
BASIC CURVATURE TENSORS

T h a n a s i s C h a t z i s t av r a k i d i s

IP-2024-05-7921

B a s e d o n c o l l a b o r a t i o n s & W i P w i t h :

T h o m a s B a s i l e , C h r i s H u l l , N o r i a k i I ke d a ,

L a r a J o n ke , S y l va i n L ava u , D i m a R oy t e n b e r g , Pe t e r S c h u p p



A MOTIVATING EXERCISE

The curvature of a connection ∇ on a manifold M is

R∇(X ,Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[X ,Y ]Z .

Suppose that it is a torsion-free connection, T∇ = 0, in which case

∇X Y −∇Y X = [X ,Y ] .

A little algebra and the algebraic Bianchi identity for the curvature reveal that

R∇(X ,Y )Z = −
(
∇Z [X ,Y ]−[∇Z X ,Y ]−[X ,∇Z Y ]+∇∇X Z Y−∇∇X Y Z

)
=: −S∇(X ,Y )Z .

The right hand side measures whether the connection is a derivation of the Lie bracket...

The (“basic curvature”) tensor S∇ has a separate life, in general.

In the present case of the Lie algebroid (TM, id, [−,−]) it is the (opposite of) curvature.
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MOTIVATIONS

✿ General Lie algebroids are important in various contexts.
constrained Hamiltonian systems, gauge theory, Poisson geometry, foliation theory &c.

mergers of Lie algebras and tangent bundles

✿ Not only Lie, but also higher algebroid structures, e.g. Courant & Lie n-algebroids.
strings & generalised geometry, flux backgrounds, topological field theories in higher dimensions, &c.

✿ Connections & tensors are also important ingredients.
Geometric structure of variational problems, representation theory for algebroids, covariant formulations, &c.



CONTENT

Focus on the “basic curvature” (compatibility of connections & brackets),

& on its relation to other notions & constructions.

In this talk:

✤ LAoid representations up to homotopy (ruths), Lie 2-algebroids.

✤ (Open) Gauge algebras in topological sigma models.

Not in this talk:

Supersymmetric Poisson sigma models. see Thomas Basile’s talk.

Atiyah class of dg-manifolds. WiP w/ Lara Jonke & Dima Roytenberg; next year’s talk?



BASIC CONNECTIONS & BASIC CURVATURE

Consider the pair (E ,∇) of a LAoid (E → M, ρ : E → TM, [−,−] : E ∧ E → E)

and a “TM-on-E” linear connection ∇ : Γ(TM ⊗ E) → Γ(E) . R∇ defined as usual, T∇ in general not.

A canonical induced E-on-E connection is always defined: ∇̇E
e := ∇ρ(e).

Does a torsion-free E-on-E connection exist?

Yes, by “averaging with the opposite”:

∇E
avg =

1
2
(∇̇E +∇E

) , ∇E
ee′ = ∇ρ(e′)e + [e, e′] ⇝ T∇E

avg
= 0 .

What is the curvature of these two induced connections?

R∇̇E(e, e′)e′′ = R∇(ρ(e), ρ(e′))e′′ , R∇E(e, e′)e′′ = −S∇(e, e′)ρ(e′′) ,

where the basic curvature tensor of the LAoid connection ∇ is defined as X ∈ Γ(TM)

S∇(e, e′)X = ∇X [e, e′]− [∇X e, e′]− [e,∇X e′]−∇∇E
e′X e +∇∇E

e X e′ ,

which measures the compatibility of ∇ and [−,−] and uses an E-on-TM connection:

∇E
eX = ρ(∇X e) + [ρ(e),X ] , R∇E(e, e′)X = −ρ

(
S∇(e, e′)X

)
.
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INTERMEZZO: CARTAN-LIE ALGEBROIDS

The concept of basic curvature was implicitly introduced in Blaom ’04.

A Cartan connection on a LAoid is one whose basic curvature vanishes.

A Cartan-LAoid is a LAoid equipped with a Cartan connection.

A LAoid is associated to a LAa action iff it admits a flat ∇ s.t. S∇ = 0. Blaom ’04; Abad, crainic ’09

A bundle of LAas if a LAa bundle iff it admits a ∇ s.t. S∇ = 0. Abad, Crainic ’09



RUTHS

As for Lie algebras, representations of Lie algebroids are flat E-on-V connections ∇E.

Too restrictive. More generally, representations up to homotopy. Abad, Crainic ’09

A LAoid E and a graded VB V (chain complex) with a flat-uth E-on-V connection.

Ingredients:

✿ deg 1 operator ∂ : V → V s.t. (V, ∂) is a complex.

✿ E-on-V connection: ∇E.

✿ deg 1, End-valued 2-form ω2 ∈ Ω2(E ;End−1(V)) s.t. [∂, ω2] + R∇E = 0.

✿ deg 1, End-valued n-forms, ωn>2 ∈ Ωn(E ;End 1−n(V)) s.t. recursive relations ...



ADJOINT & CO.

The adjoint representation of a LAoid is a ruth with V the adjoint complex E ρ→ TM.
Abad, Crainic ’09

Ingredients:

✿ ∂ = ρ .

✿ ∇E = ∇E
, the basic connection:

∇E
e

(
e′

X

)
=

(
∇ρ(e′)e + [e, e′]

ρ(∇X e) + [ρ(e),X ]

)
, satisfying [∇E

, ρ] = 0 .

✿ ω2 = S∇, the basic curvature, satisfying: R∇E + [ρ,S∇] = 0 .

✿ ωn>2 = 0, since the basic curvature is d∇E -closed.

The coadjoint representation is a ruth with V the dual complex T ∗M ρ∗→ E∗ and dual data.



GAUGE ALGEBRA OF (TWISTED) PSM

In physics, the basic curvature appears in the Poisson sigma model. Ikeda, Strobl ’19

2D dilaton gravity, deformation quantization of Poisson manifolds, AKSZ construction, ...

The PSM is a 2D gauge theory of scalars Xµ and 1-forms Aµ, with open gauge algebra

[δ1, δ2]Aµ = δ12Aµ + Sµν
ρσ(X )ϵ1ρϵ2σF ν , ϵ12µ = ∇µΠ

νρ(X )ϵ1νϵ2ρ .

Bonus: this remains true for the 3-form twisted PSM for a connection with torsion.
when the target space has a twisted Poisson structure Ševera, Weinstein ’01

Another bonus: still true for other LAoid-based models, like Dirac sigma models.
Th. Ch., Jonke ’23

Remark: ∇ plays an auxiliary role here, manifesting target space covariance.
Baulieu, Losev, Nekrasov ’01



FOR COURANT ALGEBROIDS ...

Courant algebroid: (E , [−,−], ρ : E → TM, ⟨·, ·⟩ ≡ η), (Γ(E), [−,−]) is a Leibniz algebra,

[e, [e′, e′′]] = [[e, e′], e′′] + [e′, [e, e′′]] ,

η(e, [e′, e′]) = 1
2ρ(e)η(e

′, e′) = η([e, e′], e′) .

Consider a TM-on-E connection ∇. Is it a derivation of the Dorfman bracket [−,−]?

Basic curvature of ∇ w.r.t [−,−] is defined, using ∇E
eX = ρ(∇X e) + [ρ(e),X ], as:

Th. Ch., Jonke ’23

S∇(e, e′)X = ∇X [e, e′]− [∇X e, e′]− [e,∇X e′]−∇∇E
e′X e +∇∇E

e X e′+ η(∇∇EX e, e′) .

Remarks:

✿ The last term is there to tensorize it, cf. torsion of CAoid E-on-E connections
Gualtieri ’07

T∇E(e, e′) = ∇E
ee′ −∇E

e′e − [e, e′] + η(∇Ee, e′) .

✿ The naive formula for E-on-E basic connection is a Dorfman connection Jotz-Lean ’12

Dee′ = ∇ρ(e′)e + [e, e′] vs. ∇E
ee′ = ∇ρ(e′)e + [e, e′]− η(∇ρ(−)e, e

′) .

Dorfman connections are not homogeneous: Df ee′ ̸= f Dee′. “Fork in the road”.
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GAUGE ALGEBRA OF (TWISTED) CSM

The CAoid basic curvature appears in the gauge algebra of Courant sigma models.
Th. Ch., Ikeda, Jonke ’24

The CSM is a 3D gauge theory of scalars Xµ, 1-forms Aa = (Aµ,Aµ) and 2-forms Bµ.
in fact, even to define it in terms of differential forms, you need a connection

2 BF theories in 3D: scalar/2-form and 1-form/1-form (Chern-Simons): couple them.
Ikeda; Hofman, Park; Roytenberg

SCSM =

∫
−Bµ ∧ dXµ +

1
2
ηabAa ∧ dAb + ρa

µ(X )Bµ ∧ Aa +
1
3!

Cabc(X )Aa ∧ Ab ∧ Ac .

The gauge algebra is once again open and in the covariant formulation it features S∇:

[δ1, δ2]Bµ = δ12Bµ + (∇µSνabc ϵ
a
1 ϵ

b
2 Ac + ...) ∧ F ν + (...)F ν ∧ Fρ + Sµabc ϵ

a
1 ϵ

b
2 Gc .

Bonus: it allows for straightforwardly introducing the effect of a WZ term.
models based on 4-form twisted CAois / twist being responsible for the nonlinear openness of the gauge algebra

Remark: analogous notions for examples of Ševera’s higher-dim Hamiltonian mechanics.
Th. Ch. ’21; Th. Ch., Kodzoman, Škoda ’24
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COURANT ALGEBROIDS & QP2 MANIFOLDS

Graded-geometric description of CAoid as symplectic subman’d of M2 = T ∗[2]E [1].
Roytenberg

A canonical degree 2 symplectic structure Ω and a homological vector field Q.

|Q| = 1 and {Q,Q} = 0 .

Compatibility of the graded symplectic and Q structures.

LQ Ω = 0 .

A degree 3 Hamiltonian function.

Q = {Θ,−} , {Θ,Θ} = 0 .

The Dorfman bracket is a derived bracket, together with ρ and η are given as

[e, e′] = {{Θ, e}, e′}

ρ(e)f = {{Θ, e}, f} ,

η(e, e′) = {e, e′} .



COURANT ALGEBROIDS & LIE 2-ALGEBROIDS

In general, split Qn manifolds correspond to Lie n-algebroids.
Voronov; Sheng, Zhu; Bonavolonta, Poncin; . . .

A Courant algebroid is not a split QP2 manifold, in general.

✤ Price to pay: an η-compatible TM-on-E connection ∇ : X(M)× Γ(E) → Γ(E).

✿ Then the split graded vector bundle T ∗[1]M ⊕ E admits a Lie 2-algebroid structure.

✿ The brackets are given as higher derived brackets (C∞(M)-linear for k ≥ 3)

ℓk (e1, . . . , ek ) = {. . . {{Q(k−1), e1}, e2} . . . ek} ,

where the arity k Q(k) w.r.t. the (unweighted) Euler vector field is

{Q(k), ε} = k Q(k) .

For Q1 manifolds, only k = 1, giving the Lie bracket of the Lie (1-)algebroid.
no fork in the road ...



COURANT ALGEBROIDS & LIE 2-ALGEBROIDS

For Courant algebroids, there are Q(k) for k = 0, 1, 2.

The Lie 2-algebroid on T ∗[1]M ⊕ E is given by the anchor ρ and the brackets

ℓ1 = −ρ♯

ℓ2(e, e′) = [e, e′]− η♯(∇̇E
−e, e′) , ℓ2(e, σ) = Lρ(e)(σ)− (∇−e, ρ∗(σ)) ,

ℓ3(e, e′, e′′) = −η(S∇(e, e′)(−), e′′)− η(R∇(−, ρ(e′′))(e), e′)

Here S∇ ∈ Γ(E ⊗ E ⊗ E ⊗ TM) is the basic curvature for the TM-on-E wrt ℓ2:

S∇(e, e′)X = ∇X
(
ℓ2(e, e′)

)
− ℓ2(∇X e, e′)− ℓ2(e,∇X e′)−∇∇E

e′X e +∇∇E
e X e .

Remarks:

✿ Canonical definition of S∇ wrt ℓ2 vs wrt [−,−].
(
n.b.: ∇E

ee′ = ∇ρ(e′)e + ℓ2(e, e′).
)

This is due to ℓ2 being skew and C∞(M)-Leibniz (in both entries).

✿ As such, ℓ2 defines canonical tensors for E-n-E connections too:

T∇E(e, e′) = ∇E
ee′ −∇E

e′e − ℓ2(e, e′) , R∇E(e, e′) = [∇E
e,∇E

e′ ]−∇E
ℓ2(e,e′) .

Another choice of ∇ gives L∞ quasi-isomorphic Lie 2-algebroid. Different construction than Roytenberg-Weinstein Lie 2-algebra
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OUTLOOK

✿ The basic curvature tensor appears naturally in the study of connections

& representations of LAois, CAois & beyond.

✿ Also in physical settings where these structures appear, e.g. gauge theory & CHSs.

✿ For Lie (n > 1)-algebroids, it ties up the structure⇝ canonical definitions of tensors.

***

✤ General study of connections on dg-manifolds & Atiyah class.

✤ Physical applications (e.g. nontopological / susy “AKSZ”, quantization, ...)

✤ Utility of Lie 2-algebroid construction (e.g. in gravity models).
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