UV/IR mixing and towards new paradigms for v. high energy physics

Steve Abel (IPPP)

Based on the following set of papers on NON-SUPERSYMMETRIC strings ...

- w/ Dienes and Nutricati arXiv:2407.11160
- w/ Dienes and Nutricati *Phys.Rev.D* 107 (2023) 12, 126019; arXiv:2303.08534
- w/ Keith Dienes *Phys.Rev.D* 104 (2021) 12, 126032; arXiv:2106.04622
- w/ Dienes+Mavroudi *Phys.Rev.*D 97 (2018) 12, 126017, arXiv: 1712.06894
- w/ Stewart, *Phys.Rev.D* 96 (2017) 10, 106013 arXiv:1701.06629
- Aaronson, SAA, Mavroudi, *Phys.Rev.D* 95, (2016) 106001, arXiv:1612.05742
- SAA JHEP 1611 (2016) 085, arXiv:1609.01311
- w/ Dienes+Mavroudi *Phys.Rev. D91*, (2015) 126014, arXiv:1502.03087

Themes of this talk ...

There is a whole raft of SUSY-like supertrace identities associated UV/IR mixing that have not been noticed before

In this talk I will demonstrate this by showing how they appear in any closed string theory

These identities seem to have profound implications: e.g. they forbid power law running (Non-SUSY non-renormalisation theorems)

e.g. they imply scale invariance at the string scale

Outline

- How UV/IR mixing constrains theories
- Higher dimensions
- Theories with higher dimensional limits
- Surprising behaviour!

How UV/IR mixing constrains theories: string theory example

Understanding UV/IR mixing: the one-loop cosmological constant done in a stringy way

As a useful laboratory let's derive Λ the one-loop cosmological constant: we can do this as an integral over all distinct loops of massive propagators of mass M as follows:

For our discussion this can be written in a "stringy way" using a Schwinger worldline parameter, *t*:

$$\Lambda = -\frac{1}{2} \sum_{\text{states}} \int \frac{d^4k}{(2\pi)^4} (-1)^F \log \left(k^2 + M_{\text{state}}^2 \right) = -\frac{1}{2} \sum_{\text{states}} \int \frac{d^4k}{(2\pi)^4} \int_0^\infty \frac{dt}{t} (-1)^F e^{-t(k^2 + M_{\text{state}}^2)}$$

Understanding UV/IR mixing: the one-loop cosmological constant done in a stringy way

As a useful laboratory let's derive Λ the one-loop cosmological constant: we can do this as an integral over all distinct loops of massive propagators of mass M as follows:

For our discussion this can be written in a "stringy way" using a Schwinger worldline parameter, *t*:

$$\Lambda = -\frac{1}{32\pi^2} \int_{M_{UV}^{-2}}^{\infty} \frac{dt}{t^2} g(t)$$

where we identify a "particle partition function" which is a graded sum over the spectral density: THIS WILL BE THE HERO IN OUR DISCUSSION

$$g(t) = \sum_{\text{states}} \frac{1}{t} (-1)^F e^{-tM_{\text{state}}^2}$$

To orient you: if I perform this with cut-off it gives the precursor to the Coleman-Weinberg potential:

$$\Lambda = -\frac{M_{UV}^4}{64\pi^2} Str_{EFT} \mathbf{1} + \frac{M_{UV}^2}{32\pi^2} Str_{EFT} M^2 - Str_{EFT} \left[\frac{M^4}{64\pi^2} \log c \frac{M^2}{M_{UV}^2} \right]$$

where here $Str_{EFT} \equiv \sum_{\text{states in EFT}} (-1)^F$ is the graded sum over states in the theory

How does string theory get to be UV-complete and so avoid the need for the cut-off M_{UV} ? Importantly I want to think about the theory generically TODAY, when SUSY (if it was ever there) is absent: I am not interested in model specific things.

Instead of a circle, closed string theory instead maps out a torus:

Instead of a circle, closed string theory instead maps out a torus:

But Modular Invariance implies torus can be mapped to parallelogram in complex plane, defined by single parameter τ ,

Thus the integral over all diagrams does not cover the whole τ plane but takes the form $(\mathcal{M} = M_s/2\pi)...$

$$\Lambda = -\frac{\mathcal{M}^4}{2} \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} Z(\tau, \overline{\tau})$$

where
$$Z(\tau) = Z(\tau')$$
 when $\tau' = \frac{a\tau + b}{c\tau + d}$

 $Z(\tau)$ is the string version of the particle g(t) and holds all the information about the spectrum. All amplitudes look similar to this.

Usual cartoon ...

This is the textbook explanation of stringy finiteness. *However:* a method due to Rankin and Selberg (1939/40) expresses the integral in terms of the completely particle theory expression $g(\tau_2)$ of **physical (level-matched) states** —

$$g(\tau_2) = -\frac{\mathcal{M}^4}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} d\tau_1 \ Z(\tau)$$

$$= -\frac{\mathcal{M}^4}{2} \tau_2^{-1} \sum_{\text{states}} (-1)^F e^{-\pi \tau_2 \alpha' M_{\text{state}}^2}$$

RS use a transform to unfold \mathcal{F} to the critical strip \mathcal{S}

This is the textbook explanation of stringy finiteness. *However:* a method due to Rankin and Selberg (1939/40) expresses the integral in terms of the completely particle theory expression $g(\tau_2)$ of **physical (level-matched) states** —

$$g(\tau_2) = -\frac{\mathcal{M}^4}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} d\tau_1 \ Z(\tau)$$

$$= -\frac{\mathcal{M}^4}{2} \tau_2^{-1} \sum_{\text{states}} (-1)^F e^{-\pi \tau_2 \alpha' M_{\text{state}}^2}$$

This gives the following answer ...

$$-\frac{\mathcal{M}^4}{2} \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} Z(\tau, \overline{\tau}) = \frac{\pi}{3} \lim_{\tau_2 \to 0} g(\tau_2)$$

- Rankin, Selberg (1939/40)
- Zagier (1981)
 In string theory: Kutasov,
 Seiberg; McClain, Roth,
 O'Brien, Tan; Dienes;
 Angelantonj, Florakis, Pioline,
 Rabinovici

Strings according to RS: infinite sum over fundamental domains divided by infinite overcounting

Note the labels "UV" and an "IR" on the string integral no longer make sense.

Let's pause for a minute to see (as physicists) why this is remarkable:

 $\pi\alpha'\tau_2$ clearly plays the role of the Schwinger parameter t when $\tau_2 \geq 1$: by naively integrating over the fundamental domain, we physicists see a result that mimics EFT ...

$$\Lambda \approx \int_{1}^{\infty} \frac{d\tau_2}{\tau_2^2} g(\tau_2)$$

$$\approx -\frac{\mathcal{M}^4}{2} \int_1^\infty \frac{d\tau_2}{\tau_2^3} \sum_{\text{states}} (-1)^F e^{-\pi \tau_2 \alpha' M_{\text{state}}^2}$$

Let's pause for a minute to see (as physicists) why this is remarkable:

But this is equal to a *very not EFT-like limit* - it instead looks like a deep UV limit!!

$$\Lambda \approx \int_{1}^{\infty} \frac{d\tau_{2}}{\tau_{2}^{2}} g(\tau_{2})$$

$$\approx -\frac{\mathcal{M}^{4}}{2} \int_{1}^{\infty} \frac{d\tau_{2}}{\tau_{2}^{3}} \sum_{\text{states}} (-1)^{F} e^{-\pi \tau_{2} \alpha' M_{\text{state}}^{2}}$$

$$= \frac{\pi}{3} \lim_{\tau_2 \to 0} g(\tau_2)$$

So this is the ultimate UV/IR mixing. But it also implies something spectacular about the supertrace over the physical states ...

To see this let's try and evaluate this RS limit:

$$\frac{\pi}{3} \lim_{\tau_2 \to 0} g(\tau_2) = -\frac{\mathcal{M}^4}{2} \lim_{\tau_2 \to 0} \sum_{\text{states}} (-1)^F \frac{1}{\tau_2} e^{-\pi \tau_2 \alpha' M_{\text{states}}^2}$$

It looks like it diverges because of the $1/\tau_2$ prefactor in $g(\tau_2)$!!!

So this is the ultimate UV/IR mixing. But it also implies something spectacular about the supertrace over the physical states ...

To see this let's try and evaluate this RS limit:

$$\frac{\pi}{3} \lim_{\tau_2 \to 0} g(\tau_2) = -\frac{\mathcal{M}^4}{2} \lim_{\tau_2 \to 0} \sum_{\text{states}} (-1)^F \frac{1}{\tau_2} e^{-\pi \tau_2 \alpha' M_{\text{state}}^2}$$

It looks like it diverges because of the $1/\tau_2$ prefactor in $Z(\tau_2)$!!! ... Unless ...

$$\lim_{\tau_2 \to 0} \sum_{\text{states}} (-1)^F e^{-\pi \tau_2 \alpha' M_{\text{states}}^2} = 0$$

Thus — if we define a stringy *regulated supertrace* appropriate for infinite towers of states for any operator X,

$$\operatorname{Str} \mathcal{X} = \lim_{\tau_2 \to 0} \sum_{\text{states}} (-1)^F \mathcal{X}_{\text{state}} e^{-\pi \tau_2 \alpha' M_{\text{state}}^2}$$

then here (where X = const for the case of Λ) we see that any modular invariant 4D theory with a finite Λ obeys

$$Str \mathbf{1} = 0$$

Any tachyon-free modular invariant theory in 4D has Str(1) = 0 even when no SUSY!

- Dienes, Misaligned SUSY, 1994
- Dienes, Moshe, Myers 1995

Or to put it another way ... if we expand $g(\tau_2)$ around $\tau_2 = 0$ in a generic particle theory it would go like

$$g(\tau_2) = \frac{1}{\tau_2} \times (C_0 + C_1 \tau_2 + C_2 \tau_2^2 + \ldots)$$

but in a modular invariant theory we have $C_0 = 0$ and it must instead go like

$$g(\tau_2) = \frac{1}{\tau_2} \times (C_1 \tau_2 + C_2 \tau_2^2 + \ldots)$$

Note we can express the integral as $\Lambda = \pi C_1/3$, where by expanding the exponential around τ_2 and picking off the first term C_1 : we have

$$\Lambda = \frac{1}{24} \mathcal{M}^2 STr M^2$$

- Dienes, Misaligned SUSY, 1994
- Kutasov, Seiberg, 1994
- Dienes, Moshe, Myers 1995

This looks exactly like the leading piece in the Coleman Weinberg potential if the quartic M_{UV}^4 term magically vanishes. i.e. the condition Str1=0 forces the quartic divergence term vanishing in any modular invariant theory. Only the first non-renormalisation theorem we will meet.

Higher dimensions

In theories with D > 4 space-time dimensions things get more constrained. The reason why is that $g(\tau_2)$ takes the form

$$g(\tau_2) = \frac{1}{\tau_2^{1+\delta/2}} \times \left(C_0' + C_1' \tau_2 + C_2' \tau_2^2 + \ldots \right)$$

But now applying Rankin-Selberg we see that in a theory with $D=4+\delta\dots$

$$\Longrightarrow$$
 we have $C'_0, C'_1, ..., C'_{\delta/2} = 0$

Thus in a theory with $D=4+\delta$ expanding the expression for $\Lambda^{(D)}$ we have

$$Str'M^k = 0$$

for all $k < 2 + \delta$.

But in higher dimensions many more supertraces get constrained: let's now extend the discussion to more general amplitudes ... $\langle \mathcal{X} \rangle$

Any amplitude one might want to calculate simply corresponds to the insertion of an operator \mathcal{X} into the Λ integral.

For example vacuum polarisation amplitude to find one-loop gauge coupling correction $16\pi^2/g_G^2 = 16\pi^2/g_{\rm tree}^2 + \Delta_G$:

Space-time helicity Gauge charges

For example in a 6 dimensional theory we find a *constraint* plus a one - loop contribution to $16\pi^2/g_G^2 = 16\pi^2/g_{\text{tree}}^2 + \Delta_G$ of the form

$$\operatorname{Str}' \overline{Q}_H^2 - \frac{1}{12} \operatorname{Str}_E' \mathbf{1} = 0$$

and ...

$$\Delta_G \approx \frac{\pi}{3} \times \left[-2 \operatorname{Str}'(Q_G^2 \overline{Q}_H^2) + \frac{1}{6} \operatorname{Str}'_E Q_G^2 - \frac{\xi}{2\pi} \operatorname{Str}'\left(\overline{Q}_H^2 \widetilde{M}^2\right) + \frac{\xi}{24\pi} \operatorname{Str}'_E \widetilde{M}^2 \right]$$

where
$$\widetilde{M}^2 \equiv \frac{M^2}{4\pi \mathcal{M}^2}$$

Theories with higher dimensional limits

So the question is — what happens when a 4 dimensional theory has a decompactification limit to a higher dimensional theory?

So the question is — what happens when a 4 dimensional theory has a decompactification limit to a higher dimensional theory? Generally we can expect a theory that can decompactify to look like this:

$$Z^{(4)} = \sum_{i=1}^{N} Z_i' \Theta_i$$

The i indicates a sum over different sectors ... each with a "base" contribution Z'_i multiplying KK/winding factors Θ_i which turn into volumes in each large radius limit ...

$$Z^{(4)}
ightharpoonup au_2^{-\delta/2} c_i Z_i' \mathcal{M}^{\delta} V_{\delta'}$$

So the question is — what happens when a 4 dimensional theory has a decompactification limit to a higher dimensional theory? Generally we can expect a theory that can decompactify to look like this:

$$Z^{(4)} = \sum_{i=1}^N Z_i'\Theta_i$$

The *i* indicates a sum over different sectors ... each with a "base" contribution Z'_i multiplying KK/winding factors Θ_i which turn into volumes in each large radius limit ...

$$Z^{(4)} \rightarrow \tau_2^{-\delta/2} c_i Z_i' \mathcal{M}^{\delta} V_{\delta}'$$

i.e. at large radius the partition function is simply proportional to the higher dimensional theory

But at this point we notice a clash! ... we know that the Z' have to satisfy many more constraints than the four dimensional theory

The only way to resolve this clash and for *physics to be smooth* at infinite radius is for all the constraints to *already* be satisfied in the 4D theory ... it turns out this is independent of the compactification radius:

The 4D theory will inherit the precise stricter internal cancellations of any higher-dimensional theory to which can be decompactified.

But at this point we notice a clash! ... we know that the Z' have to satisfy many more constraints than the four dimensional theory

The only way to resolve this clash and for *physics to be smooth* at infinite radius is for all the constraints to *already* be satisfied in the 4D theory ... it turns out this is independent of the compactification radius:

The 4D theory will inherit the precise stricter internal cancellations of any higher-dimensional theory to which can be decompactified.

For example $16\pi^2 g_G^{-2} = 16\pi^2 g_{\text{tree}}^{-2} + \Delta_G$ in a theory with $\delta = 2$ decompactification:

$$\operatorname{Str}' \overline{Q}_{H}^{2} - \frac{1}{12} \operatorname{Str}'_{E} \mathbf{1} = 0$$

$$\Delta_{G} \approx \frac{\pi}{3} V_{\delta} \left[-2 \operatorname{Str}' \left(Q_{G}^{2} \overline{Q}_{H}^{2} \right) + \frac{1}{6} \operatorname{Str}'_{E} Q_{G}^{2} - \frac{\xi}{2\pi} \operatorname{Str}' \left(\overline{Q}_{H}^{2} \widetilde{M}^{2} \right) + \frac{\xi}{24\pi} \operatorname{Str}'_{E} \widetilde{M}^{2} \right]$$

So the cartoon looks like this ...

Some of these endpoint theories related by duality transformations - but they all lead to a constraint that has to be satisfied in the 4D theory.

Surprising behaviour ...

No power-law running ...

Power law running is the expectation that contributions over towers of Kaluza-Klein modes resum to give a power-law scale dependence ...

$$\Delta_G = \sum_{KK \text{ states}}^{M_{KK} \sim k/R}$$

$$\sim C_2' \mu^{\delta} R^{\delta} = C_2' \mu^{\delta} V_{\delta}$$

which arises because a single δ -dimensional KK tower contribution to g(t) goes like

$$g(t) \to \begin{cases} \frac{1}{t} (C'_0 + C'_1 t + C'_2 t^2 + \dots) & t \gg R^2 \\ \frac{R^{\delta}}{t^{1+\delta/2}} (C'_0 + C'_1 t + C'_2 t^2 + \dots) & t \ll R^2 \end{cases}$$

The crux of the matter: we saw that in modular invariant theories: $C'_2 = 0$ if $\delta > 2$!

In other words there can be no $\delta > 2$ power law running, and moreover there is no contribution to *any* running (even logarithmic) from the states in the theory associated with $\delta > 2$ decompactification limits.

- The case of $\delta = 2$ is more subtle: these *can* give logarithmic running below the KK scale.
- However it is easy to see that however we define the energy scale there can be no $\delta = 2$ power-law running if there is no $\delta > 2$ running (which as we just saw is unphysical).

Let's see an example: running in a theory with a $\delta = 2$ decompactification limit

Modular invariant renormalisation:

• SAA, Dienes, 2021

To insert an energy scale μ we insert a cut-off function $\mathcal{G}(\mu, \tau)$ which removes log divergences from any massless states and which must itself be *modular invariant*

Let's see an example: running in a theory with a $\delta = 2$ decompactification limit

Modular invariant renormalisation:

• SAA, Dienes, 2021

To insert an energy scale μ we insert a cut-off function $\mathcal{G}(\mu, \tau)$ which removes log divergences from any massless states and which must itself be *modular invariant*

Let's see an example: running in a theory with a $\delta = 2$ decompactification limit

Modular invariant renormalisation:

• SAA, Dienes, 2021

To insert an energy scale μ we insert a cut-off function $\mathcal{G}(\mu, \tau)$ which removes log divergences from any massless states and which must itself be *modular invariant*

Using such a regulator cut-off function with a 2-torus volume factor we can compare $\Delta_G(\mu)$ with the famous result of Dixon, Kaplunovsky and Louis, but recovering energy dependence and the EFT ...

Using such a regulator cut-off function with a 2-torus volume factor we can compare $\Delta_G(\mu)$ with the famous result of Dixon, Kaplunovsky and Louis, but recovering energy dependence and the EFT ...

Similarly we can get a scale dependent Λ ... $\widehat{\Lambda}(\mu)$ and thus a stringy Coleman-Weinberg potential at $\mu \lesssim 1/R$ but it has complete $\mu \to M_s^2/\mu$ symmetry

$$\widehat{\Lambda}(\mu) \to \frac{1}{24} \mathcal{M}^2 \operatorname{Str} M^2 - \operatorname{Str}_{M \lesssim \mu} \left[\frac{M^4}{64\pi^2} \left(\log c \frac{M^2}{\mu^2} + c' \mu^4 \right) \right]$$

Summary

- Using various novel techniques we learnt how an EFT emerges from a UV/IR mixed theory
- In a 4D theories this requires constraints which become more and more severe when there are decompactification limit
- Consistent theories already "know" they can decompactify
- A definition of energy scale consistent with UV/IR mixing implies scale invariance around $\mu = M_s$.
- This explains why for example we often found scale-invariant (e.g. $\mathcal{N}=4$ SUSY sectors) when doing model building but this is really to do with decompactification it applies just the same in non-SUSY theories
- Potential implications for Dynamical Dark Matter and also "dark dimension" scenarios
- Phenomenological consequences no power law running Hagedorn behaviour and thermal duality?
- Removes "technical hierarchies": i.e. all the heavy modes yield a constant piece that may be large but which is always separated from the EFT modes.