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Motivation and synopsis

The Poisson sigma model [Ikeda, 1993] is the most general sigma model of
AKSZ-type [Alexandrov–Kontsevich–Schwarz–Zaboronsky, 1995] in two dimensions,

and
simply reads

SPSM[X;A] =

Z
Σ

A— ∧ dX— + 1
2
Π
—‌(X)A— ∧ A‌ ;

˛̨̨̨
˛X : Σ −→ M ;

A ∈ Ω1(Σ; X∗T ∗M) ;

for Π ∈ Γ(∧2TM) the Poisson bivector of the target space M.

Its path integral quantisation [Cattaneo–Felder, 1999] gives a field-theoretical
realisation of Kontsevich’s formality theorem [Kontsevich, 1997], and the
deformation quantisation of Poisson manifold.

More precisely, one recovers the formula for the star-product on Rd equipped
with an arbitrary Poisson structure Π, as a correlation function on the disc,

f ? g =
˙
f (X) g(X)

¸
PSM

= f · g + i~
2
{f ; g}+O(~2) ;

with f ; g ∈ C∞(Rd) two functions in target space.
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Motivation and synopsis

A supersymmetric extension has been proposed by
[Arias–Boulanger–Sundell–Torres-Gomez, 2015] as a potential model to describe the
deformation quantisation of the algebra differential forms.

• Extend the target space M to its parity-shifted tangent bundle ΠTM as
C∞(ΠTM) ∼= ΩM ;

• Extend the Poisson structure on M to one on ΠTM, i.e. endow the
algebra of differential forms with a Poisson bracket, so that ΠTM becomes
a Poisson supermanifold.

Intriguing feature: Its compatibility with the de Rham differential, which is an
odd homological vector field on ΠTM, manifest itself by the existence of a
global supersymmetry.

Synopsis

Explore the ‘usual’ geometric structures encoded by a Poisson supermanifold
equipped with a compatible odd homological vector field.
As a by-product, we derive a new example of super-Poisson sigma model based
on the coadjoint representation up to homotopy of a Poisson manifold.
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Introduction: Poisson supermanifolds



Poisson supermanifolds

Consider a supermanifold M with even coordinates x— and odd ones „a. It is
(non-canonically) diffeomorphic to a parity-shifted vector bundle, i.e. M ∼= ΠE

for E“ M a vector bundle over the body M of M [Batchelor, 1977].

If its algebra of functions is a Poisson superalgebra, i.e. C∞(M) ∼= Γ(∧E∗) is
equipped with an R-bilinear graded-antisymmetric, even, bracket

{−;−} : C∞(M) ∧ C
∞(M) −→ C

∞(M) ;

obeying the Leibniz rule and Jacobi identity, then
`
M; {−;−}

´
is called a

Poisson supermanifold.

Equivalently, it means that M is equipped with a Poisson bivector

P ∈ Γ(∧2TM) such that {f ; g} = P(df ∧ dg) ; ∀ f ; g ∈ C
∞(M) ;

i.e. its components locally takes the form

{x—; x‌} = P—‌(x; „2) ; {x—; „a} = „b P—a
b (x; „2) ; {„a; „b} = Pab(x; „2) ;

where the notation „2 is meant to highlight the fact that the various
components appearing above depend on quadratic combinations of the odd
coordinates—the components are even.
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Generic case

We can expand the components of the super-Poisson bivector in powers of „,

P—‌ = Π
—‌(x) + 1

2
„a„bPab—‌(x) + : : : ;

P—a = „bΓ—ab (x) + : : : ;

Pab = gab(x) + 1
2
„c„dRcd

ab(x) + : : : ;

and upon doing the same for the Jacobi identity, at 0th order in „, one finds

• Π ∈ Γ(∧2TM) is Poisson, i.e. the base manifold
`
M;Π

´
is always an

ordinary (bosonic) Poisson manifold.

• The components Γ—ab are that of a flat contravariant connection
∇T ∗M : Γ(T ∗M)⊗ Γ(E∗) −→ Γ(E∗) :

Such connection can be defined on
Poisson manifolds, and can be induced by any ‘ordinary’ connection
∇ : Γ(TM)⊗ Γ(E) −→ Γ(E) via ∇T ∗M := ∇Π#(−), i.e. Γ—ab = −Π

—‌Γa—b.

• The components gab are that of a section g ∈ Γ(S2E∗) which preserved
by the contravariant connection.
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Super-Poisson sigma model and
coadjoint ruth



Super-PSM

Fields

The super-Poisson sigma model is a topological field theory in two dimensions,
whose classical fields are degree-preserving maps between

`
Z× Z2

´
-graded

manifolds,

namely

T [1; 0]Σ −→ T ∗[1; 0]M ; M ∼= E[0; 1] ;

with Σ a smooth manifold concentrated in Z× Z2 bidegree [0; 0], and E“ M

some vector bundle. One therefore ends up with the following set of fields:

Fields X— A— „a ffla

form deg. 0 1 0 1

parity 0 0 1 1

The pair
`
X—; „a

´
originates from coordinates on M ∼= E[0; 1], and

`
A—; ffla

´
are their momenta, i.e. !T ∗M = dX— ∧ dA— + d„a ∧ dffla.
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Super-PSM

Action and gauge (super)symmetry

The action principle takes the relatively simple form [Ikeda, 1993]

S[X;A; „; ffl] =

Z
Σ

A— ∧ dX— + ffla ∧ d„a + 1
2
P—‌(X; „2)A— ∧ A‌

+ „b P—a
b (X; „2)A— ∧ ffla + 1

2
Pab(X; „2)ffla ∧ fflb ;

and, by virtue of the fact that P is a super-Poisson bivector, is invariant under
the gauge transformations

‹"X
— = "‌P‌— + "a„

bP—a
b ;

‹"A— = d"— + A‌@—P‌ȷ"ȷ + "‌ffla@—P‌|a + "aA‌@—P‌|a − "afflb@—Pba ;

‹"„
a = "—„

bP—a
b − "bPab ;

‹"ffla = d"a + A—@aP—‌"‌ − "—fflb@aP—b − "bA—@aP—b − "bfflc@aPbc ;

where "— and "a are respectively bosonic and fermionic gauge parameters.

In particular, the transformations generated by the fermionic ones correspond
to local supersymmetry.
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De Rham supersymmetry

The super-Poisson sigma model studied by [Arias–Boulanger–Sundell–Torres-Gomez,

2015], for the Poisson supermanifold M = T [0; 1]M, is given by

S[X;A; „; ffl] =

Z
Σ

A— ∧ dX— + 1
2
Π
—‌ A— ∧ A‌

+ ffl— ∧∇„— + 1
4
„—„‌Πȷ(» R—‌

–)
ȷ ffl» ∧ ffl– ;

where
∇ffl— := d„— + dX» Γ—»– „

– ;

for ∇ any connection on M, not necessarily torsion-free, and R»–‌ȷ the
components of the curvature of the connection ∇ defined by

∇XY = ∇Y X + [X; Y ] ; X; Y ∈ Γ(TM) ; i.e. Γ
–
—‌ = Γ–‌— ;

called the basic connection [See Thanasis Chatzistavrakidis’ talk].
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De Rham supersymmetry

This model enjoys an interesting global supersymmetry,

‹SX
— = „— ; ‹S„

— = 0 ;

‹SA— = Γ–—‌A–„
‌ + 1

2
„»„–R»–

‌
—ffl‌ ; ‹Sffl— = −A— − Γ–—‌„

‌ffl– ;

which can be traced back to the action of the de Rham homological vector field

qS = „— @
@x—

;

on the Poisson supermanifold T [0; 1]M, and the invariance of its super-Poisson
structure under it.

Put differently, this global supersymmetry follows from the compatibility
between the Poisson bracket on C∞(T [0; 1]M) ∼= ΩM and the de Rham
differential on M.

Are there more examples, and what is the organising principle behind them?
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Odd homological vector fields

First, let us not that qS is odd, i.e. it is of bidegree [0; 1].

On
`
Z× Z2

´
-graded

manifolds, homological vector fields can be of bidegrees [1; 0] or [0; 1].

On the shifted (in the Z-degree) cotangent bundle T ∗[1; 0]M of a
supermanifold M, a homological vector field also compatible with the
canonical symplectic structure, LQ!T ∗[1;0]M = 0, is necessarily

• [1; 0]: The Hamiltonian vector field associated with

H = 1
2
P—‌a—a‌ + P—aa—ffla +

1
2
Pabfflafflb ;

for P a super-Poisson bivector.

• [0; 1]: The cotangent lift QS of an odd homological vector field
qS ∈ Γ(TM) on the base supermanifold, i.e.

qS = ı∗QS ; with T ∗[1; 0]M ı−→ M :

In other words,
`
T ∗[1; 0]M;QS

´
is a Q-bundle [Kotov–Strobl, 2007].
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Coadjoint representation up to homotopy

Famously, a Lie algebroid
`
E“ M;E

t−→ TM; [−;−]E
´

is equivalent to a
supermanifold equipped with an odd homological vector field of homogeneity
one,

`
E[0; 1]; qS = „ata

— @
@x—

− 1
2
„b„cCbc

a @
@„a

´
[Vaintrob, 1997], and their

representation up to homotopy correspond to Q-bundles over E[0; 1]
[Abad–Crainic, 2009].

Recall that the adjoint representation of E is defined on the vector bundle
complex E

t−→ TM, and the coadjoint one (its dual) on T ∗M
t∗−→ E∗, [See

Thanasis Chatzistavrakidis’ talk]. In the latter case, this amounts to turning the shifted
cotangent bundle,

T ∗[1; 0]E[0; 1]
∇∼= E[0; 1]×

`
T ∗[1; 0]M ⊕ E

∗[1; 1]
´
;

into a Q-bundle. Concretely, its homological vector field read

QS = „ata
— @
@x—

− 1
2
„b„cCbc

a @
@„a

+
`
„aΓ

‌
a—a‌ − 1

2
„a„bSab—

cfflc
´
@
@a—

+
`
− ta

—a— + „bΓ
c
bafflc

´
@
@ffla

;

where Γ
a
bc and Γ

‌
a— are the components of the basic connection, and Sab—c that

of the basic curvature.
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QS-invariant super-Poisson structure

In order to build a super-Poisson sigma model that is invariant under the global
supersymmetry corresponding to the coadjoint ruth, one should require the
super-Poisson bivector to be invariant under QS .

For simplicity, we restrict ourselves
to the case of bivectors homogeneous of degree 0, i.e.

P—‌ = Π
—‌(x) ; P—a = −„bΠ—‌Γa‌b(x) ; Pab = 1

2
„c„dRcd

ab(x) ;

where the contravariant connection is induced from the auxiliary connection ∇, and
the last term is to be determined.

Among the conditions implied by the invariance of P under QS , one finds

Π
—‌Sab‌

c − Rab
cd td

— = 0 ;

relating the a priori undetermined component of P.

• The ABST-G model corresponds to E = TM, so that the anchor is the identity,
ta—  ‹

—
¸ , and hence the previous condition can be used as a definition of the

undetermined component of P.

• Another solution that presents itself is the cotangent Lie algebroid E = T ∗M, in
which case the anchor is the Poisson bivector on the base, ta—  Π

¸—, so that
we can also read the above condition as a definition (modulo the kernel of Π#).
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Poisson supersymmetry

This leads to the ‘contravariant’ version of the ABST-G model, whose action
reads

S[X;A; „; ffl] =

Z
Σ

A—∧dX—+ffl—∧∇„—+ 1
2
Π
—‌A—∧A‌ − 1

4
„»„–S

»–
—‌ffl

—∧ffl‌ ;

and which enjoys a global supersymmetry generated by the homological vector
field encoding the coadjoint representation up to homotopy of the cotangent
Lie algebroid,

QSX
— = −Π

—‌„‌ ; QS„— = − 1
2
@—Π

»–„»„– ;

QSA— = −Γ
ȷ
—
‌A‌„ȷ − 1

2
S»–—‌„»„–ffl

‌ ; QSffl
— = −Π

—‌A‌ + Γ
ȷ—
‌ffl

‌„ȷ :

In particular, we see that it generate what could be called a Poisson
supersymetry (regardless of the regularity of Π).
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Outlook



Outlook

• On a supermanifold equipped with an odd homological vector field, one
can look for invariant super-Poisson structures.

• This can be useful in two ways:

(i) help classifying and understanding the
geometrical structures on E encoded in super-Poisson bivectors on E[0; 1];
(ii) build sigma models with both local supersymmetry stemming from the
super-Poisson bivector, and global supersymmetry via the odd
homological vector field.

• Looking ahead, this could be a way to tackle the deformation quantisation
of differential forms by taking E = TM.

Thank you for your attention!
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