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 §Introduction
Eigenvalue distributions are important in random matrix models

• Approximate Hamiltonian of atoms (Wigner 1958)

：Random matrixH

ρ

E
Semi-circle law

• Method of computing matrix models

Brezin-Itzykson-Parisi-Zuber 1978

• Topological transition — Dynamics of QCD

Gross-Witten, Wadia, 1980
θ

ρ

θ

ρ



Most tensor problems are NP-hard for a tensor.  Hillar-Lim 2009

On the other hand, a distribution of tensor eigenvalues/vectors for 
random tensors can exactly/approximately be computed, as we will 
do by using quantum field theories.

In  a sharp edge of the distribution exists, which is important, 
since it determines the “best” value in applications. 

N → ∞

ρ • Ground state energy of spin glass
• Largest eigenvalue
• Best rank-one decomposition of tensor
• Geometric measure of entanglement of 

random multipartite states

In , the distribution will not depend on a randomly chosen 
tensor (Thermodynamic limit)

N → ∞

How about tensor eigenvalue distributions ?

|v |



§Geometric measure of entanglement of multipartite states

|ψ⟩ = Mab |a⟩A |b⟩B• Bipartite state |a⟩A ∈ HA |b⟩B ∈ HB

S = − TrA(ΩA log ΩA) = − TrB(ΩB log ΩB)
ΩA = TrB( |ψ⟩⟨ψ | )
ΩB = TrA( |ψ⟩⟨ψ | )

Entanglement entropy

• Tripartite state

|ψ⟩ = Cabc |a⟩A |b⟩B |c⟩C |a⟩A ∈ HA |b⟩B ∈ HB |c⟩C ∈ HC

Generally,
−TrA(ΩA log ΩA) ≠ − TrB(ΩB log ΩB)

ΩA = TrBC( |ψ⟩⟨ψ | )
ΩB = TrAC( |ψ⟩⟨ψ | )

How can we measure entanglement of multipartite states ?



ed( |ψ⟩) = min
ψA,B,C

|ψ⟩ − |ψA⟩A ⊗ |ψB⟩B ⊗ |ψC⟩C

|ψ⟩
ed( |ψ⟩) Orbit of separable states

|ψA⟩A ⊗ |ψB⟩B ⊗ |ψC⟩C

Define entanglement by minimum distance from separable states

∂ ed( |ψ⟩)
∂v(A,B,C)

a,b,c
= 0

C*abcv
(B)
b v(C)

c = v(A)*
a

C*abcv
(A)
a v(C)

c = v(B)*
b

C*abcv
(A)
a v(B)

b = v(C)*
c

Representation in tensor |ψ⟩ = Cabc |a⟩A ⊗ |b⟩B ⊗ |c⟩C

|ψC⟩C = v(C)
c |c⟩C

|ψA⟩A = v(A)
a |a⟩A

|ψB⟩B = v(B)
b |b⟩B

Shimony 1995, Barnum-Linden 2001, Wei-Goldbart 2003

A system of eigenvector equations

Eigenvector of smallest  determines ed( ) → The edge|v | = |vi | |ψ⟩



§Tensor eigenvalues/vectors
Qi, Lim, 2005  Cartwright-Sturmfels 2013

• Tensor eigenpair equation

Cabcwbwc = ζ wa |w | = wawa = 1

( )ζ = |v |−1

Because of non-linearity one can absorb  into  , unless .ζ w ζ = 0

• Tensor eigenvector equation 

Cabcvbvc = va

Ex. Symmetric order-three tensor

This talk uses tensor eigenvector equation, since it is simpler to 
handle and equivalent, as  is ignorable in most applications. |v | = ∞

 : eigenvalue,  : eigenvectorζ w



§ Complex eigenvector problems
S. Majumdar, NS, to appear in PTEP, arXiv:2408.01030 [hep-th]
NS, PTEP 2024 (2024) 5, 053A04, arXiv:2404.03385 [hep-th]

We compute the distributions of eigenvectors of complex order-
three random tensors with symmetric or independent indices.

• Symmetric indices case
  (  : arbitrary perms. of )Cabc = Cσaσbσc

, va ∈ ℂ σ a, b, c

Corresponds to |ψ⟩ = Cabc |a⟩ |b⟩ |c⟩

C*abcvbvc = v*a

• Independent indices case
C*abcv

(B)
b v(C)

c = v(A)*
a

C*abcv
(A)
a v(C)

c = v(B)*
b

C*abcv
(A)
a v(B)

b = v(C)*
c

: A system of eigenvector eqs.

Corresponds to |ψ⟩ = Cabc |a⟩A |b⟩B |c⟩C

Cabc, v(A)
a , v(b)

b , v(C)
c ∈ ℂ

: Eigenvector equation



§ Field theoretical method

General form of the problem

fi(v, C) = 0 i = 1,2,⋯, #v

Number of d.o.f. of v

ρ(v, C) =
#sol

∑
α=1

δ#v(v − vα) = | det M(v, C) |
#v

∏
i=1

δ#v( fi(v, C))

Distribution of solutions  for a vα (α = 1,2,⋯, #sol) C

Mij(v, C) =
∂ fi(v, C)

∂vj
Jacobian

cf. A. Crisanti, L. Leuzzi, and T. Rizzo, Eur. Phys. J. B 36, 129-136 (2003)

v

v

Distribution of  for a Gaussian ensemble of v C

ρ(v) =
1
𝒩 ∫ℂ#C

dC e−α C*abcCabc ρ(v, C) α ∈ ℝ+

: NP-hard

: Computable

: linear in C



ρ(v) = ∫ dC e−αC*abcCabc | det M(v, C) |
#v

∏
i=1

δ( fi(v, C))

| det M | = lim
ϵ→+0

det(M2 + ϵI)
det(M2 + ϵI)

#v

∏
i=1

δ( fi(v, C)) =
1

(2π)#v ∫ d#vλ ei λj fj(v,C)

Fermions
Bosons

• Genuine distribution

The determinant factor can be treated in two different ways:

Harder to compute

• Signed distribution

det M = ∫ dψ̄dψ eψ̄Mψ| det M |

Ignoring the positivity

Exactly computable, closed-forms sometimes

∫ dλ eiλx = 2πδ(x)

: Fermions only

Rewrite



The location of the edge can be derived from the signed distribution
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N = 10

ρ( |v | )

ρsigned( |v | )
|v |

The genuine and signed distributions are intimately related and 
have a common edge in the large N limit. 

M.R. Kloos, NS, Lett.Math.Phys. 114 (2024) 3, 80, arXiv:2403.12427 [hep-th]

Ex. Real eigenvector distribution of real symmetric random tensor

ρ( |v | ) ∼ eN Re[h(|v|)]

ρsigend( |v | ) ∼ Re[eN h(|v|)]

 for h( |v | ) < 0 |v | < |v |edge

 for h( |v | ) > 0 |v |edge < |v | ≤ |v |c

h( |v |edge ) = 0

 : complex for h( |v | ) |v |c < |v |



ρsigned(v) =
1

(2π)#v𝒩 ∫ dCdλdψ̄dψ eS

S = − α C*abcCabc + i λj fj(v, C) + ψ̄i
∂fi(v, C)

∂vj
ψj

Since  is linear in , integration over  is a Gaussian 
integration and can explicitly be performed.

fi(v, C) Cabc C, λ

Then we see that the signed distribution is given by a partition 
function of a four-fermi theory:

ρsigned(v) = 𝒩′￼∫ dψ̄dψ eSff

 : A fermionic action with four-fermi interactionsSff



• Symmetric indices case

Sff = ψ̄ ⋅ ψ + φ̄ ⋅ φ +
2 |v |2

3α (ψ̄ ⋅ φ φ̄ ⋅ ψ − ψ̄ ⋅ ψ φ̄ ⋅ φ)+parallel to v, v*

• Independent indices case

Sff =
3

∑
i=1

(ψ̄i ⋅ ψi + φ̄i ⋅ φi) +
|v |2

α

3

∑
i<j

(ψ̄iφj + ψ̄jφi) ⋅ (φ̄iψj + φ̄jψi)

The partition function of these four-fermi theories can exactly be 
computed by using the following type of manipulations:

eg ψ̄⋅ψ φ̄⋅φ = eg ∂
∂k1

∂
∂k2 ek1 ψ̄⋅ψ+k2 φ̄⋅φ

k1=k2=0

The four-fermi actions

+parallel to v, v*



Exact closed-form expressions are given in terms of generating 
functions.

• Symmetric indices case

ρsigned( |v |2 ) = − 3NαN |v |−2N−2 e− α
|v |2 (1 + g l)−2exp ( l

1 + g l )
lN−1

g = 2 |v |2 /(3α)

• Independent indices case

ρsigned( |v |2 ) = − α |v |−4 e− α
|v |2 (1 − t2 + 2t3)−2exp ( t1 − 2t2 + 3t3

g(1 − t2 + 2t3) )
∏3

i=1 lNi−1
i

 : dimension of -th indexNi ig = |v |2 /α

Taking the -th orderlN−1

t1 = l1 + l2 + l3
t2 = l1l2 + l2l3 + l3l2
t3 = l1l2l3



§ Checked with Monte Carlo simulations
Symmetric indices case

Independent indices case
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The asymptotic form in the large N limit can be extracted from the 
exact closed-form expression. 

ρsigned( |v |2 ) ∼ Re[eN h(|v|)]

Symmetric indices case

h( |v | ) = log(2) −
α

| ṽ |2 − log l̃ +
l̃

g̃(1 + l̃)

l̃ =
1 − 2g̃ − 1 − 4g̃

2g̃

| ṽ | = N |v |

g̃ =
2 | ṽ |2

3α

The edge is numerically determined by h( |v |edge ) = 0

|v |edge = 0.603501
α
N ( |v |c =

3α
8N )



Independent indices case

h = − 1 − log g̃ −
1
g̃

−
3

∑
i=1

ni log ni + seff

ni = Ni /(N1 + N2 + N3) g̃ = (N1 + N2 + N3) |v |2 /α

seff = 2
3

∑
i=1

niQi − g̃
3

∑
i≠j

ninjQiQj − 2
3

∑
i=1

ni log Qi

Qi =
1 + 4q2nig̃ − 1

2qnig̃

where  is the solution to q 1 + 2q −
3

∑
i=1

1 + 4q2nig̃ = 0

For Ni = N

|v |edge = 0.348431
α
N ( |v |c =

α
8N )



§Agreement with a pervious numerical study
K. Fitter, C. Lancien, I. Nechita, “Estimating the entanglement of 
random multipartite quantum states,” [arXiv:2209.11754 [quant-ph]]

Symmetric indices case

|C |inj = 1/ |v |edge = 2.34335 ( )α = N/2

FLN result = 2.356248

( |C |inj = max
|w|=1

Cabcwawbwc)

Independent indices case

|C |inj = 1/ |v |edge = 4.0588 ( )α = N/2

FLN result = 4.143529

Error~0.5%

Error~2%

The numbers are coincident, since the errors are smaller than 4%, 
which is of the established case (real case).

( |C |inj = max
|wi|=1

Cabcw1
aw2

bw3
c )



Summary
As in matrix models, tensor eigenvalue/vector distributions will 
become important in various applications.  

The quantum field theoretical method is a powerful practical 
method of computing them. 

In particular signed distributions are the easiest but useful, and 
can be computed by four-fermi theory. 

We have computed the signed eigenvalue/vector distributions 
of complex random tensors, and have derived the asymptote of 
the geometric measure of quantum entanglement analytically 
for the first time. (cf. Dartois, McKenna, arXiv:2404.03627)

Future prospects
Studying tensor eigenvalue/vector distributions is rather a new 
subject. We expect more results to come in the near future. 



Thank you !
Σας ευχαριστώ



Random tensor models

• Discretized model of quantum gravity of dim  ≥ 3
Ambjorn-Durhuus-Jonsson, NS, Godfrey-Gross 1990

• Colored tensor model Gurau 2011 expansion1/N

Extension of matrix models for discretized 2-dim QG

2-dim

a

b c

Mab

Mbc

Mca
a

b
c

d

e

f
Cabc

Ccde

Cebf

Cfda

3-dim



• Quantum information theory

There are recent applications to some new subjects:

• AdS/CFT correspondence   Gurau-Witten model

Dabc = C0
abc + Cabc

 Target signal: constant tensor

Noise: Random tensor

|Ψ⟩ = Cabc |a⟩1 |b⟩2 |c⟩3

• Data analysis

Random multipartite states

• Glasses     Spherical p-spin model of spin glass

Cabc =
R

∑
r=1

ϕr
aϕr

bϕr
c : Tensor rank decomposition

Cabcwbwc = ζ wa : Tensor eigen problem



Most tensor problems are NP-hard for a tensor. Hillar-Lim 2009

On the other hand, the distribution of a quantity (like tensor 
eigenvalues) for an ensemble of tensors can exactly/approximately 
computed, as we will do.

Thermodynamic limit is expected in the large-N limit, where
the distribution of a quantity (like tensor eigenvalues) does not 
depend on a tensor in the ensemble.

So, random tensor models provide an interesting angle to more 
easily approach these NP-hard problems

(Rigorously proven for a particular case. Subag 2017) 


