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Carrollian symmetries

Symmetries ubiquitious in constraining physics
I Kinematics & Dynamics

I Correlations functions
I Decay channels
I Density of states

Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré

I Symmetries of null hypersurfaces horizons, flat space asymptotics

I Symmetries of tensionless strings
I Fractons & cosmology
I Carroll gravity
I Carroll CFTs and flat space holography
I Carroll QFTs

Carrollian symmetries key in numerous recent developments
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Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré

The Red Queen offers advice to

Alice, who finds herself running

intensely, but not actually moving

forward: “Now, here, you see,” says

the Red Queen, “it takes all the
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same place. If you want to get
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Carrollian symmetries

Symmetries ubiquitious in constraining physics
I Kinematics & Dynamics
I Correlations functions
I Decay channels
I Density of states

Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré
I Symmetries of null hypersurfaces horizons, flat space asymptotics

I Symmetries of tensionless strings
I Fractons & cosmology
I Carroll gravity

Idea: theories with local Carroll boost & diff invariance

e.g. Carroll Jackiw–Teitelboim model DG, Hartong, Prohazka, Salzer ’20;

Gomis, Hidalgo, Salgado-Rebolledo ’20

e.g. Carroll black holes Ecker, DG, Hartong, Perez, Prohazka, Troncoso ’23

I Carroll CFTs and flat space holography
I Carroll QFTs

Carrollian symmetries key in numerous recent developments
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Carrollian symmetries

Symmetries ubiquitious in constraining physics
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Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré
I Symmetries of null hypersurfaces horizons, flat space asymptotics

I Symmetries of tensionless strings
I Fractons & cosmology
I Carroll gravity
I Carroll CFTs and flat space holography

BMS3 'CCA2 Bagchi, Barnich, Detournay, Fareghbal, DG, Simon, . . . ’10-’13
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Landscape of applications of Carrollian physics

slide provided by Arjun Bagchi in Edinburgh 2023
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Formally: take c→ 0 limit of Poincaré symmetries
Analogous to Galilean limit but with reversed roles of space and time

I Unchanged: translations H = ∂t, Pi = ∂i, rotations Jij = xi∂j − xj∂i

I Changed: boosts

Bi = c2t ∂i − xi ∂t
c→0→ Bi = −xi ∂t

Carrollian algebra like Poincaré, except for boosts:
I Hamiltonian commutes with Carrollian boosts Hamiltonian in center of Carroll algebra

[Bi, H] = 0

I Carrollian boosts commute with each other no “Thomas precession”

[Bi, Bj ] = 0

I Spatial translations do not commute with Carrollian boosts Heisenberg

[Bi, Pj ] = δij H

I Angular rotations do not commute with Carrollian boosts vector trafo

[Bk, Jij ] = δk[iBj]
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I Hamiltonian commutes with Carrollian boosts Hamiltonian in center of Carroll algebra

[Bi, H] = 0

I Carrollian boosts commute with each other no “Thomas precession”

[Bi, Bj ] = 0

I Spatial translations do not commute with Carrollian boosts Heisenberg

[Bi, Pj ] = δij H

boosts and translations generate subalgebra of Carroll algebra

I Angular rotations do not commute with Carrollian boosts vector trafo

[Bk, Jij ] = δk[iBj]
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Carrollian limit of Minkowski metric

I Metric degenerates to spatial metric:

ds2 = ηµν dxµ dxν = −c2 dt2+δij dxi dxj
c→0→ ds2 = δij dxi dxj

I Inverse metric degenerates to temporal bi-vector:

−c2ηµν =

(
1 0
0 −c2δij

)
c→0→ vµvν with vµ = δµt

I Carroll spacetimes require specification of Carrol metric hµν with
signature (0,+,+, . . . ,+) and time-like Carroll vector vµ with

hµν v
ν = 0

I Carroll symmetries preserve this Carroll structure

Lξhµν = 0 = Lξvµ

Carroll symmetries generated by vector ξµ through Lie derivative
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c→0→ vµvν with vµ = δµt

I Carroll spacetimes require specification of Carrol metric hµν with
signature (0,+,+, . . . ,+) and time-like Carroll vector vµ with

hµν v
ν = 0

could envisage generalization to metrics with signature (0, . . . , 0,−, . . . ,−,+ . . . ,+)

I Carroll symmetries preserve this Carroll structure

Lξhµν = 0 = Lξvµ

Carroll symmetries generated by vector ξµ through Lie derivative
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Two Carroll limits of Klein–Gordon action

I Direct c→ 0 limit of Lagrangean KG action

IKG ∼
1

2

∫ [
(∂tφ)2 − c2δij(∂iφ)(∂jφ)

]

I yields electric Carrollian scalar action

Ie ∼
1

2

∫
(∂tφ)2

I with ultralocal EOM ∂2t φ = 0
I Direct c→ 0 limit of Hamiltonian KG action yields magnetic Carollian

scalar action

Im ∼
∫ [

Π ∂tφ−
1

2
δij(∂iφ)(∂jφ)−c

2

2
Π2
]

I with on-shell constraint ∂tφ = 0 and Laplace EOM δij∂i∂jφ = 0

Both cases: no propagation with finite velocity
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I Direct c→ 0 limit of Lagrangean KG action

IKG ∼
1

2

∫ [
(∂tφ)2 − c2δij(∂iφ)(∂jφ)

]
I yields electric Carrollian scalar action

Ie ∼
1

2

∫
(∂tφ)2

I with ultralocal EOM ∂2t φ = 0
I Direct c→ 0 limit of Hamiltonian KG action yields magnetic Carollian

scalar action

Im ∼
∫ [

Π ∂tφ−
1

2
δij(∂iφ)(∂jφ)−c

2

2
Π2
]

I with on-shell constraint ∂tφ = 0 and Laplace EOM δij∂i∂jφ = 0

Both cases: no propagation with finite velocity
Can we do better?
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Issues with propagation in Carrollian theories

1. lightcone collapses, so only tachyonic modes can propagate

2. “inverse metric” hµν not Carroll boost invariant, so cannot raise
tensor indices while maintaining Carroll boost invariance

How to deal with these issue?

1. accept presence of Carrollian tachyons (= swiftons) but check
boundedness of energy to make sure they are kosher

2. work with covectors θµ that are transverse, θµv
µ = 0; then their norm

θµθ
µ = θ2

is Carroll boost invariant and can be used as interaction term
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µ
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1. lightcone collapses, so only tachyonic modes can propagate

2. “inverse metric” hµν not Carroll boost invariant, so cannot raise
tensor indices while maintaining Carroll boost invariance

How to deal with these issue?

1. accept presence of Carrollian tachyons (= swiftons) but check
boundedness of energy to make sure they are kosher

2. work with covectors θµ that are transverse, θµv
µ = 0; then their norm

θµθ
µ = θ2

is Carroll boost invariant and can be used as interaction term

works also for tensors θµ1...µn transverse in all indices: θ2 is invariant!
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Issues with propagation in Carrollian theories

1. lightcone collapses, so only tachyonic modes can propagate

2. “inverse metric” hµν not Carroll boost invariant, so cannot raise
tensor indices while maintaining Carroll boost invariance

How to deal with these issue?

1. accept presence of Carrollian tachyons (= swiftons) but check
boundedness of energy to make sure they are kosher

2. work with covectors θµ that are transverse, θµv
µ = 0; then their norm

θµθ
µ = θ2

is Carroll boost invariant and can be used as interaction term

Example: ∂µφ is transverse if vµ∂µφ = ∂tφ = φ̇ = 0 ⇒ explains on-shell
constraint of magnetic theory!
Daniel Grumiller — Carroll swiftons Electric and magnetic free scalar field 11/19
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Swifton action
Baig, Distler, Karch, Raz, Sun ’23; Ecker, DG, Henneaux, Salgado-Rebolledo ’24

I Technical key observation:

Bν := vµ
(
∂µφ1∂νφ2 − ∂µφ2∂νφ1

)
is trivially transversal, vνBν = 0

I Suggests derivative interaction term B2

I Adding this to electric Carroll action for two scalars yields

I[φ1, φ2] =

∫ [
1

2
φ̇21 +

1

2
φ̇22 + g B2

]
⇒ swifton action (Carroll boost invariant by construction)

I energy density is positive definite

H =
1

2
√
h
HAB πAπB

⇒ energy bounded from below! (differs from tachyons)
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Taylor expanded Swiftons

I Taylor expand scalar fields around non-trivial background

φ1 = ε ϕ+O(ε2) φ2 = t+O(ε2)

Note: O(1) is exact solution of EOM

φ̈1 = g∂µ
(
h
µν
Bν φ̇2

)
− g∂t

(
h
µν
Bν∂µφ2

)
φ̈2 = g∂t

(
h
µν
Bν∂µφ1

)
− g∂µ

(
h
µν
Bν φ̇1

)

I action quadratic in fluctuations

I[ϕ] = ε
2
∫ [ 1

2
ϕ̇
2

︸ ︷︷ ︸
electric

+g h
µν
∂µϕ∂νϕ︸ ︷︷ ︸

magnetic

]

has Klein-Gordon wave operator for negative values of g

I propagation velocity depends on size of coupling constant⇒ emergent effective speed of light

I Swifton theory Carroll boost invariant

I Quadratic fluctuations around non-trivial background propagate
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Generalizations without gravity

I bi-scalar swiftons ⇒ multi-scalar swiftons

I[φi] =

∫ [ N∑
i=1

φ̇2i + g B2 − V (φi)

]
with

Bµ2...µN = vµBµ1...µN Bµ1...µN =
(
∂[µ1

φ1
)
. . .
(
∂µN ]φN

)

I electromagnetic model; technical key observation (F = dA)

Cνλκ := vµF[µνFλκ] is transversal

⇒ C2 Carroll boost invariant interaction term
I electromagnetic swifton action

I[Aµ] =

∫ [1

2
(vµFµν)2 + g C2

]
leads again to non-negative energy density

I propagation of fluctuations above constant electric background
I can combine complex scalar swifton and couple to electromagnetic

swiftons; as expected, U(1) symmetry local by minimal substitution
∂µ → ∂µ − iAµ
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⇒ C2 Carroll boost invariant interaction term
I electromagnetic swifton action

I[Aµ] =

∫ [1

2
(vµFµν)2 + g C2

]
leads again to non-negative energy density

I propagation of fluctuations above constant electric background

Fti = δ
x
i E + εEi +O(ε

2
) Fij = εBij +O(ε

2
)

yields dispersion relation

ω2 = c2eff

(
k2y + k2z

)
for fluctuations, with effective speed of light

c2eff = −g E2

I can combine complex scalar swifton and couple to electromagnetic
swiftons; as expected, U(1) symmetry local by minimal substitution
∂µ → ∂µ − iAµ

Daniel Grumiller — Carroll swiftons Generalizations and outlook 16/19



Generalizations without gravity

I bi-scalar swiftons ⇒ multi-scalar swiftons

I electromagnetic model; technical key observation (F = dA)

Cνλκ := vµF[µνFλκ] is transversal

⇒ C2 Carroll boost invariant interaction term

I electromagnetic swifton action

I[Aµ] =

∫ [1

2
(vµFµν)2 + g C2

]
leads again to non-negative energy density

I propagation of fluctuations above constant electric background yields
again swiftonic propagating modes with finite propagation speed

I can combine complex scalar swifton and couple to electromagnetic
swiftons; as expected, U(1) symmetry local by minimal substitution
∂µ → ∂µ − iAµ
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Generalization with gravity I — swiftons on Carroll backgrounds

I focus on generic Carroll dilaton gravity in 2d

ICDG =

∫ [
X dω +XH

(
dτ + ω ∧ e

)
+XP de+ τ ∧ eV(X, XH)

]

I technical key observation: Stückelberg-like trafo

δλXP = λXH δλXH = 0 = δλX

I define Carroll boost invariant spatial derivative

∂̂ := eµ∂µ +
XP

XH

vµ∂µ

I Carroll boost invariant single scalar swifton action

I[φ] =

∫ [1

2
φ̇2 +

g

2

(
∂̂φ
)2]

I example: scalar swifton on Carroll–Schwarzschild background

∂2t Ψ + g ∂2r∗Ψ =
2gm

r3

(
1− 2m

r

)
Ψ

Ψ. = r φ, Regge–Wheeler coordinate r∗ := r + 2m ln( r
2m
− 1)
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Generalization with gravity II
Dynamical torsion from swifton backreaction

I Couple single scalar swifton action to Carroll dilaton gravity

I non-linear EOM couple to each other

I torsion equations have scalar field (!) as source

intrinsic torsion: de = − g

XH

φ̇ ∂̂φ τ ∧ e

torsion: dτ + ω ∧ e =
g XP

XH

φ̇ ∂̂φ τ ∧ e

I Qualitative new features as compared to Lorentzian theories

I To be explored!
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Summary & Outlook

I Carroll CFTs likely dual to gravity in asymptotically flat spacetimes

I simple Carroll models boring (e.g. electric or magnetic scalar)

I aim: find interacting Carroll invariant QFTs with propagation

I Swiftons = Caroll tachyons but with energy bounded from below

I constructed Carroll boost invariant scalar, vector, tensor models

I fluctuations around certain backgrounds propagate with finite speed

I scalar coupled to Carroll dilaton gravity produces dynamical torsion

Long-term goal: find (class) of Carroll CFTs dual to Einstein gravity

ευχαριστώ
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