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1. Introduction and motivations

o Discretization of space-time as regularization in UV divergent field theories.
e Discretization as intrinsic quantum feature.
o Continuum limit may be ill defined, or hard to obtain.

o Difficulties in recovering classical theory, emergent from quantum discrete
theory.
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Try to define quantities in the discrete theory that mimic typical quantities of
the continuum theory.

In the case of discrete gravity: all quantities pertaining to differential calculus,
l.e. tangent vectors, vielbein, connection, curvature, torsion etc

Thus: differential calculus on discrete structures.
Differential calculi on Hopf algebras constructed by Woronowicz (1989).

Discrete structures associated to finite groups (finite group “manifolds”)
have a canonical differential calculus, due to their Hopf algebra structure.

Can define actions formally identical to continuous actions.

Dimakis, Mueller-Hoissen, Striker (1993); Bresser,Mueller-Hoissen, Dimakis, Sitarz (1996);
Bonechi, Giachetti, Maciocco, Sorace, Tarlini (1996); Majid, Raineri (2000); LC (2001);
Pagani, LC (2002); Aschieri, Isaev, LC (2003); Chamseddine, Mukhanov (2021);
Chamseddine, Khaldieh (2024)



2. Differential calculus on finite groups

G = finite group of order n, generic element g and unit e
Fun(G) = set of complex functions on G
An element fof Fun(G) is specified by its values fy = f(g).

 f can be written as:

f=2 fua? fyeC

gel
where the functions x“ are defined by

79(g") = 0g.4



* Thus Fun(G) is a n-dim vector space, and the functions
xY provide a basis (coordinate functions)

* Fun(@) is also a commutative algebra, with the usual
pointwise sum and product, and unit / defined by

I(g)=1 for all g

* In particular
9,9 _ g g _
vz =04 g7, ZZE =y
ged

* So far the G group manifold is represented by a
collection of points:

@ Js



* The left and right action of G on itself :
Lyg" =99 = Ry g
induce left and right action of G on Fun(G) :

Lof(g") = fl99") =Ry f(g)

 For ex.

1 —1
Lg,x9? = g9 92 Rg,x?? = x9N
1

* Moreover
ﬁgl £92 — ‘nggl R91R92 — RQlQQ ‘Cglez — 7392‘691



* The G group structure induces a Hopf algebra structure
on Fun(G), === construction of differential calcul

* Differential calculi on Hopf algebras: general method in
Woronowicz 1989

* Defined by a linear map d: Fun(G) — 1 satisfying the
Leibniz rule d(ab) = (da)b + a(db)

» The space of 1-forms 1" is a bimodule on Fun(G),
=== its elements can be multiplied on the left and
on the right by elements of Fun(G)

 From da =d(la) = (dl)a+ I(da) = dI =0

» From 0=dl =d) 9= da? only n-1independent dz’

geG geG



» Left and right action of G on the space of 1-forms:
Ly(adb) = (Lya)d(Lyb)  Rgladb) = (Rgya)d(R4b)
— bicovariant calculus

o | eft-invariant 1-forms: | 89 = Z 2P dx™9
heG

then : £.09 = 09, R.09 = gF9F

 From Z dx? =0 we have also Z 09 =0

geld geld
only n-7 independent ¢
— cantakethe 609, ¢g+#e asbasisof I



» Left and right action of G on the space of 1-forms:
Ly(adb) = (Lga)d(Lyb)  Rgladb) = (Rga)d(R4b)
— bicovariant calculus

o | eft-invariant 1-forms: | 89 = Z 2P dx™9
heG

_ g __ ng g __ nkgk 1| Bicovariant diff. calcull
then : Eke =0 9 Rk‘g =0 in 1-1 correspondence
with unions of conjugation
classes of G

* From Z dx? =0 we have also Z 09 =0

gel gedd
only n-7 independent ¢
— can take the 09, g # e asbasisof I



- commutations: g9 — ph9 g9

g7 e
imply: 07f = (Rgf)0?

* Thus functions commute between themselves, but
do not commute with the basis of 1-forms 6

n n _1 "
 From inversion formula dz" = thg 99 one finds

the differential of a function: g
df = Z frdz" = Z(Rgf — f)07 = Z(tgf)‘gg
h gze g7e

» the finite difference operators ¢, =R, — 1 are the
analogues of (left-invariant) tangent vectors



* an exterior product is defined as

BINGT =09 209 — (R,09)®609 | (9.9 #e)

compatible with left and right action of G, i.e. if we define
LOP®607)=L0xL07 and R(0'®607) = RO @ RY’
we find £(0° A7) = LO" A LO7 and R(6* A 67) = RO* ARY?

» can be generalized to k-forms
0" N NG =A@ @00

» exterior derivative d, satistying (graded) Leibniz rule:

d(pNp')=dpNp + (=1)*pAdp
with p k-form




* an exterior product is defined as

BINGT =09 209 — (R,09)®609 | (9.9 #e)

compatible with left and right action of G, i.e. if we define
LOP®607)=L0xL07 and R(0'®607) = RO @ RY’
we find £(0° A7) = LO" A LO7 and R(6* A 67) = RO* ARY?

B9 A B9 = 0
B9 NOY = —09 NG9 if [g,9'] =0

>

» can be generalized to k-forms
0" N NG =A@ @00

» exterior derivative d, satistying (graded) Leibniz rule:

d(pNp')=dpNp + (=1)*pAdp
with p k-form




* in general for a diff. calculus with m independent &

there is an integer p > m such that the linear space of
left-invariant p-forms is 1-dimensional, and
(p+1)-forms vanish identically.

* then every product of p 1-forms is proportional to one
of these products, that can be chosen as volume form

01 A .. NO® = gt gl

* integration of a p-form p :

/p B /pilmipeil ARRYA Qip — /pi1...ip5ilmip vol = Zpil---ip (g)g’il...’ip
T G

e Fun(G)



* picture of a finite group and its diff. calculus:

a collection of points corresponding to the group elements
with links associated to tangent vectors t, =R, — 1, Or
equivalently to the right actions Ry, , h belonging to union
of conjugacy classes characterizing the diff. calculus

. link is oriented from 29 to 27 if 29 = Rz
i.e.if ¢ =gh™". (NBunorientedif h=h"1)

« Two examples follow: Zn and Ss

Bresser, Mueller-Hoissen, Dimakis, Sitarz (1996)



3. Differential calculus on Z,

 Elements: {e,u,u”,..u" '}

2 n—1

» Basis of dual functions: {z¢,z", 2" ,...,z" }
Left and right actions coincide, since the group is abelian:

.7 Jg—1
L x" =x" =R, x"

J

» Conjugation classes: {e}. {u}, {v*},..{u""'}
here we use the diff. calculus corresponding to {u}
all the left-invariant 1-forms 9% are set to zero except

n—1
j i+l
— E " dx"
J=0

« Commutations: 0“f = (R.[f)0"



« Tangent vector: t, =R, —1
 Differential: df = (t.f)0" , where the partial derivative
(tuf)(u') = (Ruf)(u') = f(u') = f(u'™) = f(u)

IS just a finite difference operator between two neighbour sites

* Integration: the volume form is 6“, the integral of a 1-form p is

/p:/pue’“:/pu vol = zz:pu(g)

Integration by parts holds since

[ar= [por = [Ruf = 1) vl = 3" (Rut = Do) =

g€ELn,



Ln

L 1
discrete approximation of S

®C




Multiplication table:

4. Differential calculi on Ss

e |a| b | c |ab]|ba

e | e| a|b | c|ab|ba
a | a| e |ab|ba| b | c
b | b |ba|e |ab|] c | a
c | clab|ba| e | a | b
ablab| c | a | b |bal| e

ba|ba| b | c | a | e |ab

Elements: a = (12), b = (23), c = (13), ab = (132), ba = (123), e.

83 manifold (BC)

Nontrivial conjugation classes: I = [a,b,c|, I] = |ab, ba).

a ab b
ab

Wa

e

S3 manifold (BC”)

There are 3 bicovariant calculi BC;, BCt;, BCrirr corresponding to the possible

volume form: % A 6° A 0% A 6

unions of the conjugation classes. They have respectively dimension 3, 2 and 5.

In Catenacci, Debernardi, Pagani, LC (2003), diff calculi for all finite G of order < 8



5. Finite group discretization of gravity (coupled to fermions)
 Classical gravity + fermions, summary

iIndex-free notation:

sz/w(iRAVAV%—[(wa—w(D@Mvwww

basic fields: V =V y.dz",  Q=Q yudat,

curvature: R=d{) — QNS

1 1
» R=—R"yu =-
g Tab Ty

X Rab _ dwab . wac A wa

Rz,bjda:“ A dz” Yap

covariant exterior derivative: Dy = diy — Qu

(used in Aschieri, LC (2009) for Drinfeld twist % deformation)



 Carrying out the Tr on spinor indices:

S = /Tr (i RAVAVAys = [(DY)Y — (DY) AV AV AVA) —s
S = /Rab A VC A\ Vdeabcd + Z[QLWCLDw o (D@Z)Waw] A\ Vb A VC A Vdeade

« Symmetries

* Lorentz
6.V = [e, V] 0:§) = d§Q + &, ] i;ﬁ i iig
with € = isab%b
Then 6.R=[e,R],  0.(Dy)Y = [e, (Dy)Y]

algebra: [5617662] — _6[61,82]

* Infinitesimal diff.s

S invariant under Lie derivative ¢, = i,d + di,



* Discrete gravity + fermions
* Formally the same action:

sz/TT(iRAVAV%—[(DW—MD@MVAVAV%)

where now the 1-forms Vand () are expanded on the basis
of left-invariant 1-forms 6* and on the Dirac basis of gamma matrices.

* The gamma expansion must now include new contributions

. . 1 . - ;
V= (Vi"va + Vi"7a7)0" Q = (7w Yab + iwil + @;75)0

since the gauge variations 6.V = [¢,V]and 6.2 = d2 + [, Q)]
contain also anticommutators of gamma matrices.

The gauge parameter € , however, has the same expansion
as in the classical case, because functions on G commute
The gauge group is still Lorentz.



The extra gamma contributions in the connection produce
extra contributions in the curvature:
1

R=(

R%b’}/ab -+ ’i?“ijl -+ fij”yg)) (9Z A\ (9j
* |nvariances

* The action is invariant under Lorentz variations provided
that the volume form commutes with functions. This is the
case for G=Ss, but not for the 4-dim calculus of (Z,)4

* When /dp — 0, Sis invariant under Lie derivative

with a caveat: modified Leibniz rule



» Gauge variations (Lorentz)

1 - i i
SV = S x VP VP xeh) 4 etV we — e 4 V)

+ex VP —VoP%e—ExV*—V%x €

~ 1 - 5 .
0V = S(e%* VP + VPxeh) + %gabcd(vb * € — e % V?)

2
L exVo—Voke—ExV*—Vo%§

1
5€wab _ (50’ * LUCb . Sbc * W + CUCb * gac _ e *5bc)

5 c
1 ab ab 2 ab cd | ~ ~ cd
+Z(€ *xW — WkE )-I—gs (EC KD — @ *e™)
1 1 . .
+ Z(s *w? — w® %) + geabcd(e * W — W x §)
1 S
5€w=g(w“b*sab—sab*w“b)—I—s*w—w*s—l—s*w—w*s
.t - 3 3
5€w=—5abcd(w“b*scd—50d*w“b)+5*w—w*s+s*w—w*s

16



» When a classical limit can be defined (for ex. in the Z, case)
do the extra fields disappear in this limit ?

In the (Zn)# a lattice spacing a can be introduced, and
extra fields appear always multiplied by (powers of ) a



6. Finite group discretization of Osp(114) supergravity

> Classical action (Mac Dowell-Mansouri)

S = Qi/TT(R/\R% + 23 A Xys)

OSp(114) connection: 5 x 5 supermatrix

1 ;
QY O = —w%~ , — _Jo

OSp(114) curvature

R X
R=dQ-QANQ = (ZO)

]_ ’l, ab ab a cb aysb ab
R:ZRab/yab__Ra/ya {R = dw™ — w", —I—VV—I— w’y (0
. 7; R —dva—wavc——mw

¥ = dyp — Zwab¢+ SV



- Action (explicit): N=1, D=4 anti de Sitter SG

1 _
S = /Rabvcvdéabcd + 407,750V + §(Vavbvcvd + 207V V) e pped

After rescaling V® — A\V® ¢ — V¢ anddividing Sby )\
the )\ — 0 limit reproduces usual Minkowski SG

(contraction of OSp(114) to superPoincaré)

> Action in terms of OSp(114) curvature supermatrix

S:4/STT[R(1+ %Z)RI‘] T — < ?3’(;5 8 )

NOT invariant under OSp(114) gauge variations

1_ab 1A
0.2 =de —Q ec+¢eQ e:< 1 8abg 27 fa 8)

because ||[I',€] # 0| , but Lorentz inv. and supersymmetry ok




> OSp(114) supergravity:
(1)2
S = 4/5Tr[R(1 + 5 )R]

where the auxiliary field supermatrix

. ( I Higs + 0" vaYs € )
e -

transforms as
0 ®P=—-Pect+ecP

Then the action is OSp(114) gauge invariant

> OSp(114) variations:

5wab _ d&‘ab . wachb i wbcsca . €aVb i sbva . g,yabw
SV = de® — w™e® + eV’ + iey™y)
1 1

0 = de — Zw“b%be + %V“%e + Zs“b%bw — %safyaw



Twisted OSp(114) supergravity: LC (2013)

* P

) Ax R x @]

S:4/STT[R*(1+(I)

- On finite group spaces: invariant under OSp(114) gauge group
(not enhanced to U(1,3[1))



7. Conclusions and outlook

» 50 far only algebraic analysis. Need to understand physical implications
- for ex: problems of introducing fermions in lattice gauge theories.

- study field equations, solutions.
« study continuum limit

» action is a finite (discrete) sum: numerical simulations ?



Thank you !




