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OUTLINE 
Considering some models of 3HDM (in version I(2+1)HDM) symmetric under ,   and , we analyze interesting signals of DM 
that could be tested in the colliders: LHC, ILC and LHeC. 


Assuming that the parameter space is constrained by EWPT,  DM relic density limit, DD and ID searches for DM particles. These 
constraints provide  DM candidate(s). (See the talk of Stefano Moretti)


 In the I(2+1)HDM symmetric under , we study for LHC case, the cascade decay of the SM-like Higgs boson ( ): 


  as a smoking-gun signal of 3HDM, where   is induced at one-loop level. 


In the I(2+1)HDM symmetric under  (with two DM candidates): we study   (for ILC machine) in two cases: 


The two DM candidates have the same CP ( , ) and opposite CP in another ( , )


The distributions of observables for this collider can distinguish clearly both cases


Prospects:


Special case of  I(2+1)HDM symmetric under  (we called hermaphrodite DM scenario ), where one can has two DM candidates  ( , 
) and for ILC machine could be tested and distinguished with latter case .


Signals in electron-proton colliders like LHeC, FCC-he:    or   or considering cascades of heavier 
scalar inserts having the final signatures: , , ,  

Z2 Z2 × Z′￼2 Z3

Z2 h

h → H1H2 → H1H1 f f̄ H2 → H1γ* → H1 f f̄

Z2 × Z′￼2 e+e− → DMDMℓ+ℓ−

H1 H2 H1 A2

Z3 H1
A1 Z2 × Z′￼2

e−p → DMDMjℓ− e−p → DMDMjν
E/T j E/Tℓj E/T 2ℓj E/T3ℓj
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I(2+1)HDM symmetric under ,Z2
3HDM is symmetric under  considering the generator   


The potential symmetric under this symmetry is:





The minimum of the potential is given the following way ( ):





We simplify the model and use the dark democracy limit (n=1):


Z2 gZ2
= diag(−1, − 1, + 1)

2 The CP conserving I(2+1)HDM

2.1 The potential with a Z2 symmetry

It is known [1] that, in a model with several Higgs doublets, the scalar potential which
is symmetric under a group G of phase rotations can be written as the sum of V0, the
phase invariant part, and VG, a collection of extra terms ensuring the symmetry group
G.

Here, we study a 3HDM symmetric under a Z2 symmetry with generator

g = diag (�1,�1,+1) , (1)

where the doublets, �1,�2 and �3, have odd, odd and even Z2 quantum numbers, respec-
tively. Note that this Z2 generator forbids Flavour Changing Neutral Currents (FCNCs)
and is respected by the vacuum alignment (0, 0, v), since the fermions which only couple
to the active scalar doublet, �3, are assigned an even Z2 charge. The potential symmetric
under the Z2 symmetry in (1) can be written as

V = V0 + VZ2 , (2)
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This potential has only a Z2 symmetry and no larger accidental symmetry3.
We shall not consider CP violation in this paper, therefore we require all parameters

of the potential to be real.
The full Lagrangian of the model is as follows:

L = L
SM

gf
+ Lscalar + LY ( f ,�3) , Lscalar = T � V , (5)

where L
SM

gf
is the boson-fermion interaction as in the SM, Lscalar describes the scalar

sector of the model and LY ( f ,�3) describes the Yukawa interaction with �3 the only
active doublet to play the role of the SM-Higgs doublet. The kinetic term in Lscalar has
the standard form of T =

P
i
(Dµ�i)

† (Dµ�i) with Dµ being the covariant derivative for
an SU(2) doublet.
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therefore, have been set to zero for simplicity.
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2.2 Mass eigenstates

The minimum of the potential is realised for the following point:
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with v2 = µ
2
3

�33
.

The mass spectrum of the scalar particles are as follows.

• The fields from the active doublet

The third doublet, �3 plays the role of the SM-Higgs doublet, hence, the fields
G0, G± are the would-be Goldsone bosons and h the SM-like Higgs boson with
mass-squared

m2

h
= 2µ2

3
, (7)

which has been set to (125 GeV)2 in our numerical analysis.

• The CP-even neutral inert fields

The pair of inert neutral scalar gauge eigenstates, H0
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• The charged inert fields

The pair of inert charged gauge eigenstates, �±
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parameters related to the first inert doublet are n times the parameters related to the
second doublet [10]:

µ2
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2
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resulting in
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�2
, ⇤00

�1
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�2
, (14)

without introducing any new symmetry to the potential. The motivation for this simpli-
fied scenario is that in the n = 0 limit the model reduces to the well-known I(1+1)HDM.
We assume no specific relation among the other parameters of the potential. It is im-
portant to note that the remaining quartic parameters, (�1,11,22,12,�0

12
), do not influence

the discussed DM phenomenology of the model and thus their values have been fixed in
agreement with the constraints discussed in Sect. 2.4 and compliant with the results on
unitarity obtained in [14].

With this simplification, it is possible to obtain analytical formulae for the parame-
ters of the potential in terms of chosen physical parameters. In this study, we choose the
set (mH1 ,mH2 , gH1H1h, ✓a, ✓c, n) as the input parameters where gH1H1h is the Higgs-DM
coupling. The meaningful parameters of the model are then defined as follows:
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The mixing angle in the CP-even sector, ✓h, is given by the masses of H1 and H2 and
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THEORETICAL AND EXPERIMENTAL CONSTRAINTS
(SEE THE TALK OF STEFANO MORETTI)

EW precision Test (EWPT) 


Collider data LEP and LHC: Higgs total decay width, Higgs invisible decays, on-shell decays from Z, W.


The DM relic density.


DD and ID detection.


 Being  the DM candidate with two possibilities:


   provides 100 % of DM (e.g.  GeV)


  has subdominant contribution and  (e.g. when  GeV ). 


The all heavier inert particles  decay inside the detector( in particular ) 

H1

H1 mH2
− mH1

= 50

H1 mH2
− mH1

= 5,10

H2 4



5

H2 H1

�⇤ f

f̄

Figure 2: Radiative decay of the heavy neutral particle H2 ! H1�⇤
! H1ff̄ .

The corresponding loops go through triangle and bubble diagrams with H±
i

and
W± entering, see Figs 3-4. Note that there are also box diagrams which contribute to
the process H2 ! H1ff̄ , presented in Fig. 5. Here, the ff̄ pair is produced through
the SM gauge-fermion tree-level vertices, without producing an intermediate o↵-shell
photon. The corresponding topologies also see the contribution of inert, both charged
and neutral (pseudo)scalars. However, due to the mass suppression, the contribution
from the box diagrams is small, of order 10%, and it leaves the results practically
una↵ected. For reasons of optimisation then, we do not show the results of these box
diagrams in the numerical scans and we may refer to this one-loop process as a radiative
decay.

Before moving on to study the latter, we would like to stress at this point that one
could attempt constructing analogous diagrams to those in Figs. 3-4 with H2 replaced
by A1 or A2, leading to Ai ! H1�⇤, i = 1, 2. Notice, however, that this decay would lead
to a CPV process, while the model we analyse here is explicitly CPC. Indeed, further
notice that spin conservation requires that it is only the scalar polarisation of the virtual
photon that contributes to the H2 ! H1�⇤ transition. To check the correctness of the
calculations we have explicitly verified this to be the case, as there are cancellations
between diagrams that lead to the amplitude being equal to zero otherwise, as discussed
in Sect. 4. Also note that the process Ai ! H1Z⇤ does exist at tree-level in both the
I(2+1)HDM (for i = 1, 2) and I(1+1)HDM (for i = 1) and contributes to the ��ETff̄
signature, as discussed previously. However, in the interesting regions of the parameter
space where the invariant mass of the ff̄ pair is small, i.e., << mZ , this process is
sub-dominant.

In short, the only (e↵ective) loop-level decay to consider is

H2 ! H1�
⇤ (27)

and this does not exist in the I(1+1)HDM, as CP-conservation prevents the only possibly
similar radiative decay in its inert sector (i.e., A1 ! H1�⇤). Therefore, as intimated,
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Is possible in the I(2+1)HDM and does not appear in 
I(1+1)HDM ( )H1, A1

This a smoking-gun signal of the 1(2+1)HDM

ArXiv:  1712.09598 [hep-ph]

If  then can potentially be extracted already from combining Run 2 and 3 data. 
 

mff̄ < < mZ

The Higgs boson h is produced by ggF or VBF in LHC


  as a smoking-gun signal of 3HDM, 


  is induced at one-loop level.  

h → H1H2 → H1H1 ff̄

H2 → H1γ* → H1 ff̄

The cascade decay of SM-like Higgs boson h

https://arxiv.org/abs/1712.09598


radiative decay. In short, the only (e↵ective) loop-level decay to consider is

H2 ! H1�
⇤
. (34)

with a BR essentially equal to 1 when the H2 and H1 masses are close. Notice that, in the
I(1+1)HDM, there is no counterpart to this process, because CP conservation, which e↵ectively
prohibits the only potentially analogous radiative decay within its inert sector (i.e., A1 ! H1�

⇤).
Therefore, as previously mentioned, this signature serves as a means to di↵erentiate between the
I(1+1)HDM and models featuring extended inert sectors, such as the I(2+1)HDM.

3.3 The ��ET `
¯̀ and ��ET 2`2¯̀ signatures at the LHC

In this subsection, we delve into the origins of the distinctive signature discussed earlier, specifi-
cally, the missing transverse energy and one and two lepton-antilepton pair(s),��ET `

¯̀ and��ET 2` 2¯̀,
which can manifest in the I(2+1)HDM. This particular outcome can be generated through both
tree-level processes and one-loop decays, as previously elaborated upon. Let’s delve deeper into
these processes.

The initial mechanism is associated with the decay of the SM-like Higgs boson, which can be
produced through the ggF process. Notably, the hgg e↵ective vertex remains identical to that of
the SM within the I(2+1)HDM, since the gauge and fermionic sectors of the I(2+1)HDM remain
unaltered in comparison to the SM. Consequently, the Higgs particle can decay into a pair of
neutral CP-odd, CP-even or charged inert particles, here represented as Si,j in Fig. 3. Depending
on the masses of these Si,j particles, they can further undergo decay processes, thereby producing
a variety of final states.

g

g

h

Si

Sj

Figure 3: The ggF-induced production of the SM-like Higgs particle at the LHC with its decay
into a pair of inert particles, denoted as SiSj which could be HiHj, AiAj or H

±
i
H

±
j
with i, j = 1, 2.

Within the context of the CPC I(2+1)HDM, a process that contributes to the��ET `
¯̀ signature,

representing one of our studied signals, can be expressed as follows:

gg ! h ! H1H2 ! H1H1�
⇤ ! H1H1`

¯̀, (35)

In this process, the o↵-shell �⇤ subsequently splits into `¯̀, while the H1 states remain undetected.
It is important to note that there exists another tree-level decay of the Higgs boson (h) leading
to the same signature (��ET `

¯̀), although not precisely the same final state kinematically. However,
these two scenarios are indistinguishable and the process unfolds as follows8:

gg ! h ! H
±
i
H

⌥
i
! H1H1W

+(⇤)
W

�(⇤) ! H1H1⌫l`⌫l
¯̀ (i = 1, 2), (36)

8Note that the final state of such process could contain di↵erent number of leptons depending on the type
and decay channels of intermediate particles. For example, h ! H

±
2 H

⌥
2 ! H2H2W

+(⇤)
W

�(⇤) which, with the
subsequent loop decay of H2 ! H1�

⇤, could results in a�ET + 6` final state.
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where the neutrinos escape detection and contribute to the overall missing transverse energy. In
all our benchmark scenarios with the mass ordering mH1 . mH2 < mA1 < mA2 < m

H
±
1
< m

H
±
2

the contribution of these processes to our signal is sub-dominant.
The process described in Eq. (35) is a loop-mediated process which depends on the coupling

gH1H2h. Notably, this coupling also a↵ects the relic density of DM. Therefore, in scenarios where
this coupling is relatively small, the entire process tends to be suppressed. However, our approach
involves maximizing this coupling while ensuring compliance with DM constraints. Furthermore,
we adopt a mass spectrum in which the charged Higgs bosons are not excessively heavy, as their
high masses would similarly suppress the loop process. In certain parameter configurations, we
observe mH1 + mH2 < mh, which results in resonant SM-like Higgs production and loop decay.
This resonant behaviour o↵ers a significant enhancement, on the order of 1/↵EM.

In contrast, the process detailed in Eq. (36) operates at the tree level, presenting a potential
competitive pathway. Nevertheless, for the parameter space explored in our benchmark scenarios,
where we aim to maximize the yield of the loop process, this mode becomes practically negligible
due to the large charged Higgs masses, precluding the possibility of a resonant interaction with
the Higgs boson h. Similarly, processes in which the SM-like Higgs decays to a pair of CP-odd
inert particles9,

gg ! h ! AiAj ! H1H1Z
(⇤)
Z

(⇤) ! H1H12`2¯̀ (i = 1, 2), (37)

are sub-dominant due to the large masses of A1 and A2. Note that in the above process the o↵-
shell Z could also decay to neutrinos instead of a pair of charged leptons, which clearly changes
the final state.

Another process which contributes to the ��ET 2` 2¯̀ signature, representing another one of our
studied signals, proceeds as follows:

gg ! h ! H2H2 ! H1H1�
⇤
�
⇤ ! H1H12`2¯̀. (38)

In both our BPs, the mass of the H2 pair is below mh, making the Higgs production and loop
decay resonant. As will be shown in Sect. 4, this signal has very little background, making it the
preferred process for our collider analysis.

In principle, there exists another tree-level process that can result in the��ET `
¯̀final state within

our scenario:
qq̄ ! Z

⇤ ! H1H1Z ! H1H1`
¯̀. (39)

This process, illustrated in diagrams (a) and (b) in Fig. 4, originates from quark-antiquark annihi-
lation and progresses through an s-channel o↵-shell (primary) Z⇤, where the on-shell (secondary)
Z particle ultimately decays into an `¯̀ pair. However, there are two significant reasons why we do
not prioritize this process. Firstly, the region of parameter space in which the process described in
Eq. (35) becomes particularly relevant for LHC phenomenology is where the strength of gH1H2h is
maximal and the Higgs boson h is possibly resonant. This region corresponds to scenarios where

9Similar to the process in Eq. (36), the final state of these processes could contain di↵erent number of leptons
depending on the type and decay channels of intermediate particles. For example, h ! A2A2 ! H2H2Z

(⇤)
Z

(⇤)

which with the subsequent loop decay of H2 ! H1�
⇤ could results in a�ET +8` final state. As mentioned before, in

all our benchmark scenarios with the mass ordering mH1 . mH2 < mA1 < mA2 < m
H

±
1

< m
H

±
2

the contribution
of these processes to our signal is sub-dominant.
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where the neutrinos escape detection and contribute to the overall missing transverse energy. In
all our benchmark scenarios with the mass ordering mH1 . mH2 < mA1 < mA2 < m

H
±
1
< m

H
±
2

the contribution of these processes to our signal is sub-dominant.
The process described in Eq. (35) is a loop-mediated process which depends on the coupling

gH1H2h. Notably, this coupling also a↵ects the relic density of DM. Therefore, in scenarios where
this coupling is relatively small, the entire process tends to be suppressed. However, our approach
involves maximizing this coupling while ensuring compliance with DM constraints. Furthermore,
we adopt a mass spectrum in which the charged Higgs bosons are not excessively heavy, as their
high masses would similarly suppress the loop process. In certain parameter configurations, we
observe mH1 + mH2 < mh, which results in resonant SM-like Higgs production and loop decay.
This resonant behaviour o↵ers a significant enhancement, on the order of 1/↵EM.

In contrast, the process detailed in Eq. (36) operates at the tree level, presenting a potential
competitive pathway. Nevertheless, for the parameter space explored in our benchmark scenarios,
where we aim to maximize the yield of the loop process, this mode becomes practically negligible
due to the large charged Higgs masses, precluding the possibility of a resonant interaction with
the Higgs boson h. Similarly, processes in which the SM-like Higgs decays to a pair of CP-odd
inert particles9,

gg ! h ! AiAj ! H1H1Z
(⇤)
Z

(⇤) ! H1H12`2¯̀ (i = 1, 2), (37)

are sub-dominant due to the large masses of A1 and A2. Note that in the above process the o↵-
shell Z could also decay to neutrinos instead of a pair of charged leptons, which clearly changes
the final state.

Another process which contributes to the ��ET 2` 2¯̀ signature, representing another one of our
studied signals, proceeds as follows:

gg ! h ! H2H2 ! H1H1�
⇤
�
⇤ ! H1H12`2¯̀. (38)

In both our BPs, the mass of the H2 pair is below mh, making the Higgs production and loop
decay resonant. As will be shown in Sect. 4, this signal has very little background, making it the
preferred process for our collider analysis.

In principle, there exists another tree-level process that can result in the��ET `
¯̀final state within

our scenario:
qq̄ ! Z

⇤ ! H1H1Z ! H1H1`
¯̀. (39)

This process, illustrated in diagrams (a) and (b) in Fig. 4, originates from quark-antiquark annihi-
lation and progresses through an s-channel o↵-shell (primary) Z⇤, where the on-shell (secondary)
Z particle ultimately decays into an `¯̀ pair. However, there are two significant reasons why we do
not prioritize this process. Firstly, the region of parameter space in which the process described in
Eq. (35) becomes particularly relevant for LHC phenomenology is where the strength of gH1H2h is
maximal and the Higgs boson h is possibly resonant. This region corresponds to scenarios where

9Similar to the process in Eq. (36), the final state of these processes could contain di↵erent number of leptons
depending on the type and decay channels of intermediate particles. For example, h ! A2A2 ! H2H2Z

(⇤)
Z

(⇤)

which with the subsequent loop decay of H2 ! H1�
⇤ could results in a�ET +8` final state. As mentioned before, in

all our benchmark scenarios with the mass ordering mH1 . mH2 < mA1 < mA2 < m
H

±
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±
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the contribution
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the DM relic density is significantly influenced by co-annihilation processes involving H1 and H2
10.

Consequently, this places restrictions on the allowed values of gH1H1h (especially in the presence
of a resonant h) coupling. As a result, the process in Eq.(39) becomes less relevant at the LHC.
Secondly, within our framework, the process in Eq. (39) constitutes a subleading contribution to
the invisible Higgs signature of the SM-like Higgs boson (which is primarily dominated by ggF
and VBF topologies, extensively investigated in our prior studies in Ref. [11]). In contrast to
Eq. (35), this process does not capture any of the heavy scalar states within the model. Thus, it
does not provide the means to study the kinematic distributions of the final state able to extract
the masses of these heavy scalars by isolating the corresponding thresholds involved in the loops11.
Considering these factors, we will not delve further into the discussion of these two topologies.

qi

q̄i

Z
⇤

h

H1

H1

Z(a)

q

q̄

Z
⇤

H1

H1

Z(b)

q

q̄

Z
⇤

H1

A1,2
H1

Z
(⇤)

(c)

Figure 4: Diagrams leading to the ��ET `
¯̀ final state via the H1H1Z

(⇤) process.

An alternative method to generate the final state H1H1`
¯̀ is depicted in graph (c) of Fig. 4.

This process also emerges from s-channel quark-antiquark annihilation, producing a virtual neutral
massive gauge boson. More explicitly:

qq̄ ! Z
⇤ ! H1Ai ! H1H1Z

(⇤) ! H1H1`
¯̀ (i = 1, 2), (40)

wherein the DM candidate is generated alongside a pseudoscalar state and the Z particle may
be o↵-shell. Importantly, this mode proves to be competitive with the one described in Eq. (35)
within the relevant region of the I(2+1)HDM parameter space. Notably, graph (c) in Fig. 4, in
contrast to graphs (a) and (b), due to its heavy pseudoscalar component, may also be isolated
in the aforementioned kinematic analysis. In fact, in graph (c), the o↵-shell decay of the Z to
leptons pairs can di↵erentiate this process from the those via graphs (a) and (b) in Fig. 4.

Furthermore, the processes in such a figure can again produce��ET2`2¯̀ final states if we replace
both or one of the H1’s by H2. In the first case, Z(⇤) states will decay into pairs of neutrinos
contributing to the missing transverse energy. In the second case, four leptons will naturally
emerge from decay of each H2 ! H1�

⇤ ! H1`
¯̀. In the first case, the cross section will be

suppressed by too many particles in the final state and thus contribute negligibly to the ��ET2`2¯̀

final state. In the second case, the relevant process can give a sizeable contribution to it.
In conclusion of this subsection, we present a compilation of topologies contributing to VBF

production, giving rise to the��ET `
¯̀ final state. These topologies are illustrated in Fig. 5 and occur

10This is further enhanced when mH1 ⇡ mH2 , which is in fact one of the conditions that we will use in the
forthcoming analysis to exalt process in Eq. (35) (which is I(2+1)HDM specific) against the one (also existing in
the I(1+1)HDM) that we will be discussing next.

11In this sense, process in Eq. (39) would be a background to in Eq. (35), which can be easily removed through
a mass veto: m

`¯̀ 6= mZ .
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This process also emerges from s-channel quark-antiquark annihilation, producing a virtual neutral massive gauge 
boson. More explicitly: 

H1H1 ff̄

Constrained by  and parameter space    gH1H1h

Is competitive with: 

radiative decay. In short, the only (e↵ective) loop-level decay to consider is

H2 ! H1�
⇤
. (34)

with a BR essentially equal to 1 when the H2 and H1 masses are close. Notice that, in the
I(1+1)HDM, there is no counterpart to this process, because CP conservation, which e↵ectively
prohibits the only potentially analogous radiative decay within its inert sector (i.e., A1 ! H1�

⇤).
Therefore, as previously mentioned, this signature serves as a means to di↵erentiate between the
I(1+1)HDM and models featuring extended inert sectors, such as the I(2+1)HDM.

3.3 The ��ET `
¯̀ and ��ET 2`2¯̀ signatures at the LHC

In this subsection, we delve into the origins of the distinctive signature discussed earlier, specifi-
cally, the missing transverse energy and one and two lepton-antilepton pair(s),��ET `

¯̀ and��ET 2` 2¯̀,
which can manifest in the I(2+1)HDM. This particular outcome can be generated through both
tree-level processes and one-loop decays, as previously elaborated upon. Let’s delve deeper into
these processes.

The initial mechanism is associated with the decay of the SM-like Higgs boson, which can be
produced through the ggF process. Notably, the hgg e↵ective vertex remains identical to that of
the SM within the I(2+1)HDM, since the gauge and fermionic sectors of the I(2+1)HDM remain
unaltered in comparison to the SM. Consequently, the Higgs particle can decay into a pair of
neutral CP-odd, CP-even or charged inert particles, here represented as Si,j in Fig. 3. Depending
on the masses of these Si,j particles, they can further undergo decay processes, thereby producing
a variety of final states.

g

g

h

Si

Sj

Figure 3: The ggF-induced production of the SM-like Higgs particle at the LHC with its decay
into a pair of inert particles, denoted as SiSj which could be HiHj, AiAj or H

±
i
H

±
j
with i, j = 1, 2.

Within the context of the CPC I(2+1)HDM, a process that contributes to the��ET `
¯̀ signature,

representing one of our studied signals, can be expressed as follows:

gg ! h ! H1H2 ! H1H1�
⇤ ! H1H1`

¯̀, (35)

In this process, the o↵-shell �⇤ subsequently splits into `¯̀, while the H1 states remain undetected.
It is important to note that there exists another tree-level decay of the Higgs boson (h) leading
to the same signature (��ET `

¯̀), although not precisely the same final state kinematically. However,
these two scenarios are indistinguishable and the process unfolds as follows8:

gg ! h ! H
±
i
H

⌥
i
! H1H1W

+(⇤)
W

�(⇤) ! H1H1⌫l`⌫l
¯̀ (i = 1, 2), (36)

8Note that the final state of such process could contain di↵erent number of leptons depending on the type
and decay channels of intermediate particles. For example, h ! H

±
2 H

⌥
2 ! H2H2W

+(⇤)
W

�(⇤) which, with the
subsequent loop decay of H2 ! H1�

⇤, could results in a�ET + 6` final state.
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before the H2 ! H1`
¯̀ decay. The full production and decay process is thus represented as follows:

qiqj ! qkqlH1H2 ! H1H1�
⇤ ! H1H1`

¯̀, (41)

where qi,j,k,l symbolizes a(n) (anti)quark of any possible flavor, excluding the top quark. Two
notable aspects merit attention in this context. Firstly, there is the additional presence of two for-
ward/backward jets, which may or may not be subject to tagging (we will treat these inclusively).
Secondly, unlike the case of ggF, not all (gauge-invariant) diagrams correspond to h ! H1H2

induced topologies (graph (a)), like for graphs (b) and (c). The primary determinant of which
diagram dominates hinges on whether the Higgs boson h can resonate or not. In cases where
a resonance is feasible, the first diagram dominates while the last two become competitive only
when resonance cannot be attained.
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Z,W
+

qj

h

H1

H2

qk

ql

(a)

qi

Z,W
+

Z,W
+

qj

qk

ql

H1

H2

(b)

qi

Z(W+)

A1(H
+
1 )

Z(W+)

qj

qk

ql

H1

H2

(c)

Figure 5: Diagrams leading to the ��ET + `¯̀ final state via VBF topologies.

In summary, despite the presence of several irreducible backgrounds to both our target final
states, there are enough kinematic di↵erences between the various noise and our signals to warrant
attempting extracting the latter. Specifically, owing to the small mass di↵erence between H2 and
H1 and the fact that the �

⇤ ! `¯̀ splitting in the H2 ! H12` decay tends to be soft and collinear
(and consequently the dominant contribution, as detailed in the appendix), the invariant mass of
same flavor and opposite sign leptons will be much smaller in comparison to the one emerging in
both on- and o↵-shell decays of a Z boson into di-leptons, the exploitation of this feature indeed
being the most e↵ective way of disentangling signals and the irreducible backgrounds that we have
discussed. (In fact, we shall see that it will also help significantly against non-irreducible ones.)

4 The cut based collider analysis

As discussed earlier, our primary objective is finding discernible signatures which can distinguish
between 3HDM and 2HDM scenarios at collider experiments. We focus on the decay channel
H2 ! H1�

⇤ ! H1`
¯̀ as a smoking gun signature and study its detectability during the high-

luminosity phase of the LHC. Here, ` ⌘ µ since muons are well-observed particles in colliders and
their misidentification rates are significantly lower compared to those of the electrons. Moreover,
trigger e�ciencies for muons have already been increased at the LHC as will be discussed further.

Let us emphasize that a signal with missing transverse energy and two leptons in its final state,
has a major drawback; there are substantial and irremovable SM backgrounds to this signal with
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H2 H1

�⇤ f

f̄

Figure 2: Radiative decay of the heavy neutral particle H2 ! H1�⇤
! H1ff̄ .

The corresponding loops go through triangle and bubble diagrams with H±
i

and
W± entering, see Figs 3-4. Note that there are also box diagrams which contribute to
the process H2 ! H1ff̄ , presented in Fig. 5. Here, the ff̄ pair is produced through
the SM gauge-fermion tree-level vertices, without producing an intermediate o↵-shell
photon. The corresponding topologies also see the contribution of inert, both charged
and neutral (pseudo)scalars. However, due to the mass suppression, the contribution
from the box diagrams is small, of order 10%, and it leaves the results practically
una↵ected. For reasons of optimisation then, we do not show the results of these box
diagrams in the numerical scans and we may refer to this one-loop process as a radiative
decay.

Before moving on to study the latter, we would like to stress at this point that one
could attempt constructing analogous diagrams to those in Figs. 3-4 with H2 replaced
by A1 or A2, leading to Ai ! H1�⇤, i = 1, 2. Notice, however, that this decay would lead
to a CPV process, while the model we analyse here is explicitly CPC. Indeed, further
notice that spin conservation requires that it is only the scalar polarisation of the virtual
photon that contributes to the H2 ! H1�⇤ transition. To check the correctness of the
calculations we have explicitly verified this to be the case, as there are cancellations
between diagrams that lead to the amplitude being equal to zero otherwise, as discussed
in Sect. 4. Also note that the process Ai ! H1Z⇤ does exist at tree-level in both the
I(2+1)HDM (for i = 1, 2) and I(1+1)HDM (for i = 1) and contributes to the ��ETff̄
signature, as discussed previously. However, in the interesting regions of the parameter
space where the invariant mass of the ff̄ pair is small, i.e., << mZ , this process is
sub-dominant.

In short, the only (e↵ective) loop-level decay to consider is

H2 ! H1�
⇤ (27)

and this does not exist in the I(1+1)HDM, as CP-conservation prevents the only possibly
similar radiative decay in its inert sector (i.e., A1 ! H1�⇤). Therefore, as intimated,

11

this signature can be used to distinguish between the I(1+1)HDM and models with
extended inert sectors, such as the I(2+1)HDM.
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�⇤

(B)

Figure 3: Triangle diagrams contributing to the H2 ! H1�⇤ decay, where the lightest
inert is absolutely stable and hence invisible, while �⇤ is a virtual photon that couples
to fermion-antifermion pairs. Analogous diagrams cannot be constructed if the initial
particle is A1 or A2.
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Figure 4: Bubble diagrams contributing to the H2 ! H1�⇤ decay, where the lightest
inert particle is absolutely stable and hence invisible, while �⇤ is a virtual photon that
couples to fermion-antifermion pairs. Analogous diagrams cannot be constructed if the
initial particle is A1 or A2.
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Figure 3: Triangle diagrams contributing to the H2 ! H1�⇤ decay, where the lightest
inert is absolutely stable and hence invisible, while �⇤ is a virtual photon that couples
to fermion-antifermion pairs. Analogous diagrams cannot be constructed if the initial
particle is A1 or A2.
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Figure 4: Bubble diagrams contributing to the H2 ! H1�⇤ decay, where the lightest
inert particle is absolutely stable and hence invisible, while �⇤ is a virtual photon that
couples to fermion-antifermion pairs. Analogous diagrams cannot be constructed if the
initial particle is A1 or A2.
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Figure 5: Box diagrams contributing to H2 ! H1ff̄ .

3.3 The ��ET ff̄ signature at the LHC

In this subsection, we focus on the possible sources of the aforementioned specific signa-
ture that can arise in the I(2+1)HDM, namely, missing transverse energy and a fermion-
antifermion pair,��ETff̄ . This final state can be produced both at tree-level and through
one-loop decays, as previously explained. We dwell further on this here.

The first mechanism is related to decays of the SM-like Higgs particle which is
produced, e.g., through ggF. The hgg e↵ective vertex is identical to that in the SM, as
the gauge and fermionic sectors in the I(2+1)HDM are not modified with respect to the
SM. The Higgs particle can then decay into a pair of neutral or charged inert particles,
denoted in Fig. 6 by Si,j. Depending on the masses of Si,j, these particles can further
decay, providing various final states.
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Then the Dirac equation in the limit of me = 0 gives us:

v̄(k1)(/p
3
� /p

2
)u(k2) = v̄(k1)(/k1

+ /k
2
)u(k2) = 0. (36)

Under these circumstances, we can take

(p3 � p2)µ = 0,

which is the same as if the � were on-shell in the process H2 ! H1�, albeit (p3 � p2)2

is non-zero:
(p3 � p2)

2 = (k1 + k2)
2 = 2k1 · k2. (37)

Therefore, the general structure of the amplitude is:

M = iev̄(k1)�
⌫u(k2)

igµ⌫
(p3 � p2)2

[A(p3 + p2)
µ], (38)

where A(p3+ p2)µ is related to the contribution of the each diagram in Figs. 3, 4 and 5:

A(p3 + p2)
µ = Mµ,T =

X

i

M (i)

µ
, (39)

where i runs across all diagrams.

4.1 Individual contributions to H2 ! H1ff̄

There are six of these, five for the case of the triangle and bubble diagrams of Figs. 3–4
plus two cumulative ones for the box diagrams shown in Fig. 511.

• The first contribution, M (1)

µ , comes from a diagram with two charged scalars H±
i

(i = 1, 2) and one W± in the loop, given by diagram (A) in Fig. 3:

M (1)

µ
(m

H
±
i

,mW ,m2

12
,mHi

) =
g2e

4
A±

i
m(1)

µ
(m

H
±
i

,mW ,m2

12
,mHi

), (40)

where

m(1)

µ
=

1

16⇡2

Z
dnk

(2⇡)n

(k + 2p3)↵(2k + p3 + p2)µ(k + 2p2)�[g↵� �
k
↵
k
�

m
2
W

]

[(k + p3)2 �m2

H
±
i

][(k + p2)2 �m2

H
±
i

][k2 �m2

W
]

11Ultraviolet renormalisation is implictly performed for the former.
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the tree-level mode A1,2 ! H1Z⇤
! H1e+e� (already discussed) is much larger, which

is why we concerned ourselves with the latter and not the former.
Finally, one can see from (57) that A±

1
= �A±

2
, which is crucial for the cancellation

of the ultraviolet divergences. In fact, the total contribution of the one-loop calculation
is, taking account (61) and (56):

Mµ,T (mH
±
i

,mW ,m2

12
,mHi

) = eg2
2X

i=1

4X

k=1

(A+

i
+ A�

i
)m(k)

µ
(m

H
±
i

,mW ,m2

12
,mHi

). (63)

Now, taking into account (57), we have

Mµ,T (mH
±
i

,mW ,m2

12
,mHi

) = eg2A±
1

4X

k=1

�m(k)

µ
(m

H
±
1
,m

H
±
1
) (64)

with

�m(k)

µ
(m

H
±
1
,m

H
±
1
) =

✓
m(k)

µ
(m

H
±
1
,mW ,m2

12
,mHi

)�m(k)

µ
(m

H
±
2
,mW ,m2

12
,mHi

)

◆
. (65)

One can see then that ultraviolet divergences cancel perfectly.

4.3 Partial decay width of H2 ! H1ff̄

When evaluating the tensorial integrals of (41)–(47), these expressions are reduced in
terms of Passarino-Veltman scalar functions:

�m(k)

µ
(m

H
±
1
,m

H
±
1
) = FPV(mH

±
i

,mW ,m2

12
,mH1 ,mHj

)(p3 + p2)µ, (66)

where FPV(mH
±
i

,mW ,m2

12
,mH1 ,mHj

) is given in Appendix A. Then, comparing (38),

(39) and (64), we calculate the factor A:

A = eg2A+

1
FPV(mH

±
i

,mW ,m2

12
,mH1 ,mHj

). (67)

One can see that A is a function of the same variables of FPV and the factor A+

1
.

Besides, following the notation of [21] for three-body decays, in addition to the variable
m2

12
defined previously, we also introduce m2

i3
= (ki + p2)2 = 2ki · p2 +m2

H1
(i = 1, 2).

Taking this into account, one can obtain the square amplitude (38) of the loop process
(upon the usual final state spin summation):

|M|
2 =

8|A|2

m4

12

✓
(m2

H2
�m2

23
)(m2

23
�m2

H1
)�m2

12
m2

23

◆
. (68)

22

The general estructure of the cascade decay of  is: H2

particles and they can provide us with the information necessary to cancel the ultraviolet
divergences.

For the three neutral scalars we define:

A+

H
+
1 ,H2

= cos(✓c � ✓h) sin(✓c � ✓h), (51)

A+

H
+
1 ,A1

= cos(✓a � ✓c) cos(✓c � ✓h), (52)

A+

H
+
1 ,A2

= sin(✓c � ✓a) cos(✓c � ✓h), (53)

A+

H
+
2 ,A1

= sin(✓a � ✓c) sin(✓c � ✓h), (54)

A+

H
+
2 ,A2

= cos(✓a � ✓c) sin(✓c � ✓h), (55)

where ✓h,a,c are the inert mixing angles defined in Sect. 2.2. We use the shorthand A±
i

for A±
H

±
i
,S
where S could be any of the neutral scalars H2, A1, A2. The following relations

hold:

A�
1

= A+⇤
1

= A+

1
, (56)

A+

2
= �A+

1
(57)

A�
2

= �A+⇤
1

= �A�
1
. (58)

Despite not being exploited phenomenologically in the remainder of the paper, for
completeness, we also describe here the case A1,2 ! H1�⇤

! H1e+e�. In the CP
conserving I(2+1)HDM, one can distinguish the CP-even inert scalar and CP-odd inert
scalar in the diagrams of the Figs. 3 and 4. When considering the amplitude of any
diagram plus its crossed companion, one obtains the following results:

A±
i

= A±
i
(crossed) for a CP-even inert scalar, (59)

A±
i

= �A±
i
(crossed) for a CP-odd inert scalar, (60)

and as a consequence

M i

µ
+ crossed = 2M i

µ
for a CP-even scalar inert (61)

M i

µ
+ crossed = 0 for a CP-odd scalar inert, (62)

which is consistent with the observation we made before: CP conservation requires
A1,2 ! H1�⇤

! H1e+e� to be zero. However, for the box diagrams associated with Fig.
5, A1,2 ! H1e+e� decays are possible but their contributions are small. In fact, these
decays could also be mediated at one-loop level by an on- or o↵-shell Z boson, however,
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the tree-level mode A1,2 ! H1Z⇤
! H1e+e� (already discussed) is much larger, which

is why we concerned ourselves with the latter and not the former.
Finally, one can see from (57) that A±

1
= �A±

2
, which is crucial for the cancellation

of the ultraviolet divergences. In fact, the total contribution of the one-loop calculation
is, taking account (61) and (56):

Mµ,T (mH
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,mW ,m2

12
,mHi

) = eg2
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4X

k=1
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µ
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12
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). (63)

Now, taking into account (57), we have
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1
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◆
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One can see then that ultraviolet divergences cancel perfectly.

4.3 Partial decay width of H2 ! H1ff̄

When evaluating the tensorial integrals of (41)–(47), these expressions are reduced in
terms of Passarino-Veltman scalar functions:

�m(k)

µ
(m

H
±
1
,m

H
±
1
) = FPV(mH

±
i

,mW ,m2

12
,mH1 ,mHj

)(p3 + p2)µ, (66)

where FPV(mH
±
i

,mW ,m2

12
,mH1 ,mHj

) is given in Appendix A. Then, comparing (38),

(39) and (64), we calculate the factor A:

A = eg2A+

1
FPV(mH

±
i

,mW ,m2

12
,mH1 ,mHj

). (67)

One can see that A is a function of the same variables of FPV and the factor A+

1
.

Besides, following the notation of [21] for three-body decays, in addition to the variable
m2

12
defined previously, we also introduce m2

i3
= (ki + p2)2 = 2ki · p2 +m2

H1
(i = 1, 2).

Taking this into account, one can obtain the square amplitude (38) of the loop process
(upon the usual final state spin summation):

|M|
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The ultraviolet divergencies 
are cancelled perfectly! 
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the Universe, hence leading to heavily reduced relic density, and thus disfavouring the
3HDM as the model for Dark Matter.

Benchmark mH2 �mH1 mA1 �mH1 mA2 �mH1 m
H

±
1
�mH1 m

H
±
2
�mH1

A50 50 75 125 75 125
I5 5 10 15 90 95
I10 10 20 30 90 100

Table 1: Definition of benchmark scenarios with the mass splittings shown in GeV.

Figs. 9–11 show the anatomy of the given scenarios, which include not only the cross
sections for leptonic (��ET l+l�) and hadronic (��ET qq̄) final states, but also the relevant
couplings in each case with the same colour coding. The Higgs-DM coupling is also
shown for reference.

For each benchmark scenario, we calculate the cross section for three processes,
namely, the ggF process (28), the tree-level process (31) and the VBF process (32) and
present the dominant couplings entering in each case.
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Scenario A50

|gZH1A12| (tree level)
|ghH1H2| (ggF)
|gZH1A1*gZH2A1| (neutral VBF)
|gW+ H1- H1*gW- H1+ H2| (charged VBF)
|ghDM*ghZZ|

Figure 9: The anatomy of scenario A50. The plots on the top show the cross sections
of the tree-level, ggF and VBF processes with leptonic (left) and hadronic (right) final
states. The red regions are ruled out by LHC (mDM < 53 GeV) and by direct detection
(mDM > 73 GeV). At the bottom we show the dominant couplings in each process with
the same color coding where the Higgs-DM coupling is shown for reference. Note that
the ghH1H2 appears with the K-factor in the cross section calculations.

Let us first focus on scenario A50 presented in Fig. 9, which has two special features.
First, mass splittings between H1 and other inert particles are relatively large, as well as
the main couplings (in particular the gZH1A1), which leads to large tree-level Z-mediated
cross sections (the blue curve). Second, the Higgs-DM coupling, ghH1H1 , is chosen such
that the relic density is in exact agreement with Planck measurements. To fulfil that,
around the Higgs resonance the coupling needs to be very small, of the order of 10�4

[10]. As the ghH1H2 coupling is closely related to ghH1H1 , we observe a sudden dip for the
orange curve (ghH1H2), which then leads to a reduced cross section for the ggF processes,
driven by that particular coupling. We also observe that the cross section for the VBF
processes, which depend mainly on large mass splittings and relatively constant gauge
couplings, are as expected relatively constant for this benchmark.

29

Scenario A50. The red regions are ruled out by LHC (  < 53 GeV) and by direct detection (  > 73 GeV). At the bottom we show the dominant 
couplings in each process with the same color coding where the Higgs-DM coupling is shown for reference. 
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Figure 10: The anatomy of scenario I5. The plots on the top show the cross sections
of the tree-level, ggF and VBF processes with leptonic (left) and hadronic (right) final
states. At the bottom we show the dominant couplings in each process in Log scale with
the same color coding where the Higgs-DM coupling is shown for reference. Note that
the ghH1H2 appears with the K-factor in the cross section calculations.

Scenario I5, shown in Fig. 10, di↵ers from the scenario A50 above. Here, the mass
splittings are much smaller, but also the Higgs-DM coupling is set to a constant value for
all masses, as seen in Fig. 10. This makes the phase space structure more visible. For
mH1 < mh/2 all cross sections are roughly constant, with the ggF processes enhanced
through the resonant Higgs production. However, after crossing the Higgs resonance
region, with no increase of the Higgs-DM coupling to compensate for that, we observe a
rapid decrease of the value of the cross section. For larger masses the cross section are
too small to be observed for the current LHC luminosity.
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Scenario I5. The plots on the top show the cross sections of the tree-level, ggF and VBF processes with leptonic (left) and hadronic (right) final states. 

At the bottom we show the dominant couplings, where the Higgs-DM coupling is shown.
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Figure 11: The anatomy of scenario I10. The plots on the top show the cross sections
of the tree-level, ggF and VBF processes with leptonic (left) and hadronic (right) final
states. At the bottom we show the dominant couplings in each process in Log scale with
the same color coding where the Higgs-DM coupling is shown for reference. Note that
the ghH1H2 appears with the K-factor in the cross section calculations.

Very similar behaviour is present for scenario I10 depicted in Fig. 11, where, similarly
to scenario I5, the Higgs-DM coupling is set to a constant value for all masses. Again
we observe the almost constant cross sections, which are rapidly reduced after we cross
the Higgs threshold.
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Scenario I10. The plots on the top show the cross sections of the tree-level, ggF and VBF processes with leptonic (left) and hadronic (right) final states. 

At the bottom we show the dominant couplings, where the Higgs-DM coupling is shown.



the main contributions from the W±
W

⌥
, ZZ and tt̄ (leptonic) processes, whose cross sections are

in the pb range, much larger than the typical cross section in our BPs which is in the fb range12.
As a result, we consider a final state with missing transverse energy and at least three muons

where our DM candidate, H1 is the dominant source of missing energy. The process under study
is pp ! H2H2 where each H2 decays to H1�

⇤ ! H1 µ
+
µ
�. As discussed before, when the mass

di↵erence between H2 and H1 is very small, the BR(H2 ! H1�
⇤) is nearly 100%. In Tab. 1

we present two Benchmark Points (BPs), BP1 and BP2, with mH2 � mH1 = 5 and 10 GeV,
respectively, and in agreement with all constraints discussed in section 2.4.

Benchmark mH1 mH2 mA1 mA2 m
H

±
1

m
H

±
2

n ✓h �2µ �4µ

BP1 50 55 95 104 116 127 0.83 0.105 0.02224 6.923

BP2 50 60 94 112 115 137 0.70 0.103 0.06 4.0

Table 1: Definition of BPs with the masses shown in GeV. The last two columns show the
cross sections for processes �2µ ⌘ �(pp ! H2H2 ! H1H1 µ

+
µ
�) and �4µ ⌘ �(pp ! H2H2 !

H1H1 2µ+ 2µ�) in fb. In both BPs, ✓a = 0.03, ✓c = 0.02 and ghDM = 0.01.

The cross sections of the events for the signals are computed at leading order with their respec-
tive backgrounds computed at the next-to-leading order (NLO) and created using Madgraph@MCNLO [39].
We adopt the nn23lo1 parton distribution function. The detector simulation is handled by
Delphes-3.5.0 [40]. We have used the inbuilt detector e�ciencies available at Delphes-3.5.0 to
identify final state isolated muons. We use no further trigger e�ciencies and apply PYTHIA8 [41]
showering and hadronisation.

4.1 Signal and backgrounds

As mentioned before, the process under study is pp ! H2H2 where each H2 decays to H1�
⇤ !

H1 µ
+
µ
�. As H1 is the DM candidate, it will escape the detector and only appears as missing

transverse energy, ��ET in the final state. Since the final state muons are the products of the o↵-
shell photon splittings (which invariant mass is ⇠ mH2 � mH1 and hence very small) they will
not be energetic. It is thus a challenging task to identify all muons required, as they will have to
survive all detector acceptance cuts and be compliant with some suitable trigger definition. As a
result, we require at least three muons in the final sate which can all be tracked in the detector.
Subsequently, we identify the signal and background as follows.

• Signal: The signal is at least three muons with at least one pair of opposite charge muons
plus missing transverse energy.

• Background: The dominant backgrounds to this signal [42, 43] are:

1. The di-boson final state V V (V = W
±
, Z, �) with the largest contributions from the

W
±
Z/� and ZZ final state where both vector bosons decay leptonically.

12The cross section for the tt̄ channel is around 300 pb, where both ts can decay to bottom quark and W
±

boson where one or both W
± will end up with some leptonic decays and will serve one or two leptons with missing

transverse energy in final state. Note that b quarks have a large misidentification rate at the LHC. Jets could also
be misidentified as leptons when the tt̄ state decays semi-leptonically which substantially reduces our BSM signal
significance over the SM background even after applying subsequent cuts.
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Figure 6: Normalised distributions for signal and backgrounds for the pT of the leading lepton
(top left), pT of the sub-leading lepton (top right), the missing transverse energy��ET (bottom left)
and the pT of the leading jet (bottom right) after detector analysis.

our signal events generally tend to exhibit close proximity while in the case of background events
they tend to be more widely separated. To discern between our signal and background events,
applying reasonable cuts based on these separation variables will prove to be e↵ective too.

In Fig. 9, we show the following variables:

mtransverse =

vuuut

0

@

vuut
 
X

µ

pT

!2

+m
2
µµµ/µµµµ

+��ET

1

A

2

�
 
X

µ

pT +��ET

!2

, (42)

m
jµ⇢ET
cluster =

X

µ

pT + p
j1
T
+��ET , (43)

wheremtransverse, which represents the transverse mass of the overall muonic final state whilemjµ⇢ET
cluster

is defined as the sum of the transverse momentum of all detectable muons plus the one of the
leading jet plus the missing transverse energy. While the former appears rather useful in separating
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S (Pre-selection) S (cut-A)
BP1 0.05 � 3.35 �

BP2 0.17 � 10.15 �

Table 4: Signal significance for the BPs at 14 TeV LHC with L = 3000 fb�1 after pre-selection
cuts and the cut-A sequence.

• From Tab. 2, it is evident that the application of the cut-B selection, results in the complete
elimination of background events within the signal region while the number of signal events is
approximately equivalent to what remains after cut-A. Therefore, cut-B may be a promising
scenario for background-free searches in future High-Luminosity LHC studies. Note that
cut-C and cut-D also lead to a background-free signal, however, they result in a loss of some
signal events. As a result, one might consider cut-B as the most favourable criterion for our
objectives.

We also note that for the at-least-three-muons + ��ET channel, imposing cut-A and cut-B
could e↵ectively eliminate the background interference even at Run-3 LHC with 300 fb�1

luminosity.

• Both cut-A and cut-B demonstrate remarkable e�cacy in eliminating all background con-
tributions for the at-least-four-muons + ��ET signal channel. Therefore, this channel holds
promise for studies of BP2-type scenarios.

• The trigger threshold e�ciencies for muons have not been incorporated in the detector
simulations thus far. Extensive testing has revealed that employing the high-level triggers
designed for muons at the LHC as outlined in [44] would result in the loss of approximately
30% to 35% of our signals when using the at-least-three-muons + ��ET signal channel. This
loss can be attributed to the lower trigger e�ciency at lower transverse momenta of the
muons.

However, for the at-least-four-muons + ��ET signal channel, the signal loss is anticipated to
be in the range of approximately 9% to 15%. A potential solution involves exploring the
identification of muons with less stringent trigger criteria on muon transverse momentum,
which has seen improvements at the LHC This updated configuration ensures that no signals
are lost in the signal channel.

5 Conclusion and outlook

We have investigated novel signals within the framework of a 3-Higgs Doublet Model (3HDM) at
the Large Hadron Collider (LHC), where only one of the doublets acquires a Vacuum Expectation
Value (VEV), maintaining a Z2 parity. The other two doublets remain inert and do not possess a
VEV, thereby forming a dark scalar sector governed by the Z2 symmetry. Within this setup, the
lightest CP-even dark scalar, denoted as H1, assumes the role of the Dark Matter (DM) candidate.

This scenario leads to an intriguing loop-induced decay process involving the next-to-lightest
scalar, H2 ! H1`

¯̀ (where ` = e, µ), mediated by both dark CP-odd and charged scalars. This
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Datasets Cross-section (fb) Pre-selection cut Cut-A Cut-B Cut-C Cut-D
BP1 6.961 17 16 16 13 13
BP2 3.733 59 58 58 41 32
WZ 163.4068 97691 9 0 0 0
ZZ 16.554 22614 2 0 0 0

WWW 0.248862 185 3 0 0 0
WWZ/� 0.04978 96 1 0 0 0
ZZZ 9.3516⇥ 10�3 16 0 0 0 0
tt̄W 0.606 114 2 0 0 0
tt̄Z/� 0.3045 136 1 0 0 0
tt̄WW 1.279⇥ 10�3 0 0 0 0 0
tt̄tt̄ 1.51359⇥ 10�3 0 0 0 0 0

Table 2: Cross-section and number of events for signal and backgrounds after subsequent cuts atp
s = 14 TeV and L = 3000 fb�1 for a final state with at-least-three-muons + ��ET .

Datasets Cross-section (fb) Pre-selection cut Cut-A Cut-B Cut-C Cut-D
BP1 6.961 2 1 1 1 1
BP2 3.733 12 11 11 6 6
WZ 163.4068 20 0 0 0 0
ZZ 16.554 8871 0 0 0 0

WWW 0.248862 0 0 0 0 0
WWZ/� 0.04978 41 0 0 0 0
ZZZ 9.3516⇥ 10�3 6 0 0 0 0
tt̄W 0.606 1 0 0 0 0
tt̄Z/� 0.3045 56 0 0 0 0
tt̄WW 1.279⇥ 10�3 0 0 0 0 0
tt̄tt̄ 1.51359⇥ 10�3 136 0 0 0 0

Table 3: Cross-section and number of events for signal and backgrounds after subsequent cuts atp
s = 14 TeV and L = 3000 fb�1 for a final state with at-least-four-muons + ��ET .

noting that the higher particle multiplicity in the final state leads to cross section suppression for
other contributions in the first scenario, such as WWW/Z/�, ZZZ, and tt̄W/Z/�, rendering
them less significant. In contrast, for the second scenario, despite its smaller cross section, the
tt̄tt̄ process emerges as a notable component due to the unique characteristics of this final state.
In this context, WWW does not play a significant role.

The projected significance (S) in the three muons plus ��ET channel for each BP in Tab. 4 is
then calculated for the 14 TeV LHC with 3000 fb�1 where S is defined as:

S =

s

2


(S +B) log(1 +

S

B
)� S

�
. (44)

Here, S and B denote the number of signal and background events, respectively, that have success-
fully passed through the sequence of selection criteria. Here, we limit ourselves to the signature
with at least three muons in the final state as the one with at least four muons has no statistical
relevance, owing the negligible number of surviving events.

Tab. 4 illustrates that, even though attaining signal significance su�cience for evidence or
discovery of a signal is challenging to start with, following the pre-selection cut, the implementation
of the cut-A selection has the potential to significantly reduce background contributions while
exalting the signal. Specifically, in the scenarios corresponding to BP1 and BP2, cut-A facilitates
achieving signal significances exceeding 3 � and 10 �, respectively. This is indeed the selection
that we would recommend for experimental analysis. Additionally, we would like to point out the
following.
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Definition of BPs with the masses shown in GeV. 
The last two columns show the cross sections for 

processes σ2μ ≡ σ(pp → H2H2 → H1H1 μ+μ−) and 

σ4μ ≡ σ(pp → H2H2 → H1H1 2μ+ 2μ−) in fb.
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are presented in section ??. In section 4 we present our collider analysis and finally darw our
conclusions in section 5.

2 The Z2 × Z2 case
The most general Z2 × Z ′

2 symmetric 3HDM potential has the following form [40, 66]:
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where V0 is invariant under any phase rotation while VZ2×Z′
2

ensures the symmetry under the
Z2 × Z ′

2 group generated by

gZ2 = diag(−1, 1, 1) , gZ′
2
= diag(1,−1, 1) . (2)

Under this charge assignment, the doublet φ3 is even under both Z2 and Z ′
2, while φ1 is odd

under Z2 and even under Z ′
2 and vice versa for φ2. We assign all SM gauge and matter fields

an even charge under the Z2 × Z ′
2 symmetry. In order to preserve our Dark Matter candidates

Z2×Z ′
2 symmetry remains unbroken by the vacuum broken. In such a case, only φ3 can develope

a VEV, and we can identify φ3 with the SM Higgs doublet.
With this setup, the Yukawa interactions are set to “Type-I” interactions, i.e., only the

third doublet, φ3, couples to fermions:

LY = Γu
mnq̄m,Lφ̃3un,R + Γd

mnq̄m,Lφ3dn,R + Γe
mnl̄m,Lφ3en,R + Γν

mnl̄m,Lφ̃3νn,R + h.c. (3)

The Z2 × Z ′
2 symmetry forbids the Yukawa interactions of the first and second doublets, φ1

and φ2, with fermions. This ensures that there are no Flavour Changing Neutral Currents
(FCNCs).

In a 3HDM with two inert doublets, there are the possible effects of dark CP-violation
[?,32–34,36]. In the model with Z2×Z ′

2 symmetry, all the complex phases in the scalar potential
are rephased out by the phase redefinition of the scalar fields without loss of generality. Even in
the potential without complex phases, physical CP phase can be induced by the spontaneoulsy
breaking of the Z2 × Z ′

2 symmetry, for particular choices of parameters, as discussed in [63].
However, in this paper, we consider tha case without the spontaneous breaking of the Z2 × Z ′

2

symmetry so that the CP symmetry is never broken in the scalar sector.
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2.1 Mass spectrum and physical parameters
In the Z2 × Z ′

2 symmetric vcuum, the vacuum state has the alignment (0, 0, v), where the
composition of the doublets are

φ1 =

(
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1
H1+iA1√
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)
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2
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v+h+iA0
3√

2

)
, (4)

with the extremum condition for this state reading as

v2 =
µ2
3

λ33
. (5)

The third doublet, φ3, plays the role of the SM Higgs doublet, with the Higgs particle h having,
by construction, tree-level interactions with gauge bosons and fermions identical to those of the
SM Higgs boson. Its mass is fixed through the tadpole conditions to be

m2
h = 2µ2

3 = 2v2λ33 (6)

and the A0
3 and H±

3 states are the would-be Goldstone bosons.
In the vacuum, there are two inert doublets, φ1 and φ2, and they provide two DM candidates.

Each doublet consists of two neutral particles1, Hi and Ai, and one charged particle H±
i with

i = 1, 2. For the two generations of inert scalars the mass spectrum is as follows:

m2
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and
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2 ≡ −µ2

2 + Λ2v
2, (10)
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2 + Λ̄2v
2, (11)

m2
H±
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= −µ2

2 +
1

2
λ23v

2. (12)

Parameters of the potential can be rephrased in terms of physical observables, such as
masses and couplings. The tree-level SM couplings in the gauge and fermionic sectors follow
exactly the SM definitions. The relevant parameters arising from the extended scalar sector
are: (i) masses of inert particles and the Higgs-DM couplings, which represent parameters from

1As it is the case in multi-scalar models with unbroken Z2 symmetries, the inert scalars Hi and Ai have
opposite CP parity, as evident from their gauge interactions. However, it is not possible to determine which is
even and which is odd, as they do not couple to fermions.
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EW precision Test (EWPT) 


Collider data LEP and LHC: Higgs total decay width, Higgs invisible decays, on-shell 
decays from Z, W.


The DM relic density.


DD and ID detection.


 Being ( , ) or  ( , ) DM candidates: work in progress.
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Figure 3: Diagrams (a) and (b) leading to the 2! +!!ET final state mediated by the Z boson.
Diagram on the left is proportional to g2ZH1A1

and the one on the right is proportional to
ghZZ × ghH1H1 .
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Figure 4: Diagrams (a) and (c) leading to the 2! +!!ET final state mediated by the Z boson.
Diagram on the left is proportional to g2ZH1A1

and the one on the right is proportional to
ghZZ × ghA1A1 .

BP mH1 mA1 mH±
1

mH2 mA2 mH±
2

Λ1 ghH1H1 ghH2H2 ghA1A1 ghA2A2 ΩH1h
2 ΩH2h

2

BP1 80 120.4 130 80 110.6 130 0.082 0.1916 0.1832 0.2492 0.2197 0.0032 0.0033

BP mH1 mA1 mH±
1

mH2 mA2 mH±
2

Λ1 ghH1H1 ghH2H2 ghA1A1 ghA2A2 ΩH1h
2 ΩH2h

2

BP2 80 120.4 130 110.6 80 130 0.0343 0.1916 0.0113 0.46 -0.1815 0.004 0.005

Table 1: The parameter values for BP1 and BP2. In both cases, we have set λ11 = 0.11, λ22 = 0.12,
λ12 = 0.121, λ′

12 = 0.13, the SM Higgs mass mh = 125 GeV and v = 246 GeV, are in agreement with all
astrophysical and collider constraints. For the BP1, the cross section is σ(e+e− → H1H1/H2H2 + ##̄) = 5.9 fb
and for the BP2, it is σ(e+e− → H1H1/A2A2 + ##̄) = 6.1 fb for 500 GeV centre of mass energy. For BP1, the
cross section is σ(e+e− → H1H1/H2H2 + ##̄) = 2.1 fb and for the BP2, it is σ(e+e− → H1H1/A2A2 + ##̄) = 1.7
fb for 1 TeV centre of mass energy.

give us two opposite sign leptons and missing energy in the final state. Note that in BP1, DM
could be either H1 or H2, while in BP2, DM is either H1 or A2.

The cross sections of the events for the signals are computed at leading order and created
using Madgraph@MCNLO [84]. The detector simulation is handled by Delphes-3.5.0 [85]. We
have used the inbuilt detector efficiencies available at Delphes-3.5.0 to identify final state
isolated particles. We use no further trigger efficiencies and apply PYTHIA8 [86] showering and
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Figure 6: t-channel diagrams leading to the 2!+!!ET final state mediated by the Z, h.

hadronisation.
In Figs. 5 and 6, we show the dominant s-channel and t-channel diagrams which contribute

to the e+e− → DMDM !+!− process (! = e, µ) where DM is represented by Hi. The diagrams
for Ai as DM are identical with the interchange of Hi ↔ Ai.

4 Collider Analysis and distributions
Recall that our signal is e+e− → DMDM !+!−, where DM will escape the detector resulting in
missing energy in the final state along with two opposite sign leptons. Here we consider both
electrons and muons in the final state.

To see the differences coming from two different BPs in an e+e− collider, we generate
our signal events for 1 TeV centre of mass energy. In this case we are trying to follow the
experimental set-up of International Linear Collider (ILC) [?,?,?,?,?] experiment and also we
consider that our e− and e+ beams are 80% and 30% polarized, respectively. For detector level
analysis we have used the dedicated Delphes card for ILC.

To conduct a comprehensive analysis at the detector level, we focus on the distribution
patterns of several key observables for both signals as shown in Tab. 2. We have defined
mtransverse as

mtransverse =

√(√
m2

!1,!2 + P 2
T !1,!2

+!!ET

)2

− P 2
T !1, !2,"ET

, (53)

where PT !1,!2 is the vector sum of the transverse momentum of two lepton system with highest
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experimental set-up of International Linear Collider (ILC) [?,?,?,?,?] experiment and also we
consider that our e− and e+ beams are 80% and 30% polarized, respectively. For detector level
analysis we have used the dedicated Delphes card for ILC.

To conduct a comprehensive analysis at the detector level, we focus on the distribution
patterns of several key observables for both signals as shown in Tab. 2. We have defined
mtransverse as

mtransverse =

√(√
m2

!1,!2 + P 2
T !1,!2

+!!ET

)2

− P 2
T !1, !2,"ET

, (53)

where PT !1,!2 is the vector sum of the transverse momentum of two lepton system with highest
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  (for ILC machine)e+e− → DMDMℓ+ℓ−
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Figure 7: Normalized distribution of the transverse mass of two lepton and missing energy
final state, mtransverse (left) and the invariant mass of two leading leptons and missing energy,
m!1,!2,Emiss (right) at 1 TeV ILC with e− and e+ are 80% and 30% polarized, respectively, for
BP1 and BP2 after detector simulation.
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Figure 8: Normalized distribution of the difference of pseudo-rapidity of two leading leptons,
η!1,!2 (left) and the radial separation between two leading lepton,∆R!1,!2 (right) at 1 TeV ILC
with e− and e+ are 80% and 30% polarized respectively for BP1 and BP2 after detector simu-
lation.
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Normalized distribution of the transverse mass of two lepton and missing energy final state, at 1 TeV ILC
 with e− and e+ are 80% and 30% polarized, respectively, for BP1 and BP2 after detector simulation. 
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Figure 10: Normalized distribution of the transverse mass of two lepton and missing energy
final state, mtransverse (left) and the invariant mass of two leading leptons and missing energy,
m!1,!2,Emiss (right) at 1 TeV ILC with e− and e+ are 80% and 30% polarized, respectively, for
BP1 and BP2 after detector simulation.
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Figure 11: Normalized distribution of the difference of pseudorapidity of two leading leptons,
η!1,!2 (left) and the radial separation between two leading lepton,∆R!1,!2 (right) at 1 TeV ILC
with e− and e+ are 80% and 30% polarized respectively for BP1 and BP2 after detector simu-
lation.
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Normalized distribution of the transverse mass of two lepton and missing energy final state, at 1 TeV ILC
 with e− and e+ are 80% and 30% polarized, respectively, for BP1 and BP2 after detector simulation. 
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I(2+1)HDM symmetric under  (1907.12470 [hep-ph])
Z3
3

The most general phase invariant part of a 3HDM potential has the following form:

V0 = �µ
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†
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where the notation of [11] was used. The construction of the Z3 symmetric part of the potential depends on the
generator of the Z3 symmetry. As we want to study the model with two di↵erent DM candidates, in order to
accomplish this, we will assign di↵erent charges to each doublet. More specifically, we assume that the Lagrangian is
symmetric under the Z3 transformation given by

�1 ! !�1 , �2 ! !
2
�2 , �3 ! �3 , (3)

with ! being a complex cubic root of unity, ! = e
2⇡i/3. In other words, we can write the generator of the group as

follows:

gZ3 = diag
�
!,!

2
, 1
�
. (4)

With these assignments, the Z3 symmetric potential term VG has the following form:

VZ3 = �1(�
†
2�1)(�

†
3�1) + �2(�

†
1�2)(�

†
3�2) + �3(�

†
1�3)(�

†
2�3) + h.c. (5)

We take all the parameters of the potential to be real. We will identify �3 with the SM Higgs doublet and the Z3

charges for all other SM particles are considered to be zero. The Yukawa Lagrangian in this model is identical to the
SM Yukawa Lagrangian (with additional terms for right-handed neutrinos) given by

LY = �u

mn
q̄m,L�̃3un,R + �d

mn
q̄m,L�3dn,R

+�e

mn
l̄m,L�3en,R + �⌫

mn
l̄m,L�̃3⌫n,R + h.c. (6)

We assume the vacuum alignment h�1i = h�2i = 0 and h�3i 6= 0, so that the Z3 symmetry is unbroken when EWSB
occurs via the Higgs mechanism.

A. The mass eigenstates

We define the components of each doublet as
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0
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The vacuum condition that the point (�0
1,�

0
2,�

0
3) = (0, 0, vp

2
) becomes the minimum of the potential leads to the

relation

v
2 =

µ
2
3

�33
. (8)

Expanding the potential around this vacuum point results in the mass spectrum below, where the pairs of scalar/pseudoscalar
base fields (H0

1,2/A
0
1,2) from the inert doublets in Eq. (7) are rotated by:

R✓i =

✓
cos ✓i sin ✓i
� sin ✓i cos ✓i

◆
, (9)

where ✓i = ✓h, ✓a are the rotation angles for the scalar and pseudoscalar matrices, respectively while there is no
mixing between the charged states. The mass spectrum of all spin-0 particles of the I(2+1)HDM is presented bellow.
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1

2
�31v

2 (12)

H
±
2 = H

0±
2 , m

2
H

±
2
= �µ

2
2 +

1

2
�23v

2

Note that tan ✓a = � tan ✓h and the CP-even and CP-odd mass eigenstates can be written as
(

H1 ⌘ cos ✓h H0
1 + sin ✓h H0

2

H2 = � sin ✓h H0
1 + cos ✓h H0

2

and

(
A1 ⌘ cos ✓h A0

1 � sin ✓h A0
2

A2 = sin ✓h A0
1 + cos ✓h A0

2

(13)

with masses

m
2
H1

= m
2
A1

= cos2 ✓h(�µ
2
1 + ⇤1) + sin2 ✓h(�µ

2
2 + ⇤2) + sin ✓h cos ✓h�3v

2 (14)

m
2
H2

= m
2
A2

= sin2 ✓h(�µ
2
1 + ⇤1) + cos2 ✓h(�µ

2
2 + ⇤2)� sin ✓h cos ✓h�3v

2

Note that the degenerate fields H1 and A1 can be grouped together into a complex neutral field N1 = (H1 + iA1)/
p
2

(and H2 and A2 states into N2 = (H2 + iA2)/
p
2, correspondingly). When �3 = 0, the inert doublets decouple from

each other and the complex fields N1 and N2 become eigenstates of the Z3 symmetry, with the Z3 charge +1 for
N1 and the Z3 charge �1 for N2. In general, though, when �3 6= 0, the states N1 and N2 do not have defined Z3

quantum numbers. We will discuss this further in section VI where we introduce the concept of Hermaphrodite’ DM
and discuss how it is distinguishable from a complex DM scenario.

We take the mass-degenerate H1 and A1 particles as constituents of the Hermaphrodite DM state, which are
protected from decaying to SM particles through the unbroken Z3 symmetry. Moreover, the only fields that transform
trivially under the Z3 symmetry are the SM fields and the fields from the only active scalar doublet, �3, which plays
the role of the SM Higgs doublet.

The (pseudo)scalar-gauge boson interaction plays an important role here, since a non-zero H1A1Z vertex predicts
a signal at direct detection experiments which contradicts the observation and rules out the model as a viable DM
framework. As we have show in Table I, the ZH1A1 vertex is proportional to cos 2✓h. This vertex vanishes at the
✓h = ⇡/4 slice of the parameter space which is where we define our benchmark scenarios in the upcoming sections.

B. Input parameters

We write the parameters of the potential that are relevant for our numerical studies,

µ
2
1, µ

2
2, �23, �31, �

0
23, �

0
31, �3, �1, �2 (15)

Coulb be posible to have two DM candidates : we called hermaphrodite DM scenario H1, A1
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FIG. 6. Feynman diagrams for the processes e
+
e
� ! 2l + 2DM, where l = e

�(µ�) and l̄ = e
+(µ+), Hs = A2(H2) and

DM = H1(A1). The first and last diagrams are the leading ones. (The diagrams in the second row only enter for the case
l = e

� and l̄ = e
+.)

TABLE III. Cross-section for the processes pp ! 2l + 2DM, with DM = H1, A1, taking L = 100 fb�1 as well as mH1 = 53
GeV, mA1 = 103 GeV, mA2 = 123 GeV, mH2 = 153 GeV, g1 = 0.029 with other parameters as in scenario B.

DM �(pp ! 2l + 2DM) Event rates
H1 0.280 pb 2.8⇥ 104

A1 0.135 pb 1.35⇥ 104

the same choice of �n and �n0 (for the kinematical analysis). As possible energies of a future e
+
e
� collider, we

adopt
p
s
ee

= 250, 350, 500 and 1000 GeV, with L = 1000 fb�1 in all cases. We also assume the following beam
polarisations: 80% for the e

� beam and 30% for the e
+ beam, though neither of these is necessary to uphold our

forthcoming conclusions. Cuts are the same as in the LHC case (initially). Again, as it happened for the latter, the
cross-sections at an e

+
e
� machine depend on the mass splitting mA2 �mH1 for the e

+
e
� ! 2l+2H1 channel and on

mH2 �mA1 for the channel e+e� ! 2l+2A1. Indeed, at a future e+e� machine, the detector resolution is even better
than at the LHC, so we expect to be able to see the two DM components of our Z3 symmetric I(2+1)HDM scenario
even more strikingly. To start with, Fig. 12 illustrates that, at the inclusive level, production rates of the above two

50 60 70 80 90 100 110

0.05
0.10

0.50
1

5
10

50

Δn

σ
(

+
l)(

)

MH1=53 GeV
MA1=103 GeV

FIG. 7. Cross-section of the processes pp ! 2l + 2H1 (blue colour) and pp ! 2l + 2A1 (orange colour) as a function of
�n = mA2 �mH1 (in GeV), with mA1 = 103 GeV and mH1 = 53 GeV. All points are compliant with DM (in)direct detection
bounds and relic density as well as the Higgs to invisible BR constraint. Here,

p
s
pp

= 14 TeV.

Feynman diagrams for the processes e+e− → 2l + 2DM, where l = e−(μ−) and ̄l = e+(μ+), Hs = A2(H2) and DM = H1(A1). 

  (for ILC machine)e+e− → DMDMℓ+ℓ−

We can compare with the cases of  shown previously
Z2 × Z′￼2 22
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Diagrams made by MadGraph5_aMC@NLO
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Signals in electron-proton colliders like LHeC, FCC-he:    or   or considering 
cascades of heavier scalar inserts having the final signatures: , , ,  (work in progress)

e−p → DMDMjℓ− e−p → DMDMjν
E/T j E/Tℓj E/T2ℓj E/T3ℓj
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Signals in electron-proton colliders like LHeC, FCC-he:



CONCLUSIONS 
We study 3HDM (in version I(2+1)HDM) symmetric under ,   and , we analyze interesting signals of DM that could be 
tested in the colliders: LHC, ILC and LHeC. 


In the I(2+1)HDM symmetric under , we analyze the cascade decay: 


  as a smoking-gun signal of 3HDM, 


  is induced at one-loop level. 


In the I(2+1)HDM symmetric under  (with two DM candidates): we study   (for ILC machine) in two 
cases: 


The two DM candidates have the same CP ( , ) and opposite CP in another ( , )


The distributions of observables for this collider can distinguish clearly both cases


Outlooks:


Special case of  I(2+1)HDM symmetric under  (we called hermaphrodite DM scenario ): two DM candidates  ( , ) and for ILC 
machine could be tested and distinguished with the case .


Signals in electron-proton colliders like LHeC, FCC-he:    or   or considering cascades of heavier 
scalar inserts having the final signatures: , , ,  

Z2 Z2 × Z′￼2 Z3

Z2

h → H1H2 → H1H1 f f̄

H2 → H1γ* → H1 f f̄

Z2 × Z′￼2 e+e− → DMDMℓ+ℓ−

H1 H2 H1 A2

Z3 H1 A1
Z2 × Z′￼2

e−p → DMDMjℓ− e−p → DMDMjν
E/T j E/Tℓj E/T 2ℓj E/T3ℓj
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momentum, and PT !1,!2,!ET
is the vector sum of the transverse momentum of two leading leptons

along with missing transverse energy. The observable Pθ is defined as

Pθ =
|Emiss − E!1,!2 |
Emiss + E!1,!2

, (54)

where E!1,!2 is the sum of the energy of two leading leptons. This is an observable which carries
the information of the fraction of energy imbalance between two lepton and the missing energy
system.

Variable Description
PT !1 Transverse momentum of leading lepton (the lepton that carries highest momentum)
PT !2 Transverse momentum of sub-leading lepton (the lepton carries second highest momentum)
"ET Missing transverse momentum
Emiss Missing energy
HT Scalar sum of transverse momentum of two leading leptons and missing energy
mtransverse Transverse mass of final state including two lepton and missing energy
m!1,!2 Invariant mass of two leading leptons
m!1,!2,Emiss Invariant mass of two leading leptons and missing energy system
∆η!1,!2 Difference of pseudo-rapidity between two leading leptons with highest momentum
∆η!1,Emiss Difference of pseudo-rapidity between leading lepton with highest momentum and missing

energy direction
∆R!1,!2 Radial distance between two leading leptons with highest momentum
∆R!1,Emiss Radial distance between two leading lepton with highest momentum and missing energy

direction
∆φ!1,!2 Difference of azimuthal angle between two leading leptons with highest momentum
∆φ!1, /ET

Difference of azimuthal angle between leading lepton and missing energy
∆φl−,!ET

Difference of azimuthal angle between negatively charged lepton and missing energy
Pθ Energy imbalance between missing energy and two leading lepton system

Table 2: Final state observables used to show the distributions of signal coming from BP1 and
BP2.

We analyse the distribution profiles of these final-state observables to identify observables
which can distinguish between the two BPs, i.e. whether the two DM component have opposite
or identical CP. In Figs. 7, 8 and 9, we show the distributions for an e+e− linear collider
operating at a center-of-mass energy of 1 TeV. In all plots, the green distributions represent
BP1 and the gray distributions correspond to BP2.

In Fig. 7, the mtransverse plot on the left shows a clear distinction between the two BPs, par-
ticularly in the higher transverse mass region. In BP1 where both DM components are CP-even,
the events tend to favour higher-energy final states involving leptons. In contrast, in BP2 where
the two DM components have opposite CP, the distribution shows different characteristics. The
right panel shows the distribution of the invariant mass of the final state, m!1,!2,Emiss . Here,
BP2 predominantly favours the low-mass region, whereas BP1 shows significant contributions
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