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The Standard Model (SM) of particle physics

Unsolved problems
• Dark Matter (DM)
• Dark energy
• Neutrino mass
• Baryon asymmetry
• Gravity
• ………

We need new physics 
beyond the SM (BSM)!!!

n The SM well describes the microscopic interactions, but …
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69 %
Dark energy

26 %
Dark matter

5 %
Baryon

n There are overwhelming evidences for dark matter in a 
wide range of distance scales.

Planck 2018

distanceGpcpc kpc Mpc

Solar system Galaxies Clusters of galaxies Observable Universe

Evidence of dark matter
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n Thermal production
• Weakly interacting massive particles (WIMP)
• Strongly interacting massive particles (SIMP)
• Elastically decoupling relic (ELDER)
• Forbidden dark matter 
• ………

n Non-thermal production
• The QCD axion/axion-like particles (ALP)
• Feebly interacting massive particles (FIMP)
• Hidden monopole dark matter
• Primordial black hole (PBH)
• ………

Dark matter candidates
B.W. Lee
& S. Weinberg (1977)

Y. Hochberg, etal (2014)

E. Kuflik, etal (2016)

R. T.  D’Agnolo,
& J. T. Ruderman (2015)

P. Arias, et al. (2012) 

L. J. Hall (2009)

H. Murayama, J. Shu (2009)

Ya.B. Zel’dovich and I.D. Novikov (1967)
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Chemical 
equilibrium

DM freeze-out

DM freeze-in

High T

Weakly Interacting Massive Particle (WIMP) DM

High T 05/23Low T
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WIMP Dark Matter (DM) direct searches

E. Aprile et al. (2019)
R. L. Workman [PDG] (2022) 
J. Aalbers et al. (2022)

C. A. J. O’Hare (2021)
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Current experiments of light DM detections

E. Aprile et al. (2019)
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Issues of small scale structures (< 1Mpc)
n Discrepancy between N-body simulations and observations :

n DM with a sizable self-interacting (SI) cross-section can
n resolve these astrophysical problems (issues).

core-vs-cusp problem too-big-to-fail problem

S. Tulin & H.N. Yu (2017) A.M. Brooks, 
A. Zolotov (2018) 

18/23



Bounds on DM self-interacting cross-section
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M. Kaplinghat, S. Tulin, 
& H.Bo. Yu (2017)
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Can we have light thermal 
(WIMP) DM with 

a sizable self-interaction?
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WIMP DM
n Relic abundance of WIMP DM

nMass scale and coupling strength of WIMP DM

(WIMP miracle)

(Our work)

annihilation 
cross-section

dimensionless 
coupling 
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WIMP DM
n SI cross-section via a contact-interaction with small velocity

n SI cross-section via a light mediator in the small velocity limit

SIMP, Forbidden DM,…

>>1 12/23
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DM mass v.s. coupling

Relic abundance

Self-interaction

DM is under-abundant 
in low mass regime due 
to too large annihilation
cross section
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Fast expanding universe
n Assuming the early universe is dominated by a species
l that redshifts faster than radiation :

l The total energy density :

l constraint :

scale factor

Parameters :

D'Eramo, et al (2017)
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Relentless dark matter D'Eramo, et al (2017)
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DM mass v.s. coupling

Relic abundance

Self-interaction

DM is under-abundant 
in low mass regime due 
to too large annihilation
cross section

Fast expanding
universe
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A simple light thermal self-interacting DM model
n Particle content & charge assignment under

l plays the role of fermionic dark matter
l develops VEV that breaks the Dark gauge symmetry
l 0is a mediator responding the DM self-interaction
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Then, the dark gauge interaction for the light neutrinos is
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Feynman diagrams
n DM annihilation cross-section

n SI cross-section/DM mass

(s-wave)
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Prediction of DM SI cross-section 
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CMB constraint on light DM mass
n DM annihilation continues to take place after decoupling &
n cause significant effects on cosmology and astrophysics.
n Energy released per DM annihilation

Planck 
20/23



CMB constraint on light DM mass

Figure 6. 95% C.L. upper limits on the dark matter annihilation cross-section as a function
of the dark matter mass for the process DMDM ! V V , with V decaying into eē, µµ̄, ⌧ ⌧̄ .
We assumed MDM � MV , with the V mass being just sufficiently heavier than the decays
modes.

emphasize that such likelihood functions are for individual dphs and since we are inter-
ested in repeating Fermi-LAT procedure in a more robust way using a stacked analysis
of the sample of 15 dSphs used by Fermi-LAT, we have to build a combined likelihood
function following the receipt provided in [54]. Moreover, we build a likelihood function
to marginalize the statistical uncertainties on the J-factor with the J-factor likelihood
function defined as,

LJ(Ji|Jobs,i, �i) =
1

ln(10)Jobs,i
p
2⇡�i

⇥ exp

⇢
�(log10(Ji)� log10(Jobs,i))

2

2�2
i

�
,

where Jobs,i is the measured J-factor with statistical error �i of a dSph i, while Ji is
the correct J-factor value.
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The Feynman diagrams for the annihilation processes are depicted below :
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The resultant annihilation cross section is
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n Particle content & charge assignment under

l D :

A viable light thermal self-interacting DM model
Light Self-Interacting Dark Matter (LSIDM)

The LSIDM model is based on the gauge group SU(2)⌦ U(1)Y ⌦ U(1)D . The quantum numbers of the SM and the new particles
under this gauge symmetry are given by

L E H N ⇠
R

�
L

� S Z
0

SU(2) 2 1 2 1 1 1 2 1 1

U(1)Y �1/2 �1 +1/2 0 0 0 +1/2 0 0

U(1)D 0 0 0 +1/2 +1 +1 +1 +1 0

spin 1/2 1/2 0 1/2 1/2 1/2 0 0 1

where L is the SM left-handed lepton doublet, E is the SM right-handed lepton singlet, H is the SM Higgs doublet, N is a vector like
fermion,  

R
is a right-handed singlet fermion,  

L
is a left-handed singlet fermion, � is a dark scalar doublet, S is a dark singlet complex

scalar, and Z
0 is a dark gauge boson.

The Lagrangian of the LSIDM model after the electroweak symmetry breaking and before the dark symmetry breaking is given by
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The scalar masses after the electroweak symmetry breaking and before the dark symmetry breaking are then
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1

The Lagrangian describing the annihilation process NN̄ ! ��
⇤
is given by
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The Feynman diagram for the annihilation process NN̄ ! ��
⇤
is depicted below :
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The resultant annihilation cross section is
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The e↵ective annihilation cross section assuming mN � mZ0 is then
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Light mediator 
mainly decays 
into neutrinos 
at CMB epoch
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n Light thermal self-interacting DM can be used to test the
non-standard cosmological evolution of the universe.

Numerical results

23/23
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n Dark matter as a particle must be
• Massive : gravitationally interact with ordinary matter
• Cold : non-relativistic at the time of structures formation
• Electric neutral : Almost no electromagnetic interaction
• Stable or with lifetime longer than the age of Universe
• Non-baryonic matter
• Making up about a quarter of the energy density of the   
• present universe

What we know about dark matter
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What we don’t know about dark matter
n Unknown particle nature of dark matter
• Mass : (a very wide range)
• Spin : Scalar or Vector Boson? Dirac or Majorana Fermion?
• Number of species : There may exist more than one kind of 
• dark matter in the universe. （Occam's razor?)
• Interactions : Dark matter may have interactions with ordinary
• matter or itself (SIDM) other than the gravitational interaction.

n Unknown origin of dark matter (production mechanism)
• Thermal : Relic produced from the SM thermal plasma
• Non-thermal : e.g. coherent oscillation, topological defect,……

04/26



n Assumptions for WIMP DM (2 to n annihilations)
• [ ⟹ asymmetric DM ]

•D                    [ ⟹ forbidden DM ]

• d               [ ⟹ WIMPs during reheating ]

• Standard cosmology [ ⟹ relentless DM ]

• Collisionless [ ⟹ Self-interacting dark matter ]
• T invariance : 

Weakly Interacting Massive Particle (WIMP) DM

D. E. Kaplan, M. A. Luty, 
& K. M. Zurek (2009)

R. T.  D’Agnolo,
& J. T. Ruderman (2015)

Nicolás Bernal
& Yong Xu (2022)

F. D'Eramo, etal (2017)

(?)
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where in the last step we have used the value of ✏ given in Eq. (2.6) and taken the me ⌧ mZ0 ⌧ mµ

limit. Note that this result is independent of the gauge coupling, which cancels in the absence of
additional contributions to ✏.

3 Contributions to Ne↵

In the early universe, the Z
0 number density, nZ0 , is governed by the following Boltzmann equation

ṅZ0 + 3HnZ0 = h�Z0i
⇣
n
(eq)
Z0 � nZ0

⌘
, (3.1)

where H ⌘ ȧ/a is the expansion rate of the universe and n
(eq)
Z0 is the equilibrium value of the Z

0

number density. The quantity �Z0 is the rest frame width, for which the thermally averaged value is
given by the following

h�Z0i ⌘ �Z0
K1(x)

K2(x)
, (3.2)

where K1,2 are Bessel functions of the first and second kind and x ⌘ mZ0/T . Although many processes
can a↵ect nZ0 , in the weakly coupled regime (gµ�⌧ ⌧ 1) it su�ces to consider only decays and inverse
decays in the collision term. For a derivation and other details, see Appendix A.

We are interested in the e↵ect of Z
0 decays on the total radiation density just prior to matter-

radiation equality at T� ' 0.8 eV, which can be written in terms of Ne↵ , the e↵ective number of
neutrino species:

⇢R =

"
1 +

7

8

✓
4

11

◆4/3

Ne↵

#
⇢� , (3.3)

where ⇢� is the photon energy density, the factor of 7/8 accounts for the fact that neutrinos are
fermions, and the (4/11)1/3 = T⌫/T� in the SM. Note that the SM prediction for N

SM
e↵ = 3.045 [36, 37]

is slightly larger than 3 because of the entropy transferred to the neutrinos through e
+
e
� annihilations,

the non-instantaneous nature of neutrino decoupling, finite temperature corrections, and neutrino
oscillations [36–39].

The evolution of the Z
0 population in the early universe depends on the values of its mass and

coupling. Broadly speaking, we will consider two qualitatively distinct regions of parameter space:

• Early Universe Equilibrium: If gµ�⌧ & 4 ⇥ 10�9, the Z
0 population thermalizes with the

SM bath at early times and decays into neutrinos when T ⇠ mZ0/3. If these decays occur
predominantly after the neutrinos and photons decouple, they contribute to the neutrino energy
density and thereby increase the value of Ne↵ . Furthermore, in the presence of non-negligible
kinetic mixing with the photon, Z

0 interactions with charged particles can delay the neutrino-
photon decoupling, quantitatively a↵ecting Ne↵ .

• Freeze In (Late Equilibration): If gµ�⌧ . 4⇥ 10�9, the Z
0 population will not have initially

been in equilibrium with the SM in the very early universe, but is instead produced through the
freeze-in mechanism. For a wide range of masses and couplings, the Z

0 production rate is slower
than Hubble expansion at very early times, but then becomes comparable as the Hubble rate
decreases. Across this broad region of parameter space, the Z

0 population eventually thermalizes
with neutrinos, but only after the latter decouple from photons, inducing a contribution of
�Ne↵ ' 0.21 through Z

0 ! ⌫̄⌫ decays, provided that mZ0 & 1 eV so that the Z
0 decays prior to

CMB formation.

Each of these parameter space regions can be easily identified in Fig. 2.
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