Supersymmetric Poisson sigma models, revisited

Thomas Basile (UMONS)

19th of September 2025 @ Corfu
Joint work with Athanasios Chatzistavrakidis and Sylvain Lavau [2504.13114]


https://arxiv.org/abs/2504.13114

Motivation and synopsis

The Poisson sigma model [ikeda, 1993] is the most general sigma model of
AKSZ—type [Alexandrov—Kontsevich—Schwarz—Zaboronsky, 1995] in two dimensions,

1/13



Motivation and synopsis

The Poisson sigma model [ikeda, 1993] is the most general sigma model of
AKSZ—type [Alexandrov—Kontsevich—Schwarz—Zaboronsky, 1995] in two dimensions, and
simply reads

X:X— M,

Sesm[X, A :/A AdXF + LT (X)ALAA,,
PSM[ ] - 1 2 ( )P- AGQI(X,X*T*M),

for TT € [(A*T M) the Poisson bivector of the target space M.

1/13



Motivation and synopsis

The Poisson sigma model [ikeda, 1993] is the most general sigma model of
AKSZ—type [Alexandrov—Kontsevich—Schwarz—Zaboronsky, 1995] in two dimensions, and
simply reads

X:X— M,

S X,A:/A AdXE + LTT*(X)AL A AL,
PSM[ ] - 1 2 ( ) I A c QI(Z,X*T*M) i
for TT € [(A*T M) the Poisson bivector of the target space M.

Its path integral quantisation [Cattaneo-Felder, 1999] gives a field-theoretical
realisation of Kontsevich’s formality theorem [Kontsevich, 1997], and the
deformation quantisation of Poisson manifold.

1/13



Motivation and synopsis

The Poisson sigma model [ikeda, 1993] is the most general sigma model of
AKSZ—type [Alexandrov—Kontsevich—Schwarz—Zaboronsky, 1995] in two dimensions, and
simply reads

X:X— M,

S X,A:/A AdXE + LTT*(X)AL A AL,
PSM[ ] - 1 2 ( ) I A c QI(Z,X*T*M) i
for TT € [(A*T M) the Poisson bivector of the target space M.

Its path integral quantisation [Cattaneo-Felder, 1999] gives a field-theoretical
realisation of Kontsevich’s formality theorem [Kontsevich, 1997], and the
deformation quantisation of Poisson manifold.

More precisely, one recovers the formula for the star-product on R? equipped
with an arbitrary Poisson structure TI, as a correlation function on the disc,

frg=(F(X)&g(X))pq, =&+ 2{f, 8} + O(F),

with f, g € C°(R?) two functions in target space.

1/13



Motivation and synopsis
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Motivation and synopsis

A supersymmetric extension has been proposed by
[Arias—Boulanger—-Sundell-Torres-Gomez, 2015] asS a potentia| model to describe the
deformation quantisation of the algebra differential forms.

e Extend the target space M to its parity-shifted tangent bundle TITM as
€°°(ITTM) >~ Qm;

e Extend the Poisson structure on M to one on TIT M, i.e. endow the
algebra of differential forms with a Poisson bracket, so that TIT M becomes
a Poisson supermanifold.

Intriguing feature: Its compatibility with the de Rham differential, which is an
odd homological vector field on TIT M, manifest itself by the existence of a
global supersymmetry.

Synopsis

Explore the ‘usual’ geometric structures encoded by a Poisson supermanifold
equipped with a compatible odd homological vector field.

As a by-product, we derive a new example of super-Poisson sigma model based
on the coadjoint representation up to homotopy of a Poisson manifold.
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Plan of the talk

@ Introduction: Poisson supermanifolds

@ Super-Poisson sigma model and coadjoint ruth

© Outlook



Introduction: Poisson supermanifolds




Poisson supermanifolds

Consider a supermanifold M with even coordinates x* and odd ones 67. It is
(non-canonically) diffeomorphic to a parity-shifted vector bundle, i.e. M =TI
for &€ » M a vector bundle over the body M of M [Batchelor, 1977].
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Poisson supermanifolds

Consider a supermanifold M with even coordinates x* and odd ones 67. It is
(non-canonically) diffeomorphic to a parity-shifted vector bundle, i.e. M =TI
for &€ » M a vector bundle over the body M of M [Batchelor, 1977].

If its algebra of functions is a Poisson superalgebra, i.e. €*°(M) = T(AE¥) is
equipped with an R-bilinear graded-antisymmetric, even, bracket
{— -} : (M)A EC® (M) — C®(M),

obeying the Leibniz rule and Jacobi identity, then (M {-, —}) is called a
Poisson supermanifold.
Equivalently, it means that M is equipped with a Poisson bivector
Pel(A’TM)  suchthat  {f, g} =P(df Adg), Vf gecC®(M),
i.e. its components locally takes the form

{x*, x"}=P*(x,60%), {x*,6°}=0"Pr(x,6%), {67 6°}="P%"(x06%,
where the notation 62 is meant to highlight the fact that the various
components appearing above depend on quadratic combinations of the odd

coordinates—the components are even.
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Generic case

We can expand the components of the super-Poisson bivector in powers of 6,

PH = TI*(x) + 10°0°Pap™ (x) + ...,
P;La _ eb[—;;a(x) 4. i
PP = g (x) + 10967 Rea®(x) + ... ,
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Generic case

We can expand the components of the super-Poisson bivector in powers of 6,
P =T (x) + 2670°P.p" (x) +
P =0T () + ...,
P = g°"(x) + 160967 Rea®(x) + . ..

1

and upon doing the same for the Jacobi identity, at Oth order in 6, one finds

e T € I(A’TM) is Poisson, i.e. the base manifold (M, TT) is always an
ordinary (bosonic) Poisson manifold.

e The components I',? are that of a flat contravariant connection
V™M [(T*M) ® I'(€*) —> [(&*). Such connection can be defined on

Poisson manifolds, and can be induced by any ‘ordinary’ connection
Vv r(TM) ® r(g) — I'(S) via VT*M = vn#(i), ie. rﬂa nlwl—a
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We can expand the components of the super-Poisson bivector in powers of 6,
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P;La _ eb[—;;a(x) + . )
PP = g (x) + 10967 Rea®(x) + ... ,

and upon doing the same for the Jacobi identity, at Oth order in 6, one finds

e T € I(A’TM) is Poisson, i.e. the base manifold (M, TT) is always an
ordinary (bosonic) Poisson manifold.

e The components I',? are that of a flat contravariant connection
V™M [(T*M) ® I'(€*) —> [(&*). Such connection can be defined on
Poisson manifolds, and can be induced by any ‘ordinary’ connection
ViT(TM)®T(€) — [(€) via V™M = Vg (), ie. Th7 = —TT*T3,.

e The components g®° are that of a section g € [(S*€*) which preserved
by the contravariant connection.
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Super-Poisson sigma model and
coadjoint ruth



Super-PSM

Fields

The super-Poisson sigma model is a topological field theory in two dimensions,
whose classical fields are degree-preserving maps between (Z X Zg)—graded
manifolds,
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Super-PSM

Fields

The super-Poisson sigma model is a topological field theory in two dimensions,
whose classical fields are degree-preserving maps between (Z X Zg)-graded
manifolds, namely

T[1,0]Z — T*[1,0lM,  M==g[o,1],

with ¥ a smooth manifold concentrated in Z x Z, bidegree [0,0], and € -+ M
some vector bundle. One therefore ends up with the following set of fields:

Fields XE AL | 07 ] xa

form deg. 0 1 0 1
parity 0 0 1 1

The pair (X*,6?) originates from coordinates on M 22 €[0, 1], and (A, Xa)
are their momenta, i.e. wr=p = dX* AdAL + dO7 A dx,.
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Super-PSM

Action and gauge (super)symmetry

The action principle takes the relatively simple form [ikeda, 1993]
S[X, A0, x] = / Ay AAXH + xa AdB” + 1 PR (X, 62) A, A A,
bx

+ 0P PE(X, 0%) Au A xa + L PP(X, 07) Xa A Xb s
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S[X, A0, x] = / Ay AAXH + xa AdB” + 1 PR (X, 62) A, A A,
bx

+ 0P PE(X, 0%) Au A xa + L PP(X, 07) Xa A Xb s

and, by virtue of the fact that P is a super-Poisson bivector, is invariant under
the gauge transformations

8 XH = £, P + £,0°PH°,

8cAL = dey + A8 P e, + X0, P17 + £.A,0, P17 — £.x60, P,
6:0° = £,0°PE° — £, P,

8eXa = des + ALB.P* e, — £,x50.P** — 5 AL 0. P*P — £5x0.P",

where £, and ¢, are respectively bosonic and fermionic gauge parameters.
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Super-PSM

Action and gauge (super)symmetry

The action principle takes the relatively simple form [ikeda, 1993]
S[X, A0, x] = / Ay AAXH + xa AdB” + 1 PR (X, 62) A, A A,
bx

+6° PE(X,0%) Au A xa + L PP(X,07) xa A X,

and, by virtue of the fact that P is a super-Poisson bivector, is invariant under
the gauge transformations

8 XH = £, P + £,0°PH°,

6cAL = dep + AP ey + £,xa0u P + €2 ALOL P — £.x50. P,

6:0° = £,0°PE° — £, P,

8eXa = des + ALB.P* e, — £,x50.P** — 5 AL 0. P*P — £5x0.P",
where £, and ¢, are respectively bosonic and fermionic gauge parameters.

In particular, the transformations generated by the fermionic ones correspond
to local supersymmetry.
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De Rham supersymmetry

The super-Poisson sigma model studied by [Arias—Boulanger—Sundell-Torres-Gomez,
2015], for the Poisson supermanifold M = T[0, 1]M, is given by

S[X,A,G,x]:/AM/\dX“—i—%TI‘“’A“AA,,
pN

+ xu A VO 4+ 1040 TP R 3 A xn s
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De Rham supersymmetry

The super-Poisson sigma model studied by [Arias—Boulanger—Sundell-Torres-Gomez,
2015], for the Poisson supermanifold M = T[0, 1]M, is given by

S[X, A8, x] = /AM/\dX“ + I ALNA,
>
+ xu A VO 4+ 1040 TP R 3 A xn s

where
Vi := do* +dX*T*, 6*,

for V any connection on M, not necessarily torsion-free, and R.»", the
components of the curvature of the connection V defined by
UxY =VyX+[X.Y], X YENTM), ie Tu =)

v

called the basic connection [See Thanasis Chatzistavrakidis’ talk].
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De Rham supersymmetry

This model enjoys an interesting global supersymmetry,

SsX* =o*, 8560 =0,
6sAu = Th,Ar0” + 26°0*Rn"uxo | 6sxu = —Au — ,0"%,
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This model enjoys an interesting global supersymmetry,
ds6* =0,
dsxp = —Au — ri\weuxk )

SsX* = o,
6sAu = Th,Ar0” + 26°0*Rn"uxo |

which can be traced back to the action of the de Rham homological vector field

on the Poisson supermanifold T[0, 1]M, and the invariance of its super-Poisson
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on the Poisson supermanifold T[0, 1]M, and the invariance of its super-Poisson
structure under it.

Put differently, this global supersymmetry follows from the compatibility
between the Poisson bracket on €*°(T[0, 1]M) = Qu and the de Rham
differential on M.
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De Rham supersymmetry

This model enjoys an interesting global supersymmetry,
s XH = 6", ds6* =0,
6sAu = Th,Ar0” + 26°0*Rn"uxo | 6sxu = —Au — ,0"%,

which can be traced back to the action of the de Rham homological vector field

on the Poisson supermanifold T[0, 1]M, and the invariance of its super-Poisson
structure under it.

Put differently, this global supersymmetry follows from the compatibility
between the Poisson bracket on €*°(T[0, 1]M) = Qu and the de Rham
differential on M.

Are there more examples, and what is the organising principle behind them?
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Odd homological vector fields

First, let us not that gs is odd, i.e. it is of bidegree [0, 1].
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On the shifted (in the Z-degree) cotangent bundle T*[1, 0]JM of a
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canonical symplectic structure, Lowr=1,0a = 0, is necessarily
e [1,0]: The Hamiltonian vector field associated with

H = erll-l/auau + Puaay,Xa + %PebXaXb '

-2
for P a super-Poisson bivector.

e [0,1]: The cotangent lift Qs of an odd homological vector field
gs € T(TM) on the base supermanifold, i.e.

gs = Qs , with  T*[1,0lM = M.
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Odd homological vector fields

First, let us not that gs is odd, i.e. it is of bidegree [0, 1]. On (Z x Z)-graded
manifolds, homological vector fields can be of bidegrees [1,0] or [0, 1].

On the shifted (in the Z-degree) cotangent bundle T*[1, 0]JM of a
supermanifold M, a homological vector field also compatible with the

canonical symplectic structure, Lowr=1,0a = 0, is necessarily
e [1,0]: The Hamiltonian vector field associated with
H=1P*aua, + P*auxa + 3PP xaxs,
for P a super-Poisson bivector.

e [0,1]: The cotangent lift Qs of an odd homological vector field
gs € T(TM) on the base supermanifold, i.e.

gs = Qs , with  T*[1,0lM = M.

In other words, (T*[1,0]M, Qs) is a Q-bundle [Kotov-Strobl, 2007].

9/13



Coadjoint representation up to homotopy

Famously, a Lie algebroid (E M E - TM, [—, —]g) is equivalent to a
supermanifold equipped with an odd homological vector field of homogeneity
one, (£[0,1],qs = 0°t.* 32 — 16°0°Chc?535) [Vaintrob, 1997], and their
representation up to homotopy correspond to Q-bundles over £[0, 1]

[Abad—Crainic, 2009].
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Coadjoint representation up to homotopy

Famously, a Lie algebroid (E M E - TM, [—, —]g) is equivalent to a
supermanifold equipped with an odd homological vector field of homogeneity
one, (£[0,1],qs = 0°t.* 32 — 16°0°Chc?535) [Vaintrob, 1997], and their
representation up to homotopy correspond to Q-bundles over £[0, 1]

[Abad—Crainic, 2009].
Recall that the adjoint representation of & is defined on the vector bundle
complex & — TM, and the coadjoint one (its dual) on T*M —— €*, [see

Thanasis Chatzistavrakidis' talk]. In the latter case, this amounts to turning the shifted
cotangent bundle,
T*[1,0]€[0, 1] % €[0,1] x (T*[1,0]M & €*[1,1]),
into a Q-bundle. Concretely, its homological vector field read
Qs = 07t 52 — 16°0°Chc® 52
+ (67220 — 3670°Sabu“Xe) 52 + (— t"au + 6°Thaxc) 32

where T and F:u are the components of the basic connection, and S5, that
of the basic curvature.
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Os-invariant super-Poisson structure

In order to build a super-Poisson sigma model that is invariant under the global
supersymmetry corresponding to the coadjoint ruth, one should require the
super-Poisson bivector to be invariant under Qs.
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In order to build a super-Poisson sigma model that is invariant under the global
supersymmetry corresponding to the coadjoint ruth, one should require the
super-Poisson bivector to be invariant under Qg. For simplicity, we restrict ourselves
to the case of bivectors homogeneous of degree 0, i.e.

PpHY — nlJ-l/(X) . PpHe — *9bn‘wrib(x) i rpab — %GcedRCdab(X) i

where the contravariant connection is induced from the auxiliary connection V, and
the last term is to be determined.

Among the conditions implied by the invariance of P under Qg, one finds
T Sab, € — Rab“tg# =0,
relating the a priori undetermined component of P.

e The ABST-G model corresponds to € = T M, so that the anchor is the identity,
ta* ~» 85, and hence the previous condition can be used as a definition of the
undetermined component of P.
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Os-invariant super-Poisson structure

In order to build a super-Poisson sigma model that is invariant under the global
supersymmetry corresponding to the coadjoint ruth, one should require the
super-Poisson bivector to be invariant under Qg. For simplicity, we restrict ourselves
to the case of bivectors homogeneous of degree 0, i.e.

PHY =TI*(x), PHE = febl'l‘“’rjb(x), P = %GcedRcd‘ab(x),
where the contravariant connection is induced from the auxiliary connection V, and
the last term is to be determined.

Among the conditions implied by the invariance of P under Qg, one finds
TT* S, — RapS9ta* = 0,
relating the a priori undetermined component of P.
e The ABST-G model corresponds to € = T M, so that the anchor is the identity,

ta* ~» 85, and hence the previous condition can be used as a definition of the
undetermined component of P.

e Another solution that presents itself is the cotangent Lie algebroid & = T*M, in
which case the anchor is the Poisson bivector on the base, t;#* ~ TI**, so that
we can also read the above condition as a definition (modulo the kernel of TT#).
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Poisson supersymmetry

This leads to the ‘contravariant’ version of the ABST-G model, whose action
reads

S[X,A,e,x]:/A,LAdX“+X"/\V9,L+%lT’“’A,L/\AV—iekexs“*uux“/\x”,
X
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Poisson supersymmetry

This leads to the ‘contravariant’ version of the ABST-G model, whose action
reads

S[X,A,e,x]:/A,LAdX“+X"/\V9,L+%lT“"A,L/\AV—iekexs“xwx“/\x”,
X

and which enjoys a global supersymmetry generated by the homological vector
field encoding the coadjoint representation up to homotopy of the cotangent

Lie algebroid,
Qs X = —TI*9,, Qs6, = — 18,126,605,
QsA, = TP A8, — 15 be0ax” . Qsx* = —TI™A, + T, x"6,.

In particular, we see that it generate what could be called a Poisson
supersymetry (regardless of the regularity of TT).
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e On a supermanifold equipped with an odd homological vector field, one
can look for invariant super-Poisson structures.
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e On a supermanifold equipped with an odd homological vector field, one
can look for invariant super-Poisson structures.

e This can be useful in two ways: (i) help classifying and understanding the
geometrical structures on € encoded in super-Poisson bivectors on £[0, 1];
(i) build sigma models with both local supersymmetry stemming from the
super-Poisson bivector, and global supersymmetry via the odd
homological vector field.

e Looking ahead, this could be a way to tackle the deformation quantisation
of differential forms by taking € = TM.

Thank you for your attention!
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