Supersymmetric Poisson sigma models, revisited

Thomas Basile (UMONS)

19th of September 2025 @ Corfu

Joint work with Athanasios Chatzistavrakidis and Sylvain Lavau [2504.13114]

The Poisson sigma model [Ikeda, 1993] is the most general sigma model of AKSZ-type [Alexandrov–Kontsevich–Schwarz–Zaboronsky, 1995] in two dimensions,

The Poisson sigma model [Ikeda, 1993] is the most general sigma model of AKSZ-type [Alexandrov-Kontsevich-Schwarz-Zaboronsky, 1995] in two dimensions, and simply reads

$$S_{ extsf{PSM}}[X,A] = \int_{\Sigma} A_{\mu} \wedge \mathrm{d} X^{\mu} + frac{1}{2} \Pi^{\mu
u}(X) A_{\mu} \wedge A_{
u} \,, \qquad egin{align*} X:\Sigma \longrightarrow M \,, \ A \in \Omega^1(\Sigma,X^*T^*M) \,, \end{cases}$$

for $\Pi \in \Gamma(\wedge^2 TM)$ the **Poisson bivector** of the target space M.

The Poisson sigma model [Ikeda, 1993] is the most general sigma model of AKSZ-type [Alexandrov-Kontsevich-Schwarz-Zaboronsky, 1995] in two dimensions, and simply reads

$$S_{ extsf{PSM}}[X,A] = \int_{\Sigma} A_{\mu} \wedge \mathrm{d} X^{\mu} + frac{1}{2} \Pi^{\mu
u}(X) A_{\mu} \wedge A_{
u} \,, \qquad egin{align*} X:\Sigma \longrightarrow M \,, \ A \in \Omega^1(\Sigma,X^*T^*M) \,, \end{aligned}$$

for $\Pi \in \Gamma(\wedge^2 TM)$ the **Poisson bivector** of the target space M.

Its path integral quantisation [Cattaneo-Felder, 1999] gives a field-theoretical realisation of Kontsevich's formality theorem [Kontsevich, 1997], and the deformation quantisation of Poisson manifold.

The Poisson sigma model [Ikeda, 1993] is the most general sigma model of AKSZ-type [Alexandrov-Kontsevich-Schwarz-Zaboronsky, 1995] in two dimensions, and simply reads

$$S_{ extsf{PSM}}[X,A] = \int_{\Sigma} A_{\mu} \wedge \mathrm{d} X^{\mu} + frac{1}{2} \Pi^{\mu
u}(X) A_{\mu} \wedge A_{
u} \,, \qquad egin{align*} X:\Sigma \longrightarrow M \,, \ A \in \Omega^1(\Sigma,X^*T^*M) \,, \end{cases}$$

for $\Pi \in \Gamma(\wedge^2 TM)$ the **Poisson bivector** of the target space M.

Its path integral quantisation [Cattaneo-Felder, 1999] gives a field-theoretical realisation of Kontsevich's formality theorem [Kontsevich, 1997], and the deformation quantisation of Poisson manifold.

More precisely, one recovers the formula for the **star-product** on \mathbb{R}^d equipped with an *arbitrary* Poisson structure Π , as a **correlation function** on the disc,

$$f\star g = \left\langle f(X)\,g(X) \right\rangle_{\scriptscriptstyle{\mathsf{PSM}}} = f\cdot g + rac{i\hbar}{2}\{f,g\} + \mathcal{O}(\hbar^2)$$
 ,

with $f,g\in \mathcal{C}^\infty(\mathbb{R}^d)$ two functions in target space.

A supersymmetric extension has been proposed by

[Arias-Boulanger-Sundell-Torres-Gomez, 2015] as a potential model to describe the deformation quantisation of the algebra differential forms.

A supersymmetric extension has been proposed by

[Arias-Boulanger-Sundell-Torres-Gomez, 2015] as a potential model to describe the deformation quantisation of the algebra differential forms.

• Extend the target space M to its parity-shifted tangent bundle ΠTM as $\mathcal{C}^{\infty}(\Pi TM) \cong \Omega_M$;

A supersymmetric extension has been proposed by

[Arias-Boulanger-Sundell-Torres-Gomez, 2015] as a potential model to describe the deformation quantisation of the algebra differential forms.

- Extend the target space M to its parity-shifted tangent bundle ΠTM as $\mathcal{C}^{\infty}(\Pi TM) \cong \Omega_M$;
- Extend the Poisson structure on M to one on ΠTM, i.e. endow the algebra of differential forms with a Poisson bracket, so that ΠTM becomes a Poisson supermanifold.

A supersymmetric extension has been proposed by

[Arias-Boulanger-Sundell-Torres-Gomez, 2015] as a potential model to describe the deformation quantisation of the algebra differential forms.

- Extend the target space M to its parity-shifted tangent bundle ΠTM as $\mathcal{C}^{\infty}(\Pi TM) \cong \Omega_M$;
- Extend the Poisson structure on M to one on ΠTM, i.e. endow the algebra of differential forms with a Poisson bracket, so that ΠTM becomes a Poisson supermanifold.

Intriguing feature: Its compatibility with the de Rham differential, which is an odd homological vector field on ΠTM , manifest itself by the existence of a global supersymmetry.

A supersymmetric extension has been proposed by

[Arias-Boulanger-Sundell-Torres-Gomez, 2015] as a potential model to describe the deformation quantisation of the algebra differential forms.

- Extend the target space M to its parity-shifted tangent bundle ΠTM as $\mathcal{C}^{\infty}(\Pi TM) \cong \Omega_M$;
- Extend the Poisson structure on M to one on ΠTM, i.e. endow the algebra of differential forms with a Poisson bracket, so that ΠTM becomes a Poisson supermanifold.

Intriguing feature: Its compatibility with the de Rham differential, which is an odd homological vector field on ΠTM , manifest itself by the existence of a global supersymmetry.

Synopsis

A supersymmetric extension has been proposed by

[Arias-Boulanger-Sundell-Torres-Gomez, 2015] as a potential model to describe the deformation quantisation of the algebra differential forms.

- Extend the target space M to its parity-shifted tangent bundle ΠTM as $\mathcal{C}^{\infty}(\Pi TM) \cong \Omega_M$;
- Extend the Poisson structure on M to one on ΠTM, i.e. endow the algebra of differential forms with a Poisson bracket, so that ΠTM becomes a Poisson supermanifold.

Intriguing feature: Its compatibility with the de Rham differential, which is an odd homological vector field on ΠTM , manifest itself by the existence of a global supersymmetry.

Synopsis

Explore the 'usual' geometric structures encoded by a Poisson supermanifold equipped with a compatible **odd** homological vector field.

A supersymmetric extension has been proposed by

[Arias-Boulanger-Sundell-Torres-Gomez, 2015] as a potential model to describe the deformation quantisation of the algebra differential forms.

- Extend the target space M to its parity-shifted tangent bundle ΠTM as $\mathcal{C}^{\infty}(\Pi TM) \cong \Omega_M$;
- Extend the Poisson structure on M to one on ΠTM, i.e. endow the algebra of differential forms with a Poisson bracket, so that ΠTM becomes a Poisson supermanifold.

Intriguing feature: Its compatibility with the de Rham differential, which is an odd homological vector field on ΠTM , manifest itself by the existence of a global supersymmetry.

Synopsis

Explore the 'usual' geometric structures encoded by a Poisson supermanifold equipped with a compatible **odd** homological vector field.

As a by-product, we derive a new example of super-Poisson sigma model based on the coadjoint representation up to homotopy of a Poisson manifold.

Plan of the talk

1 Introduction: Poisson supermanifolds

2 Super-Poisson sigma model and coadjoint ruth

Outlook

Introduction: Poisson supermanifolds

Poisson supermanifolds

Consider a supermanifold \mathcal{M} with even coordinates x^{μ} and odd ones θ^{a} . It is (non-canonically) diffeomorphic to a **parity-shifted vector bundle**, i.e. $\mathcal{M} \cong \Pi \mathcal{E}$ for $\mathcal{E} \twoheadrightarrow \mathcal{M}$ a vector bundle over the *body* \mathcal{M} of \mathcal{M} [Batchelor, 1977].

Poisson supermanifolds

Consider a supermanifold \mathcal{M} with even coordinates x^{μ} and odd ones $\theta^{\mathfrak{d}}$. It is (non-canonically) diffeomorphic to a **parity-shifted vector bundle**, i.e. $\mathcal{M} \cong \Pi \mathcal{E}$ for $\mathcal{E} \twoheadrightarrow \mathcal{M}$ a vector bundle over the *body* \mathcal{M} of \mathcal{M} [Batchelor, 1977].

If its algebra of functions is a Poisson superalgebra, i.e. $\mathcal{C}^{\infty}(\mathcal{M}) \cong \Gamma(\wedge \mathcal{E}^*)$ is equipped with an \mathbb{R} -bilinear graded-antisymmetric, even, bracket

$$\{-,-\}: \mathcal{C}^{\infty}(\mathcal{M}) \wedge \mathcal{C}^{\infty}(\mathcal{M}) \longrightarrow \mathcal{C}^{\infty}(\mathcal{M})$$
,

obeying the Leibniz rule and Jacobi identity, then $(\mathcal{M}, \{-, -\})$ is called a Poisson supermanifold.

Poisson supermanifolds

Consider a supermanifold \mathcal{M} with even coordinates x^{μ} and odd ones $\theta^{\mathfrak{d}}$. It is (non-canonically) diffeomorphic to a **parity-shifted vector bundle**, i.e. $\mathcal{M} \cong \Pi \mathcal{E}$ for $\mathcal{E} \twoheadrightarrow \mathcal{M}$ a vector bundle over the *body* \mathcal{M} of \mathcal{M} [Batchelor, 1977].

If its algebra of functions is a Poisson superalgebra, i.e. $\mathcal{C}^{\infty}(\mathcal{M}) \cong \Gamma(\wedge \mathcal{E}^*)$ is equipped with an \mathbb{R} -bilinear graded-antisymmetric, even, bracket

$$\{-,-\}: \mathcal{C}^{\infty}(\mathcal{M}) \wedge \mathcal{C}^{\infty}(\mathcal{M}) \longrightarrow \mathcal{C}^{\infty}(\mathcal{M})$$
,

obeying the Leibniz rule and Jacobi identity, then $(\mathcal{M}, \{-, -\})$ is called a Poisson supermanifold.

Equivalently, it means that ${\mathcal M}$ is equipped with a Poisson bivector

$$\mathcal{P} \in \Gamma(\wedge^2 \mathcal{TM}) \qquad \text{such that} \qquad \{f,g\} = \mathcal{P}(\mathsf{d} f \wedge \mathsf{d} g)\,, \qquad \forall\, f,g \in \mathfrak{C}^\infty(\mathcal{M})\,,$$

i.e. its components locally takes the form

$$\left\{\boldsymbol{x}^{\mu},\boldsymbol{x}^{\nu}\right\} = \mathcal{P}^{\mu\nu}(\boldsymbol{x},\boldsymbol{\theta}^2)\,,\quad \left\{\boldsymbol{x}^{\mu},\boldsymbol{\theta}^a\right\} = \boldsymbol{\theta}^b\,\mathcal{P}^{\mu a}_b(\boldsymbol{x},\boldsymbol{\theta}^2)\,,\quad \left\{\boldsymbol{\theta}^a,\boldsymbol{\theta}^b\right\} = \mathcal{P}^{ab}(\boldsymbol{x},\boldsymbol{\theta}^2)\,,$$

where the notation θ^2 is meant to highlight the fact that the various components appearing above depend on quadratic combinations of the odd coordinates—the components are even.

Generic case

We can expand the components of the super-Poisson bivector in powers of θ ,

$$\begin{split} \mathcal{P}^{\mu\nu} &= \Pi^{\mu\nu}(x) + \tfrac{1}{2} \theta^a \theta^b \mathcal{P}_{ab}{}^{\mu\nu}(x) + \dots, \\ \mathcal{P}^{\mu a} &= \theta^b \Gamma^{\mu a}_b(x) + \dots, \\ \mathcal{P}^{ab} &= g^{ab}(x) + \tfrac{1}{2} \theta^c \theta^d R_{cd}{}^{ab}(x) + \dots, \end{split}$$

Generic case

We can expand the components of the super-Poisson bivector in powers of θ ,

$$\begin{split} \mathcal{P}^{\mu\nu} &= \Pi^{\mu\nu}(x) + \tfrac{1}{2} \theta^a \theta^b \mathcal{P}_{ab}{}^{\mu\nu}(x) + \dots, \\ \mathcal{P}^{\mu a} &= \theta^b \Gamma^{\mu a}_b(x) + \dots, \\ \mathcal{P}^{ab} &= g^{ab}(x) + \tfrac{1}{2} \theta^c \theta^d R_{cd}{}^{ab}(x) + \dots, \end{split}$$

Generic case

We can expand the components of the super-Poisson bivector in powers of θ ,

$$\begin{split} \mathcal{P}^{\mu\nu} &= \Pi^{\mu\nu}(x) + \tfrac{1}{2} \theta^a \theta^b \mathcal{P}_{ab}{}^{\mu\nu}(x) + \ldots, \\ \mathcal{P}^{\mu a} &= \theta^b \Gamma^{\mu a}_b(x) + \ldots, \\ \mathcal{P}^{ab} &= g^{ab}(x) + \tfrac{1}{2} \theta^c \theta^d R_{cd}{}^{ab}(x) + \ldots, \end{split}$$

and upon doing the same for the Jacobi identity, at 0th order in θ , one finds

• $\Pi \in \Gamma(\wedge^2 TM)$ is **Poisson**, i.e. the base manifold (M, Π) is always an ordinary (bosonic) **Poisson manifold**.

We can expand the components of the super-Poisson bivector in powers of θ ,

$$\begin{split} \mathcal{P}^{\mu\nu} &= \Pi^{\mu\nu}(x) + \tfrac{1}{2} \theta^a \theta^b \mathcal{P}_{ab}{}^{\mu\nu}(x) + \dots, \\ \mathcal{P}^{\mu a} &= \theta^b \Gamma_b^{\mu a}(x) + \dots, \\ \mathcal{P}^{ab} &= g^{ab}(x) + \tfrac{1}{2} \theta^c \theta^d R_{cd}{}^{ab}(x) + \dots, \end{split}$$

- Π ∈ Γ(∧²TM) is Poisson, i.e. the base manifold (M, Π) is always an ordinary (bosonic) Poisson manifold.
- The components $\Gamma_b^{\mu a}$ are that of a flat contravariant connection $\nabla^{T^*M}: \Gamma(T^*M) \otimes \Gamma(\mathcal{E}^*) \longrightarrow \Gamma(\mathcal{E}^*)$.

We can expand the components of the super-Poisson bivector in powers of θ ,

$$\begin{split} \mathcal{P}^{\mu\nu} &= \Pi^{\mu\nu}(x) + \frac{1}{2}\theta^a\theta^b\mathcal{P}_{ab}{}^{\mu\nu}(x) + \dots, \\ \mathcal{P}^{\mu a} &= \theta^b\Gamma^{\mu a}_b(x) + \dots, \\ \mathcal{P}^{ab} &= g^{ab}(x) + \frac{1}{2}\theta^c\theta^dR_{cd}{}^{ab}(x) + \dots, \end{split}$$

- $\Pi \in \Gamma(\wedge^2 TM)$ is **Poisson**, i.e. the base manifold (M, Π) is always an ordinary (bosonic) **Poisson manifold**.
- The components $\Gamma_b^{\mu a}$ are that of a **flat contravariant connection** $\nabla^{T^*M}: \Gamma(T^*M) \otimes \Gamma(\mathcal{E}^*) \longrightarrow \Gamma(\mathcal{E}^*)$. Such connection can be defined on Poisson manifolds, and can be induced by any 'ordinary' connection $\nabla: \Gamma(TM) \otimes \Gamma(\mathcal{E}) \longrightarrow \Gamma(\mathcal{E})$ via $\nabla^{T^*M}:= \nabla_{\Pi^{\#}(-)}$, i.e. $\Gamma_b^{\mu a} = -\Pi^{\mu\nu}\Gamma_{\mu b}^a$.

We can expand the components of the super-Poisson bivector in powers of θ ,

$$\begin{split} \mathcal{P}^{\mu\nu} &= \Pi^{\mu\nu}(x) + \frac{1}{2}\theta^a\theta^b\mathcal{P}_{ab}{}^{\mu\nu}(x) + \dots, \\ \mathcal{P}^{\mu a} &= \theta^b\Gamma^{\mu a}_b(x) + \dots, \\ \mathcal{P}^{ab} &= g^{ab}(x) + \frac{1}{2}\theta^c\theta^dR_{cd}{}^{ab}(x) + \dots, \end{split}$$

- Π ∈ Γ(∧²TM) is Poisson, i.e. the base manifold (M, Π) is always an ordinary (bosonic) Poisson manifold.
- The components $\Gamma_b^{\mu a}$ are that of a **flat contravariant connection** $\nabla^{T^*M}: \Gamma(T^*M) \otimes \Gamma(\mathcal{E}^*) \longrightarrow \Gamma(\mathcal{E}^*)$. Such connection can be defined on Poisson manifolds, and can be induced by any 'ordinary' connection $\nabla: \Gamma(TM) \otimes \Gamma(\mathcal{E}) \longrightarrow \Gamma(\mathcal{E})$ via $\nabla^{T^*M}:= \nabla_{\Pi^{\#}(-)}$, i.e. $\Gamma_b^{\mu a} = -\Pi^{\mu\nu}\Gamma_{\mu b}^a$.
- The components g^{ab} are that of a section $g \in \Gamma(S^2 \mathcal{E}^*)$ which **preserved** by the contravariant connection.

Super-Poisson sigma model and

coadjoint ruth

Super-PSM

Fields

The super-Poisson sigma model is a topological field theory in two dimensions, whose classical fields are degree-preserving maps between $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds,

Super-PSM

Fields

The super-Poisson sigma model is a topological field theory in two dimensions, whose classical fields are degree-preserving maps between $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds, namely

$$T[1,0]\Sigma \longrightarrow T^*[1,0]\mathcal{M}$$
 , $\mathcal{M} \cong \mathcal{E}[0,1]$,

with Σ a smooth manifold concentrated in $\mathbb{Z} \times \mathbb{Z}_2$ bidegree [0, 0], and $\mathcal{E} \twoheadrightarrow M$ some vector bundle.

Fields

The super-Poisson sigma model is a topological field theory in two dimensions, whose classical fields are degree-preserving maps between $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds, namely

$$\mathcal{T}[1,0]\Sigma \longrightarrow \mathcal{T}^*[1,0]\mathcal{M}\,, \qquad \mathcal{M} \cong \mathcal{E}[0,1]\,,$$

with Σ a smooth manifold concentrated in $\mathbb{Z} \times \mathbb{Z}_2$ bidegree [0, 0], and $\mathcal{E} \twoheadrightarrow M$ some vector bundle. One therefore ends up with the following set of fields:

Fields	X^{μ}	A_{μ}	θ^a	χa
form deg.	0	1	0	1
parity	0	0	1	1

Super-PSM

Fields

The super-Poisson sigma model is a topological field theory in two dimensions, whose classical fields are degree-preserving maps between $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds, namely

$$\mathcal{T}[1,0]\Sigma \longrightarrow \mathcal{T}^*[1,0]\mathcal{M}\,, \qquad \mathcal{M} \cong \mathcal{E}[0,1]\,,$$

with Σ a smooth manifold concentrated in $\mathbb{Z} \times \mathbb{Z}_2$ bidegree [0, 0], and $\mathcal{E} \twoheadrightarrow M$ some vector bundle. One therefore ends up with the following set of fields:

Fields	X^{μ}	A_{μ}	θ^a	χa
form deg.	0	1	0	1
parity	0	0	1	1

The pair (X^{μ}, θ^{a}) originates from coordinates on $\mathcal{M} \cong \mathcal{E}[0, 1]$, and (A_{μ}, χ_{a}) are their momenta, i.e. $\omega_{T^{*}\mathcal{M}} = dX^{\mu} \wedge dA_{\mu} + d\theta^{a} \wedge d\chi_{a}$.

Action and gauge (super)symmetry

The action principle takes the relatively simple form [Ikeda, 1993]

$$egin{aligned} S[X,A, heta,\chi] &= \int_{\Sigma} A_{\mu} \wedge \mathrm{d}X^{\mu} + \chi_{a} \wedge \mathrm{d} heta^{a} + rac{1}{2}\,\mathcal{P}^{\mu
u}(X, heta^{2})\,A_{\mu} \wedge A_{
u} \ &+ heta^{b}\,\mathcal{P}^{\mu a}_{b}(X, heta^{2})\,A_{\mu} \wedge \chi_{a} + rac{1}{2}\,\mathcal{P}^{ab}(X, heta^{2})\,\chi_{a} \wedge \chi_{b}\,, \end{aligned}$$

Action and gauge (super)symmetry

The action principle takes the relatively simple form [Ikeda, 1993]

$$egin{aligned} S[X,A, heta,\chi] &= \int_{\Sigma} A_{\mu} \wedge \mathrm{d}X^{\mu} + \chi_{\mathsf{a}} \wedge \mathrm{d} heta^{\mathsf{a}} + rac{1}{2}\,\mathcal{P}^{\mu
u}(X, heta^2)\,A_{\mu} \wedge A_{
u} \ &+ heta^{\mathsf{b}}\,\mathcal{P}^{\mu\mathsf{a}}_{\mathsf{b}}(X, heta^2)\,A_{\mu} \wedge \chi_{\mathsf{a}} + rac{1}{2}\,\mathcal{P}^{\mathsf{a}\mathsf{b}}(X, heta^2)\,\chi_{\mathsf{a}} \wedge \chi_{\mathsf{b}}\,, \end{aligned}$$

and, by virtue of the fact that \mathcal{P} is a super-Poisson bivector, is invariant under the gauge transformations

$$\begin{split} &\delta_{\varepsilon}X^{\mu}=\varepsilon_{\nu}\mathcal{P}^{\nu\mu}+\varepsilon_{a}\theta^{b}\mathcal{P}^{\mu a}_{b}\,,\\ &\delta_{\varepsilon}A_{\mu}=\mathrm{d}\varepsilon_{\mu}+A_{\nu}\partial_{\mu}\mathcal{P}^{\nu\rho}\varepsilon_{\rho}+\varepsilon_{\nu}\chi_{a}\partial_{\mu}\mathcal{P}^{\nu|a}+\varepsilon_{a}A_{\nu}\partial_{\mu}\mathcal{P}^{\nu|a}-\varepsilon_{a}\chi_{b}\partial_{\mu}\mathcal{P}^{ba}\,,\\ &\delta_{\varepsilon}\theta^{a}=\varepsilon_{\mu}\theta^{b}\mathcal{P}^{\mu a}_{b}-\varepsilon_{b}\mathcal{P}^{ab}\,,\\ &\delta_{\varepsilon}\chi_{a}=\mathrm{d}\varepsilon_{a}+A_{\mu}\partial_{a}\mathcal{P}^{\mu\nu}\varepsilon_{\nu}-\varepsilon_{\mu}\chi_{b}\partial_{a}\mathcal{P}^{\mu b}-\varepsilon_{b}A_{\mu}\partial_{a}\mathcal{P}^{\mu b}-\varepsilon_{b}\chi_{c}\partial_{a}\mathcal{P}^{bc}\,, \end{split}$$

where ε_{μ} and ε_{a} are respectively bosonic and fermionic gauge parameters.

Action and gauge (super)symmetry

The action principle takes the relatively simple form [Ikeda, 1993]

$$egin{aligned} S[X,A, heta,\chi] &= \int_{\Sigma} A_{\mu} \wedge \mathrm{d}X^{\mu} + \chi_{\mathsf{a}} \wedge \mathrm{d} heta^{\mathsf{a}} + rac{1}{2}\,\mathcal{P}^{\mu
u}(X, heta^2)\,A_{\mu} \wedge A_{
u} \ &+ heta^{\mathsf{b}}\,\mathcal{P}^{\mu\mathsf{a}}_{\mathsf{b}}(X, heta^2)\,A_{\mu} \wedge \chi_{\mathsf{a}} + rac{1}{2}\,\mathcal{P}^{\mathsf{a}\mathsf{b}}(X, heta^2)\,\chi_{\mathsf{a}} \wedge \chi_{\mathsf{b}}\,, \end{aligned}$$

and, by virtue of the fact that \mathcal{P} is a super-Poisson bivector, is invariant under the gauge transformations

$$\begin{split} & \delta_{\varepsilon} X^{\mu} = \varepsilon_{\nu} \mathcal{P}^{\nu\mu} + \varepsilon_{a} \theta^{b} \mathcal{P}^{\mu a}_{b} \,, \\ & \delta_{\varepsilon} A_{\mu} = \mathrm{d} \varepsilon_{\mu} + A_{\nu} \partial_{\mu} \mathcal{P}^{\nu\rho} \varepsilon_{\rho} + \varepsilon_{\nu} \chi_{a} \partial_{\mu} \mathcal{P}^{\nu|a} + \varepsilon_{a} A_{\nu} \partial_{\mu} \mathcal{P}^{\nu|a} - \varepsilon_{a} \chi_{b} \partial_{\mu} \mathcal{P}^{ba} \,, \\ & \delta_{\varepsilon} \theta^{a} = \varepsilon_{\mu} \theta^{b} \mathcal{P}^{\mu a}_{b} - \varepsilon_{b} \mathcal{P}^{ab} \,, \\ & \delta_{\varepsilon} \chi_{a} = \mathrm{d} \varepsilon_{a} + A_{\mu} \partial_{a} \mathcal{P}^{\mu\nu} \varepsilon_{\nu} - \varepsilon_{\mu} \chi_{b} \partial_{a} \mathcal{P}^{\mu b} - \varepsilon_{b} A_{\mu} \partial_{a} \mathcal{P}^{\mu b} - \varepsilon_{b} \chi_{c} \partial_{a} \mathcal{P}^{bc} \,, \end{split}$$

where ε_{μ} and ε_{a} are respectively bosonic and fermionic gauge parameters.

In particular, the transformations generated by the **fermionic** ones correspond to **local supersymmetry**.

The super-Poisson sigma model studied by [Arias-Boulanger-Sundell-Torres-Gomez, 2015], for the Poisson supermanifold $\mathcal{M}=T[0,1]M$, is given by

$$egin{aligned} S[X,A, heta,\chi] &= \int_{\Sigma} A_{\mu} \wedge \mathsf{d} X^{\mu} + rac{1}{2} \, \Pi^{\mu
u} \, A_{\mu} \wedge A_{
u} \ &+ \chi_{\mu} \wedge
abla heta^{\mu} + rac{1}{4} heta^{\mu} heta^{
u} \Pi^{
ho(\kappa} \, \overline{R}_{\mu
u}^{\lambda)}{}_{
ho} \, \chi_{\kappa} \wedge \chi_{\lambda} \, , \end{aligned}$$

The super-Poisson sigma model studied by [Arias–Boulanger–Sundell–Torres-Gomez, 2015], for the Poisson supermanifold $\mathcal{M}=T[0,1]M$, is given by

$$egin{aligned} S[X,A, heta,\chi] &= \int_{\Sigma} A_{\mu} \wedge \mathrm{d}X^{\mu} + rac{1}{2} \, \Pi^{\mu
u} \, A_{\mu} \wedge A_{
u} \ &+ \chi_{\mu} \wedge
abla heta^{\mu} + rac{1}{4} heta^{\mu} heta^{
u} \Pi^{
ho(\kappa} \, \overline{R}_{\mu
u}{}^{\lambda)}{}_{
ho} \, \chi_{\kappa} \wedge \chi_{\lambda} \, , \end{aligned}$$

where

$$abla\chi_{\mu} := \mathrm{d} heta^{\mu} + \mathrm{d} X^{\kappa} \, \Gamma^{\mu}_{\kappa\lambda} \, heta^{\lambda}$$
 ,

for ∇ any connection on M, not necessarily torsion-free, and $\overline{R}_{\kappa\lambda}{}^{\nu}{}_{\rho}$ the components of the curvature of the connection $\overline{\nabla}$ defined by

$$\overline{\nabla}_X Y = \nabla_Y X + [X,Y], \qquad X,Y \in \Gamma(TM), \qquad \text{i.e.} \qquad \overline{\Gamma}^\lambda_{\mu\nu} = \Gamma^\lambda_{\nu\mu},$$

called the basic connection [See Thanasis Chatzistavrakidis' talk].

This model enjoys an interesting global supersymmetry,

$$\begin{split} \delta_{S}X^{\mu} &= \theta^{\mu} \,, & \delta_{S}\theta^{\mu} &= 0 \,, \\ \delta_{S}A_{\mu} &= \Gamma^{\lambda}_{\mu\nu}A_{\lambda}\theta^{\nu} + \frac{1}{2}\theta^{\kappa}\theta^{\lambda}\overline{R}_{\kappa\lambda}{}^{\nu}{}_{\mu}\chi_{\nu} \,, & \delta_{S}\chi_{\mu} &= -A_{\mu} - \Gamma^{\lambda}_{\mu\nu}\theta^{\nu}\chi_{\lambda} \,, \end{split}$$

This model enjoys an interesting global supersymmetry,

$$\begin{split} \delta_{S}X^{\mu} &= \theta^{\mu} \,, & \delta_{S}\theta^{\mu} &= 0 \,, \\ \delta_{S}A_{\mu} &= \Gamma^{\lambda}_{\mu\nu}A_{\lambda}\theta^{\nu} + \frac{1}{2}\theta^{\kappa}\theta^{\lambda}\overline{R}_{\kappa\lambda}{}^{\nu}{}_{\mu}\chi_{\nu} \,, & \delta_{S}\chi_{\mu} &= -A_{\mu} - \Gamma^{\lambda}_{\mu\nu}\theta^{\nu}\chi_{\lambda} \,, \end{split}$$

which can be traced back to the action of the de Rham homological vector field

$$q_{S}= heta^{\mu}rac{\partial}{\partial imes^{\mu}}$$
 ,

on the Poisson supermanifold T[0, 1]M,

This model enjoys an interesting global supersymmetry,

$$\begin{split} \delta_{S}X^{\mu} &= \theta^{\mu} \,, & \delta_{S}\theta^{\mu} &= 0 \,, \\ \delta_{S}A_{\mu} &= \Gamma^{\lambda}_{\mu\nu}A_{\lambda}\theta^{\nu} + \frac{1}{2}\theta^{\kappa}\theta^{\lambda}\overline{R}_{\kappa\lambda}{}^{\nu}{}_{\mu}\chi_{\nu} \,, & \delta_{S}\chi_{\mu} &= -A_{\mu} - \Gamma^{\lambda}_{\mu\nu}\theta^{\nu}\chi_{\lambda} \,, \end{split}$$

which can be traced back to the action of the de Rham homological vector field

$$q_S = heta^\mu rac{\partial}{\partial imes^\mu}$$
 ,

on the Poisson supermanifold T[0,1]M, and the invariance of its super-Poisson structure under it.

De Rham supersymmetry

This model enjoys an interesting global supersymmetry,

$$\begin{split} \delta_{S}X^{\mu} &= \theta^{\mu} \,, & \delta_{S}\theta^{\mu} &= 0 \,, \\ \delta_{S}A_{\mu} &= \Gamma^{\lambda}_{\mu\nu}A_{\lambda}\theta^{\nu} + \frac{1}{2}\theta^{\kappa}\theta^{\lambda}\overline{R}_{\kappa\lambda}{}^{\nu}{}_{\mu}\chi_{\nu} \,, & \delta_{S}\chi_{\mu} &= -A_{\mu} - \Gamma^{\lambda}_{\mu\nu}\theta^{\nu}\chi_{\lambda} \,, \end{split}$$

which can be traced back to the action of the de Rham homological vector field

$$q_S = heta^\mu rac{\partial}{\partial x^\mu}$$
 ,

on the Poisson supermanifold T[0,1]M, and the invariance of its super-Poisson structure under it.

Put differently, this global supersymmetry follows from the compatibility between the Poisson bracket on $\mathcal{C}^{\infty}(T[0,1]M) \cong \Omega_M$ and the de Rham differential on M.

De Rham supersymmetry

This model enjoys an interesting global supersymmetry,

$$\begin{split} \delta_{S}X^{\mu} &= \theta^{\mu} \,, & \delta_{S}\theta^{\mu} &= 0 \,, \\ \delta_{S}A_{\mu} &= \Gamma^{\lambda}_{\mu\nu}A_{\lambda}\theta^{\nu} + \frac{1}{2}\theta^{\kappa}\theta^{\lambda}\overline{R}_{\kappa\lambda}{}^{\nu}{}_{\mu}\chi_{\nu} \,, & \delta_{S}\chi_{\mu} &= -A_{\mu} - \Gamma^{\lambda}_{\mu\nu}\theta^{\nu}\chi_{\lambda} \,, \end{split}$$

which can be traced back to the action of the de Rham homological vector field

$$q_S = heta^\mu rac{\partial}{\partial imes^\mu}$$
 ,

on the Poisson supermanifold T[0,1]M, and the invariance of its super-Poisson structure under it.

Put differently, this global supersymmetry follows from the compatibility between the Poisson bracket on $\mathcal{C}^{\infty}(T[0,1]M) \cong \Omega_M$ and the de Rham differential on M.

Are there more examples, and what is the organising principle behind them?

First, let us not that q_S is odd, i.e. it is of bidegree [0, 1].

First, let us not that q_S is odd, i.e. it is of bidegree [0,1]. On $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds, homological vector fields can be of bidegrees [1,0] or [0,1].

First, let us not that q_S is odd, i.e. it is of bidegree [0, 1]. On $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds, homological vector fields can be of bidegrees [1, 0] or [0, 1].

On the shifted (in the \mathbb{Z} -degree) cotangent bundle $T^*[1,0]\mathcal{M}$ of a supermanifold \mathcal{M} , a homological vector field also compatible with the canonical symplectic structure, $\mathcal{L}_{\mathcal{Q}}\omega_{T^*[1,0]\mathcal{M}}=0$, is necessarily

First, let us not that q_S is odd, i.e. it is of bidegree [0,1]. On $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds, homological vector fields can be of bidegrees [1,0] or [0,1].

On the shifted (in the \mathbb{Z} -degree) cotangent bundle $T^*[1,0]\mathcal{M}$ of a supermanifold \mathcal{M} , a homological vector field also compatible with the canonical symplectic structure, $\mathcal{L}_{\mathcal{Q}}\omega_{T^*[1,0]\mathcal{M}}=0$, is necessarily

• [1, 0]: The Hamiltonian vector field associated with

$$\mathcal{H}=rac{1}{2}\mathcal{P}^{\mu
u}$$
a $_{\mu}$ a $_{
u}+\mathcal{P}^{\mu a}$ a $_{\mu}\chi_{a}+rac{1}{2}\mathcal{P}^{ab}\chi_{a}\chi_{b}$,

for \mathcal{P} a super-Poisson bivector.

First, let us not that q_S is odd, i.e. it is of bidegree [0,1]. On $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds, homological vector fields can be of bidegrees [1,0] or [0,1].

On the shifted (in the \mathbb{Z} -degree) cotangent bundle $T^*[1,0]\mathcal{M}$ of a supermanifold \mathcal{M} , a homological vector field also compatible with the canonical symplectic structure, $\mathcal{L}_{\mathcal{Q}}\omega_{T^*[1,0]\mathcal{M}}=0$, is necessarily

• [1, 0]: The Hamiltonian vector field associated with

$$\mathcal{H}=rac{1}{2}\mathcal{P}^{\mu
u}a_{\mu}a_{
u}+\mathcal{P}^{\mu a}a_{\mu}\chi_{a}+rac{1}{2}\mathcal{P}^{ab}\chi_{a}\chi_{b}$$
 ,

for \mathcal{P} a super-Poisson bivector.

• [0, 1]: The cotangent lift Q_S of an odd homological vector field $q_S \in \Gamma(T\mathcal{M})$ on the base supermanifold, i.e.

$$q_S = \pi_* \mathcal{Q}_S$$
, with $T^*[1,0]\mathcal{M} \stackrel{\pi}{\longrightarrow} \mathcal{M}$.

First, let us not that q_S is odd, i.e. it is of bidegree [0,1]. On $(\mathbb{Z} \times \mathbb{Z}_2)$ -graded manifolds, homological vector fields can be of bidegrees [1,0] or [0,1].

On the shifted (in the \mathbb{Z} -degree) cotangent bundle $T^*[1,0]\mathcal{M}$ of a supermanifold \mathcal{M} , a homological vector field also compatible with the canonical symplectic structure, $\mathcal{L}_{\mathcal{Q}}\omega_{T^*[1,0]\mathcal{M}}=0$, is necessarily

• [1, 0]: The Hamiltonian vector field associated with

$$\mathcal{H}=rac{1}{2}\mathcal{P}^{\mu
u}$$
a $_{\mu}$ a $_{
u}+\mathcal{P}^{\mu a}$ a $_{\mu}\chi_{a}+rac{1}{2}\mathcal{P}^{ab}\chi_{a}\chi_{b}$,

for \mathcal{P} a super-Poisson bivector.

• [0, 1]: The cotangent lift Q_S of an odd homological vector field $q_S \in \Gamma(T\mathcal{M})$ on the base supermanifold, i.e.

$$q_S = \pi_* \mathcal{Q}_S$$
 , with $T^*[1,0]\mathcal{M} \stackrel{\pi}{\longrightarrow} \mathcal{M}$.

In other words, $(T^*[1,0]\mathcal{M},\mathcal{Q}_S)$ is a \mathcal{Q} -bundle [Kotov–Strobl, 2007].

Famously, a Lie algebroid $(\mathcal{E} \to M, \mathcal{E} \xrightarrow{t} TM, [-, -]_{\mathcal{E}})$ is equivalent to a supermanifold equipped with an odd homological vector field of homogeneity one, $(\mathcal{E}[0,1], q_S = \theta^a t_a{}^{\mu} \frac{\partial}{\partial x^{\mu}} - \frac{1}{2} \theta^b \theta^c C_{bc}{}^a \frac{\partial}{\partial \theta^a})$ [Vaintrob, 1997], and their representation up to homotopy correspond to \mathcal{Q} -bundles over $\mathcal{E}[0,1]$ [Abad-Crainic, 2009].

Famously, a Lie algebroid $(\mathcal{E} \to M, \mathcal{E} \xrightarrow{t} TM, [-, -]_{\mathcal{E}})$ is equivalent to a supermanifold equipped with an odd homological vector field of homogeneity one, $(\mathcal{E}[0,1], q_S = \theta^a t_a{}^{\mu} \frac{\partial}{\partial x^{\mu}} - \frac{1}{2} \theta^b \theta^c C_{bc}{}^a \frac{\partial}{\partial \theta^a})$ [Vaintrob, 1997], and their representation up to homotopy correspond to \mathcal{Q} -bundles over $\mathcal{E}[0,1]$ [Abad-Crainic, 2009].

Recall that the **adjoint** representation of \mathcal{E} is defined on the vector bundle complex $\mathcal{E} \xrightarrow{t} TM$, and the **coadjoint** one (its dual) on $T^*M \xrightarrow{t^*} \mathcal{E}^*$, [See Thanasis Chatzistavrakidis' talk].

Famously, a Lie algebroid $(\mathcal{E} \twoheadrightarrow M, \mathcal{E} \xrightarrow{t} TM, [-, -]_{\mathcal{E}})$ is equivalent to a supermanifold equipped with an odd homological vector field of homogeneity one, $(\mathcal{E}[0,1], q_S = \theta^a t_a{}^\mu \frac{\partial}{\partial x^\mu} - \frac{1}{2} \theta^b \theta^c C_{bc}{}^a \frac{\partial}{\partial \theta^a})$ [Vaintrob, 1997], and their representation up to homotopy correspond to \mathcal{Q} -bundles over $\mathcal{E}[0,1]$ [Abad–Crainic, 2009].

Recall that the **adjoint** representation of \mathcal{E} is defined on the vector bundle complex $\mathcal{E} \xrightarrow{t} TM$, and the **coadjoint** one (its dual) on $T^*M \xrightarrow{t^*} \mathcal{E}^*$, [See Thanasis Chatzistavrakidis' talk]. In the latter case, this amounts to turning the shifted cotangent bundle,

$$T^*[1,0]\mathcal{E}[0,1] \stackrel{\nabla}{\cong} \mathcal{E}[0,1] \times (T^*[1,0]M \oplus \mathcal{E}^*[1,1])$$
,

into a Q-bundle.

Famously, a Lie algebroid $(\mathcal{E} \to M, \mathcal{E} \xrightarrow{t} TM, [-, -]_{\mathcal{E}})$ is equivalent to a supermanifold equipped with an odd homological vector field of homogeneity one, $(\mathcal{E}[0,1], q_S = \theta^a t_a{}^\mu \frac{\partial}{\partial x^\mu} - \frac{1}{2} \theta^b \theta^c C_{bc}{}^a \frac{\partial}{\partial \theta^a})$ [Vaintrob, 1997], and their representation up to homotopy correspond to \mathcal{Q} -bundles over $\mathcal{E}[0,1]$ [Abad–Crainic, 2009].

Recall that the **adjoint** representation of \mathcal{E} is defined on the vector bundle complex $\mathcal{E} \xrightarrow{t} TM$, and the **coadjoint** one (its dual) on $T^*M \xrightarrow{t^*} \mathcal{E}^*$, [See Thanasis Chatzistavrakidis' talk]. In the latter case, this amounts to turning the shifted cotangent bundle,

$$\mathcal{T}^*[1,0]\mathcal{E}[0,1] \overset{\nabla}{\cong} \mathcal{E}[0,1] \times \left(\mathcal{T}^*[1,0] M \oplus \mathcal{E}^*[1,1]\right),$$

into a Q-bundle. Concretely, its homological vector field read

$$\begin{split} \mathcal{Q}_{\mathcal{S}} &= \theta^{a} t_{a}{}^{\mu} \frac{\partial}{\partial x^{\mu}} - \frac{1}{2} \theta^{b} \theta^{c} C_{bc}{}^{a} \frac{\partial}{\partial \theta^{a}} \\ &+ \left(\theta^{a} \overline{\Gamma}^{\nu}_{a\mu} a_{\nu} - \frac{1}{2} \theta^{a} \theta^{b} S_{ab\mu}{}^{c} \chi_{c} \right) \frac{\partial}{\partial a_{\mu}} + \left(- t_{a}{}^{\mu} a_{\mu} + \theta^{b} \overline{\Gamma}^{c}_{ba} \chi_{c} \right) \frac{\partial}{\partial \chi_{a}} \,, \end{split}$$

where $\overline{\Gamma}_{bc}^{a}$ and $\overline{\Gamma}_{a\mu}^{\nu}$ are the components of the basic connection, and $S_{ab\mu}{}^{c}$ that of the basic curvature.

Q_S -invariant super-Poisson structure

In order to build a super-Poisson sigma model that is invariant under the **global** supersymmetry corresponding to the **coadjoint ruth**, one should require the super-Poisson bivector to be invariant under Q_S .

Q_S -invariant super-Poisson structure

In order to build a super-Poisson sigma model that is invariant under the **global** supersymmetry corresponding to the **coadjoint ruth**, one should require the super-Poisson bivector to be invariant under Q_S . For simplicity, we restrict ourselves to the case of bivectors **homogeneous of degree** 0, i.e.

$$\mathcal{P}^{\mu\nu} = \Pi^{\mu\nu}(x)\,, \qquad \mathcal{P}^{\mu a} = -\theta^b \Pi^{\mu\nu} \Gamma^a_{\nu b}(x)\,, \qquad \mathcal{P}^{ab} = \tfrac{1}{2} \theta^c \theta^d R_{cd}{}^{ab}(x)\,,$$

where the contravariant connection is induced from the auxiliary connection ∇ , and the last term is to be determined.

Q_S -invariant super-Poisson structure

In order to build a super-Poisson sigma model that is invariant under the **global** supersymmetry corresponding to the **coadjoint ruth**, one should require the super-Poisson bivector to be invariant under Q_S . For simplicity, we restrict ourselves to the case of bivectors **homogeneous of degree** 0, i.e.

$$\mathcal{P}^{\mu\nu}=\Pi^{\mu\nu}(x)$$
, $\mathcal{P}^{\mu a}=- heta^b\Pi^{\mu\nu}\Gamma^a_{
u b}(x)$, $\mathcal{P}^{ab}=rac{1}{2} heta^c heta^dR_{cd}{}^{ab}(x)$,

where the contravariant connection is induced from the auxiliary connection ∇ , and the last term is to be determined.

Among the conditions implied by the invariance of \mathcal{P} under $\mathcal{Q}_{\mathcal{S}}$, one finds

$$\Pi^{\mu \nu} S_{ab \nu}{}^c - R_{ab}{}^{cd} t_d{}^\mu = 0$$
 ,

relating the a priori undetermined component of $\mathcal{P}.$

In order to build a super-Poisson sigma model that is invariant under the **global** supersymmetry corresponding to the **coadjoint ruth**, one should require the super-Poisson bivector to be invariant under Q_S . For simplicity, we restrict ourselves to the case of bivectors **homogeneous of degree** 0, i.e.

$$\mathcal{P}^{\mu\nu}=\Pi^{\mu\nu}(x)$$
, $\mathcal{P}^{\mu a}=- heta^b\Pi^{\mu\nu}\Gamma^a_{
u b}(x)$, $\mathcal{P}^{ab}=rac{1}{2} heta^c heta^dR_{cd}{}^{ab}(x)$,

where the contravariant connection is induced from the auxiliary connection ∇ , and the last term is to be determined.

Among the conditions implied by the invariance of \mathcal{P} under $\mathcal{Q}_{\mathcal{S}}$, one finds

$$\Pi^{\mu\nu} S_{ab\nu}{}^c - R_{ab}{}^{cd} t_d{}^{\mu} = 0$$
,

relating the *a priori* undetermined component of \mathcal{P} .

• The ABST-G model corresponds to $\mathcal{E}=TM$, so that the anchor is the identity, $t_a{}^\mu \leadsto \delta^\mu_\alpha$, and hence the previous condition can be used as a definition of the undetermined component of \mathcal{P} .

In order to build a super-Poisson sigma model that is invariant under the **global** supersymmetry corresponding to the **coadjoint ruth**, one should require the super-Poisson bivector to be invariant under Q_S . For simplicity, we restrict ourselves to the case of bivectors **homogeneous of degree** 0, i.e.

$$\mathcal{P}^{\mu\nu} = \Pi^{\mu\nu}(x)\,, \qquad \mathcal{P}^{\mu a} = -\theta^b \Pi^{\mu\nu} \Gamma^a_{\nu b}(x)\,, \qquad \mathcal{P}^{ab} = \tfrac{1}{2} \theta^c \theta^d R_{cd}{}^{ab}(x)\,,$$

where the contravariant connection is induced from the auxiliary connection ∇ , and the last term is to be determined.

Among the conditions implied by the invariance of \mathcal{P} under $\mathcal{Q}_{\mathcal{S}}$, one finds

$$\Pi^{\mu\nu}S_{ab\nu}{}^c - R_{ab}{}^{cd}t_d{}^\mu = 0,$$

relating the *a priori* undetermined component of \mathcal{P} .

- The ABST-G model corresponds to $\mathcal{E}=TM$, so that the anchor is the identity, $t_a{}^\mu \leadsto \delta^\mu_\alpha$, and hence the previous condition can be used as a definition of the undetermined component of \mathcal{P} .
- Another solution that presents itself is the **cotangent Lie algebroid** $\mathcal{E} = T^*M$, in which case the anchor is the Poisson bivector on the base, $t_a^{\mu} \rightsquigarrow \Pi^{\alpha\mu}$, so that we can also read the above condition as a definition (modulo the kernel of $\Pi^{\#}$).

This leads to the 'contravariant' version of the ABST-G model, whose action reads

$$S[X,A, heta,\chi] = \int_{\Sigma} A_{\mu} \wedge \mathrm{d}X^{\mu} + \chi^{\mu} \wedge
abla heta_{\mu} + rac{1}{2} \Pi^{\mu
u} A_{\mu} \wedge A_{
u} - rac{1}{4} heta_{\kappa} heta_{\lambda} S^{\kappa\lambda}{}_{\mu
u} \chi^{\mu} \wedge \chi^{
u}$$
 ,

This leads to the 'contravariant' version of the ABST-G model, whose action reads

$$S[X,A, heta,\chi] = \int_{\Sigma} A_{\mu} \wedge \mathrm{d}X^{\mu} + \chi^{\mu} \wedge
abla heta_{\mu} + rac{1}{2} \Pi^{\mu
u} A_{\mu} \wedge A_{
u} - rac{1}{4} heta_{\kappa} heta_{\lambda} S^{\kappa\lambda}_{\mu
u} \chi^{\mu} \wedge \chi^{
u}$$
 ,

and which enjoys a **global supersymmetry** generated by the homological vector field encoding the **coadjoint** representation up to homotopy of the cotangent Lie algebroid,

This leads to the 'contravariant' version of the ABST-G model, whose action reads

$$S[X,A, heta,\chi] = \int_{\Sigma} A_{\mu} \wedge \mathrm{d}X^{\mu} + \chi^{\mu} \wedge
abla heta_{\mu} + rac{1}{2} \Pi^{\mu
u} A_{\mu} \wedge A_{
u} - rac{1}{4} heta_{\kappa} heta_{\lambda} S^{\kappa\lambda}_{\mu
u} \chi^{\mu} \wedge \chi^{
u}$$
 ,

and which enjoys a **global supersymmetry** generated by the homological vector field encoding the **coadjoint** representation up to homotopy of the cotangent Lie algebroid,

$$\begin{split} \mathcal{Q}_{S}X^{\mu} &= -\Pi^{\mu\nu}\theta_{\nu}\,, & \mathcal{Q}_{S}\theta_{\mu} &= -\frac{1}{2}\partial_{\mu}\Pi^{\kappa\lambda}\theta_{\kappa}\theta_{\lambda}\,, \\ \mathcal{Q}_{S}A_{\mu} &= -\overline{\Gamma}^{\rho}{}_{\mu}{}^{\nu}A_{\nu}\theta_{\rho} - \frac{1}{2}S^{\kappa\lambda}{}_{\mu\nu}\theta_{\kappa}\theta_{\lambda}\chi^{\nu}\,, & \mathcal{Q}_{S}\chi^{\mu} &= -\Pi^{\mu\nu}A_{\nu} + \overline{\Gamma}^{\rho\mu}{}_{\nu}\chi^{\nu}\theta_{\rho}\,. \end{split}$$

This leads to the 'contravariant' version of the ABST-G model, whose action reads

$$S[X,A, heta,\chi] = \int_{\Sigma} A_{\mu} \wedge \mathrm{d}X^{\mu} + \chi^{\mu} \wedge
abla heta_{\mu} + rac{1}{2} \Pi^{\mu
u} A_{\mu} \wedge A_{
u} - rac{1}{4} heta_{\kappa} heta_{\lambda} S^{\kappa\lambda}_{\mu
u} \chi^{\mu} \wedge \chi^{
u}$$
 ,

and which enjoys a **global supersymmetry** generated by the homological vector field encoding the **coadjoint** representation up to homotopy of the cotangent Lie algebroid,

$$\begin{split} \mathcal{Q}_{S} X^{\mu} &= -\Pi^{\mu\nu} \theta_{\nu} \,, & \qquad \qquad \mathcal{Q}_{S} \theta_{\mu} &= -\frac{1}{2} \partial_{\mu} \Pi^{\kappa\lambda} \theta_{\kappa} \theta_{\lambda} \,, \\ \mathcal{Q}_{S} A_{\mu} &= -\overline{\Gamma}^{\rho}_{\mu}{}^{\nu} A_{\nu} \theta_{\rho} - \frac{1}{2} S^{\kappa\lambda}_{\mu\nu} \theta_{\kappa} \theta_{\lambda} \chi^{\nu} \,, & \qquad \mathcal{Q}_{S} \chi^{\mu} &= -\Pi^{\mu\nu} A_{\nu} + \overline{\Gamma}^{\rho\mu}_{\nu} \chi^{\nu} \theta_{\rho} \,. \end{split}$$

In particular, we see that it generate what could be called a **Poisson** supersymetry (regardless of the regularity of Π).

 On a supermanifold equipped with an odd homological vector field, one can look for invariant super-Poisson structures.

- On a supermanifold equipped with an odd homological vector field, one can look for invariant super-Poisson structures.
- This can be useful in two ways:

- On a supermanifold equipped with an odd homological vector field, one can look for invariant super-Poisson structures.
- This can be useful in two ways: (i) help classifying and understanding the geometrical structures on \mathcal{E} encoded in super-Poisson bivectors on $\mathcal{E}[0,1]$;

- On a supermanifold equipped with an odd homological vector field, one can look for invariant super-Poisson structures.
- This can be useful in two ways: (i) help classifying and understanding the geometrical structures on £ encoded in super-Poisson bivectors on £[0, 1];
 (ii) build sigma models with both local supersymmetry stemming from the super-Poisson bivector, and global supersymmetry via the odd homological vector field.

- On a supermanifold equipped with an odd homological vector field, one can look for invariant super-Poisson structures.
- This can be useful in two ways: (i) help classifying and understanding the geometrical structures on £ encoded in super-Poisson bivectors on £[0, 1];
 (ii) build sigma models with both local supersymmetry stemming from the super-Poisson bivector, and global supersymmetry via the odd homological vector field.
- Looking ahead, this could be a way to tackle the deformation quantisation of differential forms by taking $\mathcal{E} = TM$.

- On a supermanifold equipped with an odd homological vector field, one can look for invariant super-Poisson structures.
- This can be useful in two ways: (i) help classifying and understanding the geometrical structures on £ encoded in super-Poisson bivectors on £[0, 1];
 (ii) build sigma models with both local supersymmetry stemming from the super-Poisson bivector, and global supersymmetry via the odd homological vector field.
- Looking ahead, this could be a way to tackle the **deformation quantisation** of differential forms by taking $\mathcal{E} = TM$.

Thank you for your attention!