spin-3 and spin-2 particles, and it was sug-
gested® earlier that these particles form the grav-
itational supermultiplet. The theorem does not
guarantee that there exists a corresponding inter-
acting quantum field theory, but it is reasonable
to hope that it exists, and this is the basic mathe-
matical motivation for our approach. Many ques-
tions can be asked about the physical motivation
and consistency of both this treatment and the en-
tire concept of supergravity. We shall discuss
some of them at the end of this note, and we pro-
ceed now to the formulation.

The starting point of our approach is the gener-
ally covariant action”’

I=f d*x(L,+ £45/,)

- f d*3[ 3V Tg R - 1M, (x)y,7,D, 1, ()]
1)

describing the interaction of vierbein fields and
Rarita-Schwinger® fields subject to the Majorana
constraint ¢,(x) =C¥,(x)7. The covariant deriva-
tive®

szl)p(x) = auwp(x) - r:p u+ %wvabodbwp (2)

involves the standard Christoffel symbol (although
it cancels in £;,, because of the tensor density
€**¥) and the vierbein connection

Wyep= %[Vau(auvbu -9 quv) + Vapva(achp)ch]
- (a“ b) 1) (3)
while

0o =5[Yas ¥ 3)-
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A combined spin 2 — spin 3/2 extension of general relativity is given which 1s both free of the usual higher spin 1n-
consistencies and 1nvaniant under local supersymmetry transformations.

The unification of the gravitational field with a
spin 3/2 system is a natural goal within the framework
of supersymmetry [1]. In constructing such a theory
one faces obvious problems due to the highly non-li-
near nature of general relativity [2] and to the well-
known difficulties encountered in coupling higher
spin fields in a consistent way. We shall show here
that the simplest candidate, namely the sum of the
Einstein action and that for a massless, mmnimally
coupled, Ranta-Schwinger [3] Majorana field fulfils
the consistency criteria. As we shall also see, this fact
1s related to the invariance of the theory under local
supersymmetry transformations¥1.

The key to our results lies in the use of the first or-
der formalism for gravitation, in which vierbeins and
connection coefficients are treated independently (a
convenient description of the first order formalism
can be found in a paper by Kibble [5]). Minimal cou-
pling in this sense 1mplies the existence of torsion, or
of non-minimal contact interactions in second order
languag:. The first order formulation with torsion 1s
closely related to the description of supergravity in su-
perspace [1, 6] .

The combined Lagrangian has the form¥2

* On leave from Brandeis University Waltham, MA, USA; sup-
ported in part by the U.S. National Science Foundation.
Local supersymmetry transformations, with parameters de-
pending arbitrarily upon the space-time co-ordinates were
first discussed 1n ref. [4], where their existence was stated
for two space-ttme dimensions and conjectured for four di-
mensions. The commutator of two local supersymmetry
transformations contains a general co-ordinate transforma-
tion.

We choose units in which k = 1. Qur gamma matrices satis-
fy (v0)? = (v5)? = —1. If we use the Majorana representa-
tion the matrices y, and s are real and the field ¢,
Hermitean, with ¥, =¥ ,y°. We also take %123 = ~¢g23
=1.

$2

/10)

1 —
L=—7eR - 5N T y5y,D, ¥, m
where

e=dete,,, R=ee,"R, 0. )

The covariant derivative on ¥, 1s defined according to
its spin 1/2 content only

Dp=6“ ‘;"“’u,abzab’ yab =%[7a,7b] 3)
and satisfies
[Dp,’ Dv] =- %Ruv,abzab' (4)

This form for D,, 1s strongly suggested by the Maxwell-
like gauge invariance of the flat space action uncer §y
=20,,a and preserves the simplest definition of the
curl. This results in a particularly simple form of the
torsion. The vierbeins €us the connection coefficients
wy qp and the Majorana vectorspinor y,, are to be
varied independently. Note that we have not intro-
duced any auxiliary fields. They will be useful, how-
ever, when coupling to matter is included. The equa-
tions of motion are

u

R =erwvo(y,D Y, —57,C,,V,) =0 ®)
G =5 VTV, ©
and

G+ =% e’\”"f’%\'ys'y"Dutpp. Q)
Here

Gy =Ry —he/R, Rpy=Rpp ®)

is the (non-symmetric)Einstein tensor and
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_ _ Sullivan, 1977
3. Free differential algebras (FDA) D’Auria, Fré 1982

e convenient algebraic setting for field theories
with antisymmetric tensors (p-forms)

e generalize Cartan-Maurer eqg.s of group manifold G
1-form vielbeins o, by including p-forms B’

e example : ordinary Cartan-Maurer 1-forms o .supplemented
by a single p-form B* in a representation D", of G

do? + CBCO' Ao =0

. 1 .
) ) A ) A A
d\B +C 4 OEJ " (p+ 1)'OA1--.Ap+1U o =0
v .
VB

e taking d of I.h.s. and requiring d? =0 —>



_ _ Sullivan, 1977
3. Free differential algebras (FDA) D’Auria, Fré 1982

e convenient algebraic setting for field theories
with antisymmetric tensors (p-forms)

e generalize Cartan-Maurer eqg.s of group manifold G
1-form vielbeins o, by including p-forms B’

e example : ordinary Cartan-Maurer 1-forms o .supplemented
by a single p-form B* in a representation D", of G

suggests a multibracket
do® + = C o 0P ANoC =0 /
. 1
dB" + C’ZA]- o4 BI + "C' A pHUAl...aAp“ =0
VB

e taking d of l.h.s. and requiring d* = 0 —>



Generalized Jacobi identities

C%[CCBDE] —0 usual Jacobi id.s

i J i i _ ~C i representation condition
CAjCBk_CBjCAk_CABCCk P

2C ;0 a g~ P+ DC g, 4 CF _ g  cocycle condition

p+2 «4ip Ap+1Ap+2]

o C'=C%, 4, ,0%.0%" isa(p+1)-cocycle (VC' =0)

e given a FDA, there is a well-defined procedure
to construct a Lagrangian with the p-forms as
fundamental fields



e To extend a Lie algebra to a FDA: need a
covariantly closed (p+1)-form (C*

e given such aform C*, C®+ covariantly closed (p+1)-form
still yields a FDA. But if this cov. closed form is cov. exact (= v@* )
O 1+ vé' leads to an equivalent FDA via the redefinition

B' - B* 1+ ®*

e Thus inequivalent FDA’s are classified by nontrivial conomology
classes of the covariant derivative V , i.e. by Chevalley cohomology



4. Example: FDA of d=11 supergravity
D’Auria, Fré 1982

dw™® — W W = 0 = R

dVe —we Vb — %@er =0 [=RY
dy— o T =0 [=p

dA — %¢Fa5¢ViVb =0 [=R(A)]

nontrivial 4-cocycle

e the d=11 Fierz identity ¢TI ;0% =0 ensures
FDA closure (d? =0 )

e extends the superPoincaré Lie algebra in d=11 with a 3-form A
In the identity representation

® CiAl...ApH - C aBab — _12(Crab)aﬁ



e The lagrangian of d =11 supergravity can be written as a 11- form,
made out of (exterior) products of fields and curvatures, therefore
invariant by construction under diff.s. D’Auria, Fré 1982

e Qriginal construction (in components) by Cremmer, Julia, Scherk 1978

d=11 supergravity Lagrangian

7 0 5
L= _%Ralagvﬂg A--- ANV an + %Tﬂ A Vo A I‘fbrblmbd N | buﬁbl---bll
. T | : I iy sab
4+ 2P, g AV AE — 84FW A (1,05 A Y Vot — 10A®) A V)
+ E@FQIQE@ A\ @Fflﬁﬂ-dw A 1{0-5---3-116a1ma11 - 210 ’(,EFU’]‘QZ’QD A TZ’FGB’M@ A Vm...m A A(S)

_ 840 F(él) A F(4) A A(:ﬂ) o %GFGIN{M Fm.”a-aivcl...cnE_Clmgll 4 2Fa1...a4 FH)V{LS"'&HEQL..&H-




5. The general structure of FDA’s

e Use simplified notations:

p-forms: " with t%(t,) = o
p - vectors: ta

e Generalization of Cartan-Maurer equations:

a - 1 a a a
dt —I—Zycalaktl/\/\tkzo
k=1

e (Closure of exterior differential d

@)

1 1
=) EoD; Cotagoan Cotop B8 A AT AES2 N A
k,j=1 s




e From d* =0 :

1 1 a ai b1 b az ar __
Z (k —1)! §! ZX(U’ t) Caro(as)—o(ar) Colpr)momy) A AT AEZA AT =0
k,j=1 o

permutations that shuffle separately as,---ar and b1,---b;
give identical terms, then need to consider only “unshuffles”

a a b b; a a
Z Z X(U’ t) Calo-(a/2)"’0'(a,k)Ca‘%bl)...a(bj) YA ANETTNET2NAN N =0
k,7=1 c€Unsh

e For afixed n =j+k-1 (number of p-forms in the wedge products):

Z Z X(O-7 t) 310(a2)---0(ak) g%bl)g(bj) — 0
k+7=n—+1 oc&Unsh

generalized Jacobi identities



5. The duality between FDA’s and L«

e based on the duality of derivations on cotangent space V"
and tangent space V/

exterior derivative d > > exterior derivative D
acts on p-forms acts on p-vectors
degree +1 degree -1

e p-vectors belong to the antisymmetric tensor space

VVv.---vV
(space of antisymmetric tensor products of tangent vectors)

® The duality d «— D is defined by

dO (v1V---Vu,) =0 D (v V- Vu,)




¢ Definition:
(Ul VeV U’n) = ZX(Ja U)(va(l) SRR Ua(n))

where the sign x(o,v) takes into account

- the parity of the permutation
- the gradings of the (multi)vectors v;

(analogous to wedge products of p - forms)



 From the definition of duality we deduce
the following properties of D:

1) D can be written as a sum of differential operators /.,

D=1{y+/0ly+0ls5+-

FDA
2) the action of ¢, on n-plets /
if i =mn, Ly(te, Voo Vig,)=—C0 oty

-if © >n, ¥¢; vanishes
-if © <n, ¥; acts as a coderivation:
&;(vl\/---\/vn) —

Z X(O‘, U) &'(U(,(l) VeV Ug(i)) V Ug(i41) V0V Ug(n)



 From the definition of duality we deduce
the following properties of D:

1) D can be written as a sum of differential operators /.,

D=1{y+/0ly+0ls5+-

FDA
2) the action of ¢, on n-plets /
generalization of Lie bracket
if i =mn, Ly(te, Voo Vig,)=—C0 oty

-if © >n, ¥¢; vanishes
-if © <n, ¥; acts as a coderivation:
&(2}1\/“'\/2}7,/) —

Z X(O‘, U) gi(va(l) VeV UJ(,L')) V Ug(i41) V0V Ug(n)



e Then D2:(Z1 + Uy + b3 + - -

)y + Lo+ U3+

) =0

implies, when acting on a n-plet of (multi)vectors :

)3 > X (toar) V- Vio(a)) Ve ) Vo Vo)) =0
k+7j=n+1 o&€Unsh
(“strong homotopy Jacobi identity”)
e reproduces the generalized Jacobi id.s of FDA, after using
Un(ta, Voo Vig)=—Cl . 4
* |In multibracket notation £, (t,, V---Vis )= lta,, " ,ta. ]
b > X(0,1) [to(an)s stotaplitotassn)s stolagin )] =0

k+7=m—+1 oc&Unsh

characterizes L~ algebras




 |n the multibracket formulation, L~ algebras were first
iIntroduced In Stasheff 1992, Lada and Stasheff 1993

and later recognized to be dual to FDA'’s by Fiorenza, Sati
and Schreiber 2014

* Two alternative routes to relate FDA’s to algebras of
tangent vectors:

- “resolution” of p-form fields as products of (new)1-forms,
satisfying the FDA Cartan-Maurer egs., leading to a
larger Lie algebra (for ex. the M algebra of d=11 SG)

D’ Auria Frée 1982

- introducing a generalized Lie derivative along
antisymmetrized multivectors, with p-form parameters.
The algebra of Lie derivatives becomes non-associative
Perotto and LC 1996, LC 2011, 2014.



7. The Lo structure of FDA1

1-forms O'A

2_forms B’

1
do™ + §C’ABC oBc® =0

1-vectors ta

2-vectors ¥;

Satisfy Jacobi id.s of FDA1

| . 1
dBZ _|_CZAJO-A /\BJ —+ _03,411421430'141 /\O'A2 /\O‘A3 —

3!

Satisfy Jacobi id.s of L

tati] = C7 o T;

[tAa tB, tC] — CiABCTi




8. The L structure of d=11 supergravity

Cartan-Maurer eq.s

dwab o wanCb — 0 [: Rab]

AV — o Y %&F% —0  [=RY
1 ab

di) — Zw I'vpp =0 = p]

dA %wrabwavb _ 0 [= R(A)

Lo Structure

dual tangent vectors

Ma,b

d=11 superPoincaré Lie algebra + 4- bracket

1

[QOM Qﬁa Py, By] = §(Fab)o¢ﬁ t(A)



with also a 6-form B, add a 5- and a 7- bracket

Qu Qs Par Py, t(A)] = 2 (Tap)as 1(B)

[Qow@BvPam T vPa5] — %(Par--%)aﬁ t(B)



9. Conclusions and outlook

* Need to understand symmetry structure induced by L

» use of L» structure for double copy formulation of SG ? (cf L. Jonke talk)

 Include O-forms in the L« structure

* Relate the resolved Lie algebra directly to the L~ algebra , without the
“oridge” of FDA.



Thank you !




