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Themes of this talk ...

There is a whole raft of SUSY-like supertrace identities associated
UV/IR mixing that have not been noticed before

In this talk I will demonstrate this by showing how they appear in
any closed string theory

These identities seem to have profound implications: e.g. they forbid
power law running (Non-SUSY non-renormalisation theorems)

e.g. they imply scale invariance at the string scale




Outline

¢ How UV/IR mixing constrains theories
o Higher dimensions
o Theories with higher dimensional limits

o Surprising behaviour!



How UV/IR mixing
constrains theories: string
theory example



Understanding UV/IR mixing: the one-loop cosmological
constant done in a stringy way

As a useful laboratory let’s derive A the one-loop cosmological constant: we can do
this as an integral over all distinct loops of massive propagators of mass M as follows:

For our discussion this can be written in a “stringy way” using a Schwinger worldline
parameter, ¢ :

4 4
9 Z / ’ k log (k2 + Msztate - 5 Z / o / dt l)Fe_t(k2+MS?tate)

states states




Understanding UV/IR mixing: the one-loop cosmological
constant done in a stringy way

As a useful laboratory let’s derive A the one-loop cosmological constant: we can do
this as an integral over all distinct loops of massive propagators of mass M as follows:

For our discussion this can be written in a “stringy way’” using a Schwinger worldline
parameter, ¢ :
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A = — / —g(t)
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where we identify a “particle partition 1 5
function” which is a graded sum over g (t) — Z _ (_ 1 ) F e_tM state
the spectral density: THIS WILL BE

THE HERO IN OUR DISCUSSION states




To orient you: if I perform this with cut-off it gives the precursor to the
Coleman-Weinberg potential:

M M? M* M?
A= ——CCStrpprl + ——— StrgprM? — St 1
6arz T EETL T e DUEET R [T Cle R VEN
where here Strppr = Z (—1)F is the graded sum over states in the theory

states in EFT



How does string theory get to be UV-complete and so avoid the need for the
cut-off M;,? Importantly I want to think about the theory generically TODAY,
when SUSY (if it was ever there) 1s absent: I am not interested in model specific
things.

Instead of a circle, closed string theory instead maps out a torus:




Instead of a circle, closed string theory instead maps out a torus:

But Modular Invariance implies torus can be
mapped to parallelogram in complex plane,
defined by single parameter z,

T—T1+1  redefines torus : 0
T— —1/T  swops o7 and 0> and just reorients torus



Thus the integral over all diagrams does not cover the whole 7 plane but takes the
form (M=M,/2r)...

s [ d*T
A — _/\4/ — Z/(7.7)
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where Z(7) = Z(z') when 7’ =
cTt+d

Z(7) is the string version of the particle g(7)
and holds all the information about the
spectrum. All amplitudes look similar to this.




Usual cartoon ...

g(1)

UV

Strings: UV 1s “missing”

Particle



This 1s the textbook explanation of stringy finiteness. However: a method due to
Rankin and Selberg (1939/40) expresses the integral in terms of the completely
particle theory expression g(z,) of physical (level-matched) states —
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This 1s the textbook explanation of stringy finiteness. However: a method due to
Rankin and Selberg (1939/40) expresses the integral in terms of the completely

particle theory expression g(z,) of physical (level-matched) states —
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2
4
_ M 1 (_1)F6—7r7'2a’MS2tate
9 2 z :
states
This gives the following answer ...
M4 . (127_ s
__/ —5 Z(T ?) = — lim g(Tg) « Rankin, Selberg (1939/40)
2 F Ty T2 —0  Zagier (1981)
In string theory: Kutasoy,

Seiberg; McClain, Roth,
O’Brien, Tan; Dienes;
Angelantonj, Florakis, Pioline,
Rabinovici



g(1)

UV

Particle

Strings according to RS: infinite sum

over fundamental domains divided by
infinite overcounting

Note the labels “UV” and an “IR” on the string integral no longer make sense.



Let’s pause for a minute to see (as physicists) why this is remarkable:

ra't, clearly plays the role of the Schwinger
parameter f when 7, > 1: by naively integrating
over the fundamental domain, we physicists see a
result that mimics EFT
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Let’s pause for a minute to see (as physicists) why this is remarkable:

But this is equal to a very not EFT-like
limit - it instead looks like a deep UV
limit!!
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So this is the ultimate UV/IR mixing. But it also implies something spectacular
about the supertrace over the physical states ...

To see this let’s try and evaluate this RS limit:

4
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T2 —0 2 7o —( 7'2
states

It looks like it diverges because of the 1/7, prefactor in g(z,) !!!



So this is the ultimate UV/IR mixing. But it also implies something spectacular
about the supertrace over the physical states ...

To see this let’s try and evaluate this RS limit:

4
T .. M 1 2
— llm 9(7-2) — llm (—1)F_6_7TT2a/Mstate
T2—0 2 7o —( )
states
It looks like it diverges because of the 1/7, prefactor in Z(z,) !!! ... Unless ...
. . / 2
llm (_1)F6 T2 Mstates p— O
70 —0

states



Thus — if we define a stringy regulated supertrace appropriate for infinite towers of
states for any operator X,

Str X = lim (—]_)FXState e_WTQQIMSZtate

7'2—)0
states

then here (where X = const for the case of A) we see that any modular invariant 4D
theory with a finite A obeys

Strl1 = 0

Any tachyon-free modular invariant theory in 4D has Str(1) = O even when no SUSY!

* Dienes, Misaligned SUSY, 1994
* Dienes, Moshe, Myers 1995



Or to put it another way ... if we expand g(z,) around 7, = 0 in a generic particle
theory 1t would go like

1
9(7-2) — — X (C() + C 1o —|—CQ7'22 -+ )

T2

but in a modular invariant theory we have C;; = 0 and it must instead go like

1
g(TQ) — ’7'_2 X (017'2 _|_027-22 -+ )



Note we can express the integral as A = zC,/3, where by expanding the
exponential around 7, and picking off the first term C;: we have

A = iMQSTI.MZ  Dienes, Misaligned SUSY, 1994
24

» Kutasov, Seiberg, 1994
* Dienes, Moshe, Myers 1995

This looks exactly like the leading piece in the Coleman Weinberg potential if the quartic
M ?]V term magically vanishes. i.e. the condition Strl = 0O forces the quartic divergence

term vanishing in any modular invariant theory. Only the first non-renormalisation theorem
we will meet.



Higher dimensions



In theories with D > 4 space-time dimensions things get more constrained. The
reason why is that g(z,) takes the form

1
9(12) = 573 % (Ch+ Clme + Chrs + ..
T2

But now applying Rankin-Selberg we see that in a theory with D =4 +6 ...

—> we have C,Cy,...,Cs), =



Thus in a theory with D = 4 + § expanding the expression for A”) we have
Str' M* = 0

forall k <2 + 6.



But in higher dimensions many more supertraces get constrained: let’s now
extend the discussion to more general amplitudes ... (X)

Any amplitude one might want to calculate simply corresponds to the insertion of
an operator X into the A integral.

For example vacuum polarisation amplitude to find one-loop gauge coupling
correction 167%/g% = 167%/gk.. + Ag

Xo = 0
— E
Xl — % (Qi] — 1—22)
X = Xo+nX; + 77X . T
X = =2 (QH — ﬁ) Qe

1

Space-time helicity Gauge charges



For example in a 6 dimensional theory we find a constraint plus a one - loop
contribution to  167%/g¢ = 167%/gZ.. + A of the form

Str’ @?{ — 11—28_’51'35, 1 = 0

and ...

Ag ~ Tx | =28t (Q4Q%) + =Sty Q% — St (@21\72) L &
3 6 2T 247
__ 2

where M? = M

Strly M 2]



Theories with higher
dimensional limits



So the question is — what happens when a 4 dimensional theory has a
decompactification limit to a higher dimensional theory?



So the question is — what happens when a 4 dimensional theory has a
decompactification limit to a higher dimensional theory? Generally we can
expect a theory that can decompactify to look like this:

N
z® = ¥ 76,
1=1

The i indicates a sum over different sectors ... each with a “base” contribution Z/
multiplying KK/winding factors ®; which turn into volumes in each large radius limit ...

A 72_5/207;2,2 M° Vs



So the question is — what happens when a 4 dimensional theory has a
decompactification limit to a higher dimensional theory? Generally we can
expect a theory that can decompactify to look like this:

N
ZW = Y Ze,
1=1

The i indicates a sum over different sectors ... each with a “base” contribution Z;
multiplying KK/winding factors ®; which turn into volumes in each large radius limit ...

A 72_5/207;2,2 M° Vs

i.e. at large radius the partition function is simply proportional to the
higher dimensional theory



But at this point we notice a clash! ... we know that the Z' have to satisfy many
more constraints than the four dimensional theory

The only way to resolve this clash and for physics to be smooth at infinite radius is
for all the constraints to already be satisfied in the 4D theory ... it turns out this is
independent of the compactification radius:

{ The 4D theory will inherit the precise stricter internal ;
 cancellations of any higher-dimensional theory to which }
i can be decompactified. |



But at this point we notice a clash! ... we know that the Z' have to satisfy many
more constraints than the four dimensional theory

The only way to resolve this clash and for physics to be smooth at infinite radius is
for all the constraints to already be satisfied in the 4D theory ... it turns out this is
independent of the compactification radius:

{ The 4D theory will inherit the precise stricter internal ;
 cancellations of any higher-dimensional theory to which }
i can be decompactified. |

For example 167t2g(_;2 = 167°g-2 + A in a theory with § = 2 decompactification:

Str’ @Z — =Stryl = 0

~ _ I (N2 )2 1/2_i 1 (A2 172 i/"’z
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So the cartoon looks like this ...
Zcf;l)q{,k: s k<1+446/2
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Some of these endpoint theories related by duality transformations - but they all lead
to a constraint that has to be satisfied in the 4D theory.
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Surprising behaviour ...



No power-law running ...

Power law running is the expectation that contributions over towers of Kaluza-Klein

modes resum to give a power-law scale dependence ...

Ag= )

KK states

~ Cou°R® = Cy p°Vy

which arises because a single o-dimensional KK tower contribution to g(t) goes like

. ~(Ch+Cit+Cst*+..)  t> R
HORE .

t1+5/2

(Co+ Cit+ Cjt* +...) t< R?



The crux of the matter: we saw that in modular invariant theories: C, =0 if 6 > 2!

In other words there can be no 6 > 2 power law running, and moreover there is no
contribution to any running (even logarithmic) from the states in the theory associated with

0 > 2 decompactification limits.

e The case of 6 = 2 is more subtle: these can give logarithmic running below the KK scale.
e However it is easy to see that however we define the energy scale there can be no 6 = 2

power-law running if there is no 6 > 2 running (which as we just saw is unphysical).



Let’s see an example: running in a theory with a 6 = 2 decompactification limit

Modular invariant renormalisation: . SAA Dienes, 2021

To insert an energy scale ¢ we insert a cut-off function &(u, 7) which removes log
divergences from any massless states and which must itself be modular invariant



Let’s see an example: running in a theory with a 6 = 2 decompactification limit

Modular invariant renormalisation:

 SAA, Dienes, 2021

To insert an energy scale y we insert a cut-off function &(u, 7) which removes log
divergences from any massless states and which must itself be modular invariant

7. = M?*/u?

€ suppresses integral
in a modular invariant
way around all the
cusps

3.0

051

2.5

1510

A - -.m’i

Tk

J

V' {

e 'Q..A FoWePe
0

INIOAIY

A\

=%




Let’s see an example: running in a theory with a 6 = 2 decompactification limit

Modular invariant renormalisation: . SAA Dienes, 2021

To insert an energy scale y we insert a cut-off function &(u, 7) which removes log
divergences from any massless states and which must itself be modular invariant
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Using such a regulator cut-off function with a 2-torus volume factor we can compare
A ;(p) with the famous result of Dixon, Kaplunovsky and Louis, but recovering energy

dependence and the EFT ...

SAA, Dienes, Nutricati
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Using such a regulator cut-off function with a 2-torus volume factor we can compare

A ;(p) with the famous result of Dixon, Kaplunovsky and Louis, but recovering energy
dependence and the EFT ...

SAA, Dienes, Nutricati
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Similarly we can get a scale dependent A ... /A\(,u) and thus a stringy Coleman-
Weinberg potential at 4 < 1/R but it has complete ¢ — M?/u symmetry

"dip" EFT "turnaround” dual EFT dual "dip" dual
deep region region region region region
IR deep IR
> (the most UV possible) <&

~ 1 M* M? ]
Alp) — ﬂ_/\/ﬂStlr]\I2 — Stras<, G2 (logc C/,u4>_




Summary

e Using various novel techniques we learnt how an EFT emerges from a UV/IR mixed theory

* In a 4D theories this requires constraints which become more and more severe when there are
decompactification limit

e Consistent theories already “know” they can decompactify

* A definition of energy scale consistent with UV/IR mixing implies scale invariance around
u=M.

 This explains why for example we often found scale-invariant (e.g. /= 4 SUSY sectors) when
doing model building — but this is really to do with decompactification - it applies just the same
in non-SUSY theories

e Potential implications for Dynamical Dark Matter and also “dark dimension™ scenarios

e Phenomenological consequences - no power law running - Hagedorn behaviour and thermal
duality?

e Removes “technical hierarchies™: i.e. all the heavy modes yield a constant piece that may be
large but which 1s always separated from the EFT modes.



