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Why to study (Euclidean) Wormholes

Wormbholes are interesting (exotic) solutions of GR + matter

e Proposed physical effects due to wormholes
o They lead to a non-trivial topology of space(time)
o Connect the black hole interior with exterior? - Implications on the
information paradox?
o Related to Cosmologies (Bang-Crunch universes) upon analytic continuation
e Different types of wormholes
o Lorentzian vs Euclidean
o Macroscopic multi-boundary geometries (saddles) vs.
Microscopic "gas of wormholes"
o Different characteristic scales
Lp < Lw ~ Laas vs. Lp < Lw < Laas
e Our main focus will be macroscopic (Euclidean) wormholes in the context
of holography (AdS/CFT)
e Plan of the talk
Introduction
Bulk Perspective
Dual QFT models
N = 4 Wilson loops and type IIB "bubling" wormholes
Summary and Future directions
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Lorentzian wormholes or "ER = EPR"

e Einstein - Rosen Bridge: Connects the two sides of the eternal black hole

Past
Interior Israel Maldacena

Susskind

* Wormhole = Einstein Podolski Rosen pair of two black holes in a
particular entangled state of two non-interacting QFT’s:

1) = Ze_ﬂEn/2|En>€PT X |En)R
n

* Large amounts of entanglement can give rise
to a geometric connection!

e We cannot communicate a message between the two sides

e Traversable Wormholes: Lorentzian signature solutions for which the null
energy condition is violated = Signals can pass through the wormhole

e Local interactions that couple the two boundary QFTs [ d?2Op(2)Og(x)
[Gao-Jafferis-Wall ...]
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Euclidean Wormholes (saddles)

e There is no Lorentzian time, only Euclidean space

e To have such solutions, one needs locally negative
Euclidean Energy to support the throat from collapsing

e Such energy can be provided by axionic fields or
"magnetic" fluxes

e Several solutions in different dimensions/setups (some can be embedded
in the standard model + gravity)
- a subset of those is perturbatively stable [Marolf-Santos ...]

e There is a further reason why Euclidean wormholes are interesting: They
are related to cosmology[see P.Betzios talk]
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Holographic comments

e No time = No entaglement in the usual sense

Naively: different QFTs on OM = U;0M; = Cross-correlations factorise

Common Bulk dictates otherwise = Some form of interaction?

Global symmetries for the boundary theories? <+ A common Bulk "Gauss
Law constraint"
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The factorisation problem' Z(J1, J2) # Z1(J1) Za(Js)

[Maldacena - Maoz (2004) ...

V- D000

Possible resolutions in the literature :
e The QGR path integral corresponds to an average:
(Z(J1)Z(J2)) = Several options [...]
e Explicit averaging over ensembles of CFT's - (Unitarity crisis)

e In canonical AdS/CFT there is a single theory with fixed parameters

e Approximate statistical averaging ("ETH" - "Quantum Chaos")
= "Statistical wormholes" from complicated/almost random
Hamiltonians [...]

o Consistency with N = 4 planar integrability?

= Observables/states above the BH threshold [Schlenker - Witten ..

The "statistical wormholes" need not be saddles of (SU)GRA eoms
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The factorisation problem
[Betzios - Kiritsis - OP (19 - 21)], see also related work by [Van Raamsdonk et. al.

(20-22)]
(other?)

A straightforward but subtle resolution for wormhole saddles:

e Interactions between holographic QFT's = UV soft - IR strong

e Could the Schwinger functional acquire the form (S some “sector" )

Z(J17 J2) _ Z ew(S)ZéQFTl)(Jl)ZéQFT2)(J2)
S

for a unitary/reflection positive system?

e Cross correlators = averages of lower point correlators in individual
subsystems
= No 1 — 2 cross correlator singularities
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Bulk perspective
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Types of solutions

Betzios-Kiritsis-0P ’19

We studied Euclidean solutions with two asymptotic AdS boundaries
(bottom-up)

e We analysed examples in different
dimensions

e And different matter content

e We found universal features for various observables irrespective of
dimensions
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Local observables: Two boundary correlators
[Betzios - Kiritsis - OP (19)]

e To unravel the physics of Euclidean
wormhole saddles in holography we should
further study observables/correlation
functions

e Correlators for local boundary (scalar)
operators Oy (), Oz(x)
= Study the (2nd order) bulk fluctuation
equation for the dual bulk (scalar) field

(2, )

e We have two boundaries, where we can insert operators or sources

e The extra freedom provides for two types of correlation functions, either
on a single boundary such as (01 0;) or (O205), or cross-correlators
across the two boundaries such as (01 05)
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Scalar Correlators: Universal properties

G11 G12
30r

k k
4 2 2 :

e The (O10;) and (O305) have a similar behaviour in the UV as when
there is only one boundary (power law divergence)

2

e |n the IR they saturate to a constant positive value

e The cross correlator (01 02) goes to zero in the UV and has a finite
maximum in the IR

e In position space (EAdS;) they behave as ~ 1/sinh?*+(7) and
~1/ cosh?2+ (1) respectively = No short distance singularity for the
cross-correlator

e The qualitative behavior of the correlators is the same for all the types of
solutions = Universality
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Non-local observables: Wilson Loops
[Betzios - Kiritsis - OP (19), Refined in: Betzios - 0P (23)]

* Wilson loop observables W (C) = Tr (Pexp i §,, Audat) refine the
analysis of [Schlenker - Witten (2022)] that studied the compressibility
properties of various boundary cycles C' in the wormhole bulk

e In holography: Find the string worldsheet ending on the corresponding
loop C' on a boundary (if it exists) and minimize its area

e Simplest observable: expectation Universal features:

value of a single Wilson |00p <VV<C)> ° Large Ioops on the boundary
penetrate further in the bulk and we
can probe the IR properties of the
boundary dual

e Typically we find an Area law
behaviour in the IR
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Non-local observables: Wilson Loops
[Betzios - Kiritsis - OP (19), Refined in: Betzios - 0P (23)]

* Wilson loop observables W (C) = Tr (Pexp i §,, Audat) refine the
analysis of [Schlenker - Witten (2022)] that studied the compressibility
properties of various boundary cycles C' in the wormhole bulk

e In holography: Find the string worldsheet ending on the corresponding
loop C' on a boundary (if it exists) and minimize its area

e Simplest observable: expectation Universal features:
value of a single Wilson |00p <VV<C)> ° Large Ioops on the boundary
penetrate further in the bulk and we
can probe the IR properties of the
boundary dual

e Typically we find an Area law
behaviour in the IR

e If the EW geometry contains a non-contractible (thermal) cycle Cjp : S}g,
then there is no bulk surface ending on it, so that (Wp(Cjs)) =0

e Again reminiscent of some kind of confining behaviour (center symmetry)
In contrast with the BH cigar for which (Wp(Cjp)) # 0 (deconfinement)
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Wilson Loop correlators (universal results)

e Study loop cross-correlators
(W(C1)W(C3)), the two loops residing on
different boundaries

e As we shrink the boundary loops, we find
that the leading configuration of lowest
action is the one for two disconnected loops

e In the regime of large Wilson loops, the
leading contribution originates from a single
surface connecting the two loops having a
cylinder topology S' x R

e Large loops = Strong IR cross-coupling
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Wilson Loop correlators (universal results)

e Study loop cross-correlators
(W(C1)W(C3)), the two loops residing on
different boundaries

e As we shrink the boundary loops, we find
that the leading configuration of lowest
action is the one for two disconnected loops

e In the regime of large Wilson loops, the
leading contribution originates from a single
surface connecting the two loops having a
cylinder topology S' x R

e Large loops = Strong IR cross-coupling
¢ In the presence of a a non-contractible (thermal) cycle Cj : S}, we find

only a connected cylindrical bulk surface ((Wp(C/gl))Wp(Cg))) #0)

e Consistent with unbroken diagonal center symmetry ex:
Z](\,l) X Z](\?) — Zj'f,wg' "cross-confining behaviour" - diagonal singlets
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Dual QFT models
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Tripartite BQFT construction
[van Raamsdonk (20) - (22)], [Betzios - Kiritsis - 0P (21)]
e Two d-dim (holographic) BQFT's on X coupled through a d + 1-dim
intermediate ("messenger") theory on I x ¥

BQFT, e Consider a system for which

Ci+1 K ¢q
e We would like the system to flow to a
gapped/confining theory in the IR

QFTy,4
e The geometric idea: The dual bulk gravity
can localise on d + 1-dim EOW branes that
bend and connect in the IR [van Raamsdonk ]
BQFT,

e We focus in the case where the messenger theory is (quasi) topological
(TQFT,+1) = No contamination from d + 2 bulk perturbative modes,
natural gap in the IR ... [Betzios - Kiritsis - OP]

e Integrate out T'QQFTy,1 = The Schwinger functional does become
Zsystem _ Zew(S)ZéBQFTI)(Jl)ZéBQFTz)(JQ)
s
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Solvable microscopic tripartite model (2d — 1d)
[Betzios - Kiritsis - OP (21), Betzios - 0P (23)]

e Consider a generalised YM in 2d (7, z) with BF action

1 0 1
Seymr = — /TrBF + = /TrBdu— - /Tr<I>(B)d,u
Iym Js Iym Js 29y m Jx

where F=dA+AANA

e Couple it with two 1d U(N) gauged matrix quantum mechanics theories
M; 2(7) at the endpoints of an interval I (z = £L)

SMQMy ., = /dTTr (%(DTM1,2)2 — V(M1,2)) , DMy o = 0; My o + i[AY%, M) o]

A (1,2 = +L) = AL2(7) is the value of the 2d gauge field on the two
boundaries

e Solvable system: 2d YM - ( ®(B) = B? ) coupled to two Gaussian MQM
V(M) = 5M7,)
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"Entangling" the representations

* Place the system on I x S* (cylinder) of length 2L and circumference 3

The 2d YM amplitude on the cylinder is
i (2) | :p~(1)
Zy s (Ur, Us) = 37 Xn(Un)xr(Uf et Cu’ 0%
R

and depends on the two asymptotic holonomies Uy » = exp ¢ dT AL?
(zero modes of the gauge field)

R a U(N) representation, C( ) its Casimirs and Xr(U) are U(N)
characters/wavefunctions at the ends of the cylinder

Integrate out M; o to obtain the (twisted) MQM partition functions
MQM(U1 2;8) = [ DM <U1,2M1,2U1T72 | M1 2) H.0sc.

Couple the 2d YM amplitude Zy p; (U1, Us) to the two MQM partition
functions Z%QM(ULQ;ﬂ) and integrate over the zero modes U o
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"Entangling" the representations

e The complete partition function on I x S! is

9 (2) | pr(1)
Doystem = Y e H TR Cr H0CR: 7 QM (8) 73Nz ()

R

ZMAM () — Try e HR " = / DUxr(U)ZMeM(U; B)

with 3 the S! size and Hp the Hilbert space of MQM in a fixed
representation R [Kazakov, Klebanov ...]

e The two MQM representations R are correlated/"entangled"

> r = is a form of "averaging", consistent with unitarity (reflection
positivity) for a single (tripartite) quantum mechanical system
=- What we previously called "the sectors S"

e No approximation (such as ETH or coarse graining) or averaging over
theories involved!

e The allowed representations in the sum are center symmetric, so indeed
g£1> x g§2) — ggd”-"') [Betzios - OP (23)]
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N = 4 Wilson loops and
type IIB "bubbling" wormholes
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Wilson loops in NV = 4 SYM

e The 2d/1d model is reminiscent of SUSY localization computations of
Iine/defect operators in N =4 SYM [Wang, Komatsu, Dedushenko,...]

e |dea: correlate representations of (1/2-BPS) Wilson loops Wx in higher
dimensional examples that have known semiclassical holographic duals.
Here: Consider two (non-interacting) copies of ' =4 SYM and a
correlated observable

> e (Wg)y (Wr)2 Wg = TrrPexp [ifds(mug’c“ + i1 B|i])
R

e A single 1/2-BPS Wilson loop in the representation R is computed via
localization resulting in a Hermitean matrix integral [Pestun ...]

Wa) = (Trn(eas = [ DMeF My (cM)

e We would like to understand the limit where the operator is "very heavy"
and backreacts strongly in the dual geometry

o We need to consider representations R : {R1,..Ry} with O(N?) boxes
and the highest weights R; ~ O(N)
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The type 11B backreacted geometries

e The geometry dual to a backreacted loop in rep R, has an
50(2, 1) X SO(B) X SO(5> isometry [D’Hoker-Estes- Gutperle, ...]

ds? = f12d5,24d52 + fidske + fidss. + 4p*dzdz

where z,Z parametrise a Riemann surface ¥ and f12.4(2,%), p(2,%).
The Wilson loop is on the S' boundary of the AdS, disk

e The solution also contains a non-trivial dilaton and
3-cycles/5-cycles/7-cycles with RR/RR/NSNS fluxes supporting them
(D5/D3/F1)

e Everything is determined by two harmonic functions hq 2(2,%). ha =0
determines the boundary of ¥ and h; contains the data of the "bubbling'
geometry (cuts < fluxes + singularity <+ asymptotic AdSs x S° region)

D5- and F1-charges
D3- and F1l-charges

s G ! a6 o !
G c Y oo BY occ G, G

*

€s

e I e 7f e I e ’f e
S0 [s%0] [s%>0]

S0 ) [s%0] [s>0] [s%0]




Bubbling Wormholes = multiple singularities on 0%

e The matrix model resolvent 2w(z) = V/(2) — y(2) = iha(2) — ih1(2)
completely determines the dual SUGRA geometry

® N2 need to have common singularities on 9%. Near such singularities
the metric asymptotes to AdSs x S°

* We found solutions with more than one singularities/asymptotic regions,
still preserving the regularity conditions of [D’Hoker-Estes- Gutperle, ...]

e The simplest such 3 corresponds to a disk with two cuts and two
singularities [Betzios, Ji Hoon Lee, OP]

€min€mazx
(z o e (e
z
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Matrix model dual of ¥ wormhole with two S* boundaries

e The dual matrix model spectral curve needs two cuts and two singularities

e The correct field theoretic observable is an "analogue of the Dirac-6" for
two 1/2-BPS loop operators on two copies of N' = 4 = We "glue" the
two copies of A/ = 4 on the great S' where the loops are placed

(det(IT@I—eM @ €M2)71>1,2 = (xr(e™))1 (xr(e?))s
R

e This can be analysed as a coupled two matrix model = The planar
resolvent describes precisely our wormhole solution!

p(w)

W) =2 (z - “—b> - L VE R @)

z

a=iV3-1)VXx, b=i(3+1)VA A
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Summary and Future
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Summary and Future Directions

Summary

e We proposed a general class of microscopic models for Euclidean
Wormbholes, in terms of BQFTs coupled via a higher dimensional TQFT

e These models are reflection positive and do not require any ad hoc
averaging (over couplings/ensembles of CFTs or otherwise)
- no deviation from the usual holographic prescription and rules
There is though a resulting sum over representations of the gauge group
after we integrate out the "messenger" TQFT

e This makes the resulting field theoretic correlators to be compatible with
dual computations on wormhole saddles

e We found that similar models can also arise by considering heavy
correlated observables in otherwise decoupled QFTs
We analysed the case of correlated Wilson loops between copies of
N =4 SYM. They give rise to "bubbling" wormhole geometries in I1B

e In the 1/2-BPS case we have exact control on both sides of the duality
but the boundaries touch on one dimensional S* C S*'s (similar to Janus)
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A Hilbert space interpretation of our constructions
e For Lorentzian wormholes (eternal BH): H = Hepry @ Hepre and

1 _B
|‘II>TFD = E zn:e 2En|En>1 ® ‘En>2

e This correlates the energies of the two subsystems

e Our proposed models for Euclidean wormholes: Correlate ("entangle")
U(N) representations and not energies as in the TFD

o Realisation |: Presence of gauge constraints (messenger TQFT) - the
Hilbert space is reduced into H = >, H}, ® H7. One could think this in
terms of states

RD—Ze )1 ® |R)2

o Realisation Il: Consider insertions of "heavy" operators that correlate the
copies with a similar representation theoretic "entanglement" (ex: Wilson
loops Wg in N = 4/I1B)

e Future Realisation? An effective constraint on the Hilbert space could
arise dynamically in the IR
("cross-confinement" /diagonal IR singlets: U(N) x U(N) — Ugiaqg.(N))
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Future Directions

e The MQM non-singlet sectors are also relevant for black hole physics and
involve similar sums over representations (¢ = 1 MQM). Connections?
[Kazakov et al., Betzios - OP]

e Other top down constructions embeddable in critical string theory

o Less (super)symmetric but still controllable examples of correlated loops
or tripartite systems

e Understand better the Lorentzian continuations of our field theoretic
setups and their holographic duals (Bang/Crunch Cosmologies) - a A <0
alternative to the dS/CFT correspondence? see talk by P.Betzios, [P.
Betzios, OP]

e Study (target space) Euclidean wormhole backgrounds in string theory
from the worldsheet perspective (WZW cosets?)
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Thank you!
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Intuitive understanding of the 2MM: Two component gas
e The 2MM saddle point equations describe two types of particles

ANy 1) &
1 1
— Wi — + =0,
M ;sinh( (1) ) ; 51) §”
ANy (3 &
2 (2)
DY H _Z . (1) +Z _ =0
2 i=1 sinh(u; "+ p ik H ,Uj

with an 1 — 1 and 2 — 2 repulsion and 1 — 2 attraction to "mirror" points

e There is an overall Gaussian attractive potential = This leads to a paired
1 —2 condensate at the origin (the additional pole of the planar resolvent)

o After lots of pairs condense, they
/create a repulsive effective potential
/' for the rest of the eigenvalues

90 . o
“__ 00000 83 0ocoo / © The rest of the eigenvalues distribute
' on two opposite sides of the origin.
At large-N they form two cuts,
~ giving rise to the wormhole resolvent
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Cross-Correlators

e The n-point cross-correlator takes the general form

- ~ LM o)

<Oi1 (Til) 01'2 (Tiz) > = Z<Oi1 (Til) >{{<012 (Tiz) >§ et O F0IR]
R

where i1 refers to the first and i to the second MQM subsystem

e This correlator generically only depends separately on the differences
Ti, — T4, and 73, — 75, and not on time differences that mix the 1,2
sub-indices, or O;, with O;, operators

e No short distance singularities in the cross-correlators!

e The absence of short distance singularities in the cross correlators is a
robust-universal feature of dual wormhole backgrounds
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4D Einstein - Yang - Mills Solutions

[Hosoya-Ogura’89]
S = /d%[ Rt A+ (F2)?
16 G 492, M
e The metric is ds? = dr’ 4+ (Bcosh(2r) — 1) dQ3, r € [~o0,

o with B= /L~ 3H? 13 = 4G g}y, H? = 87TGA/3

o The minimum size of the throat is 72, = B — 1

e The throat is supported by a background gauge fleld A®%: the Meron
configuration ("half-instanton")

e Using Euler angles

1 1
dQj = i (dt% + dt3 + dt3 +2cos ty dtgdtg) = Wi

0<ti<m, 0<t<2m, —27<ti3<2r

1
A% =1Lw* =1g71dg, with  F% = - 3 € A we

w® is the Maurer-Cartan form of SU(2)



Dual geometry?

e The singlet sector of one gauged MQM (inverted oscillator/in the double
scaling limit) is dual to 2d linear dilaton background of the
¢ = 1-Liouville string
= A single asymptotic (weakly coupled) region of space

e Non trivial reps with few boxes in their Young diagrams are related to
long strings - Large reps ("long string condensates") deform the
background geometry, possibly creating black holes

[Gaiotto, Maldacena, Kazakov-Kostov-Kutasov, Betzios-0P...]

e We studied the saddle point equations using a large representation limit
(continuous Tableaux), in order to determine the corresponding geometric
saddle — technically difficult, hard to reconstruct the dual metric

e However, we were able to prove the existence of different saddles some of
which seem to correspond to disconnected and others to connected
geometries (factorised vs. non-factorised contributions)
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Further properties of wormhole saddle

e One can compare the free energy of the wormhole saddle with two
disconnected AdSs x S° spaces

1
fw — 2.7:,4,15 = —ilogx\

e The wormhole has lower free energy. (Indicative for its stability)

e One can also compute the expectation of probe Wilson loops. For
example Wy = TreM

(Wy)ads = /:’0 dzpads(z)e” = \%Il(ﬁ)

4 [Ydz
W — 2 ,2)\(,2 _ ,2)p7
(W) worm ™) =z \/(b 22)(2% — a?)e

It grows with a slower rate with A wtr to the AdS example

e Interesting to extend this to observables with coordinate dependence,
such as correlators of local operators and match with the gravity side
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Geometric properties Il: "conical excess" on X

e A second caveat: The bulk geometry exhibits an integer (47) conical
excess at the center of X

d¥? = Cr?(dr? + r?df?) = %(du2 +4u?do?), 6 €[0,27]

e The conical excess provides the negative energy to support the wormhole

e It is reminiscent of orientifolds (O(7)), but the branch locus is
AdSy x 8% x S* (also a large number of them for backreaction)

e Most deformations of hj 5(z) (within our half-BPS ansatze) turn the
conical excess into a naked singularity

e We do not know a top down "resolution" of this conical excess in string
theory - but perhaps it is only a "pathology" of the very
(super)symmetric bulk ansatz we use

e The matrix model dual is perfectly well defined
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Connecting the MM resolvent with the harmonic functions

e One can show that the matrix model resolvent is related to the two
harmonic functions h1 5 via (y(z) : "spectral - curve")

2(z) = V() —9(),  pla) = 5-By(s), zeC
hi(z,2) = A+ A, ho(2,2) =B+ B
V)= 2= B), i) = AG)

e This means that it completely determines the properties of the dual
SUGRA geometry

® N2 need to have common singularities on 9%. Near such singularities
the metric asymptotes to AdSs x S°. ex:

21 21
hlzf\/Zz*)\+C.C., hQ:XquLc.c.

e For a single Wilson loop in any rep, there is only a single such singularity.
The topology of the boundary is an S* and the half-BPS Wilson loop
wraps a great S' c §4
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Wormholes = multiple singularities on 0%

* We found solutions with more than one singularities/asymptotic regions,
still preserving the regularity conditions of [D’Hoker-Estes- Gutperle, ...]

e The simplest such ¥ corresponds to a disk with two cuts/singularities =
a square with two singularities [Betzios, Ji Hoon Lee, OP]

9 2 5 Emin€max
hl(z) = ZE\/(’Z2 - e?nin)(zz - e?nam) +cc., h?(z) =1y (Z - T) +c

e We also found more complicated solutions that can be mapped to regular
polygons with 2n edges and n singularities, as well as solutions when ¥ is
an annulus
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Geometric properties |: AdS, factor and "Janus"

e The two boundary wormhole geometry is a form of a double cover of
AdSs x S® (dilaton is still constant)

e There is a caveat: The geometry has an F'AdS5 factor with disk
topology and its boundary S is shared by all the AdS5 asymptotic
boundaries (X singularities) that have the topology of S*

e This means that the would-be distinct S* boundaries are identified on a
common S!, in analogy with other Janus-type of solutions

[D’Hoker, Estes, Gutperle, Bachas, Gomis, Assel ...]
I II

e Still it is possible to connect separate points on the two S*'s by
traversing the bulk wormhole, without ever crossing the common S*
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An aside: Two boundary AdS; wormhole?
[Betzios - OP (23)]
e What about using global E'AdS, that has two boundaries (cylinder)?

'ELE

0 —_— n

e |n this case away from the X singularities the geometry is the two
boundary EAdSs x S* x S% x Ry
(similar to the [Maldacena Milekhin Popov] wormhole geometries)

e At the ¥ singularities, the former UV asymptotic S*'s are now replaced
by 3 x St

e The two asymptotic S''s of the cylinder EAdS; comprise the S''s on
the north and south poles of the S3.

e Consistent with the fact that one needs to have a pair of Polyakov loops
(around the S*), sitting on the north and south poles of S® (Gauss-law)
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Matrix model dual of ¥ wormhole with two S* boundaries

e The dual matrix model spectral curve needs two cuts and two singularities

e Use an "analogue of the Dirac-d" for two 1/2-BPS loop operators on two
copies of N' =4 = We "glue" the two copies of A" = 4 Wilson loops

(det (T@ 1 —eM @) ™), = > (xr(e™)1 (xr(e™?))2
R

If the matrices were unitary this would have been a Weyl-invariant delta
function

e This can be analysed as a coupled two matrix model or as a model in the
space of highest weights R; of R

e For the multi-boundary wormholes use an A, necklace matrix chain and
connect the nodes with determinant operators
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The resolvent at large-N and strong coupling

e At strong 't Hooft coupling the saddle point equations simplify in terms
of only rational functions (similar to two coupled O(2) models on a
random Iattice) [Kostov, Eynard ... ]

e |n this limit we can obtain an exact solution for the resolvent

p(w)

o) =3 (- %) - VP )
a=3(V3-1)VX, b=3(3+1)VA A | A

e The normalisability of the density of eigenvalues ( | .. = 1) fixes
the end-points a, b in terms of the 't Hooft coupllng g\

e The resulting harmonic functions h; 5 correspond precisely to the ones we
found in the gravitational description
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