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Summary & Contents

Summarizing statements

@ Our understanding of Classical Gravity, encoded in General Relativity,
relies on Riemannian Geometry.

@ Quantum Theory and (first order) Riemannian Geometry are
incompatible.

@ Second order geometry is a minimal extension that makes
Riemannian geometry compatible with quantum theory.

@ Extensions to kth-order geometry with k € N are possible.
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Incompatibility between Geometry
and Quantum Theory

A path integral analysis
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Quantum Mechanics

Replace single path by (uncountably) many paths weighted by P

Xo T

e e ———

we P:g@)—=0ll

P on Q induces 1 =P o X~ on L?(Q), such that dux = e~ n DX

Note: Picture can be generalized to (relativistic) field theory.
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Quantum Mechanics

Replace single path by (uncountably) many paths weighted by P

Xo T

e e ———

we P:g@)—=0ll

P on Q induces 1 =P o X~ on L?(Q), such that dux = e~ n DX
Note: Picture can be generalized to (relativistic) field theory.

Problem: Existence! of probability measure P
Question: What do the paths look like?

! Albeverio, Hgegh-Krohn, Mazzucchi, Lecture Notes in Math.=523, Springer (2008).
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Existence of P

Euclidean theory

Wick rotation:
© Change of signature: Lorentzian — Euclidean
@ Change of diffusion: Quantum — Statistical

Wick rotation — Wiener integral?
= X becomes a Wiener process (a.k.a. Brownian Motion)
= P exists in the Euclidean Theory

Lorentzian Theory
IP does not exist (in a minimal formulation).
Existence of P can be achieved by complexifying the tangent bundle:*

TM= || TM= || TM"®
xeM xeM
2M. Kac, Trans. Amer. Math. Soc. 65 (1949).

3R. Cameron, J. Math. and Phys. (1960); Yu. Daletskii, Russ.Math.Surv. (1962).
*M. Pavon, J. Math. Phys. 41 (2000); FK, Eur. Phys. J. Plus 138 (2023).
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Property |: Rough Paths

£ XE,wW

we P:g@)—=lold

X(w) € C° (continuous everywhere), X(w) ¢ C' (nowhere differentiable)
More precisely,® X(w) is a-Hélder continuous only for o < 1/2:

X(w) € C*(R,M), a€10,1/2).

Path integral formulation Canonical Quantization

time—ordering6
—

Roughness of paths Non-commutativity

®cf. e.g. Morters & Peres, Cambridge UP (2012).
®R.P. Feynman, Rev. Mod. Phys. 20 (1948).
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Property Il: Worldlines — Worldsheets

Classical theory: dim{X(7):7€[0,T]} =1

Note: Upper bound is set by a-Holder regularity:

dimpausdori { X (7, w) : 7 € [0, T],w € Q} < al

sup

Tcf. e.g. Morters & Peres, Cambridge UP (2012).
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Implications of roughness

Paths are non-differentiable:

im XH(T +d1) — XH(71)

= to00.
dr—0 dr

By taking an expectation value, we obtain well-defined limits

XH dr) — X#
vii = lim < (r+dr) (T)>,
dr—0 dr
B(Y — XH(r —
V4~ fim <X (1) — XH(r dT)>
dT—0 dr

defining independent velocities along the path.
Similarly, one can define the second order object
< [XH(T 4+ dT) — XH(7)][XY (T + d7) — X¥(7)] >

Nz
13

= lim
dr—0

dr

which is the velocity of the variance.
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Rough paths

Given w € Q, X(w) : R — M and f,g € C3(M,C), h € C*(C,C)
We define the increment
dy X(7) := X(7 + d1) — X(7),
d_X(7) = X(1) — X(7 — d1).
Then, since X(w) € C/27¢(R, M), one has
deX® = b drt/? + Vi dr + o(dT),
da XMy XY = BB, dr + o(d7),
dyf = aufdiX“i% 0,0, f deX s X" + o(dr),
difdeg = 0,f 0pg di XHd XY + o(dT).
=- modification of Leibniz rule and chain rule:

di(fg) = fdig—i—gdif:l:difdig,
1
de(ho f) = (H o ) def (H' o ) defdef
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Change of basis

We may also define the increments

doX(7) :== X(7 + d7/2) — X(7 — d7/2),

d3X(7) := X(7 4+ d7) =2 X(7) + X(r — d7).
Then

doX(7) = b*fﬁb‘ dm'/2 4 v, dr + o(d7),

BX(7) = (by — b_)drY? +2v, dr + o(dT),
where

Remark: by can be related to creation/annihilation operators using the
Wiener-1td chaos expansion®

8P. Biane, Stoch. Process. Their Appl. 120 (2010).
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Rough paths and Geometry

First order geometry: differential forms are given by
df(x) = 0,f dx".

Riemannian Geometry: the line element is assumed® to be given by
ds? = guv dx'dx” .

For rough paths, this does not encode all necessary information.
Regularity requirement: o = 1, while oo < 1/2.
= Incompatibility between quantum theory and geometry

B. Riemann (1868).
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Rough paths and Geometry

First order geometry: differential forms are given by
df(x) = 0,f dx".

Riemannian Geometry: the line element is assumed® to be given by
ds? = guv dx'dx” .

For rough paths, this does not encode all necessary information.
Regularity requirement: o = 1, while oo < 1/2.
= Incompatibility between quantum theory and geometry

Solution: Second order geometry
1
dof = @Lf dox* + E@,,auf dx*dx" |

ds? = gudaxtdax” + gy(m)dgx“dx”dx)‘ + 8(po)pdxPdx?dax”
+ g(pg)(,i)\)dxpdx”dx“dxA .

B. Riemann (1868).
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Introduction to
Second Order Geometry!?

1°p A. Meyer, Springer Berlin (1981); L. Schwartz, Montreal University Press (1984);
M. Emery, Springer Berlin (1989); Q. Huang, J.C. Zambrini,-J. Nonlinear Sci: (2023).
F.J. Kuipers (LMU Miinchen) Second Order Geometry QG Corfu, Sep. 2024 12 /25



Second order geometry

Given a manifold M and x € M, the (co)tangent spaces are extended:
M — To M= TM& Sym(TM @ TeM)
Vectors v € T xM and forms a € T;, M are represented as
1
v=v"o,+ 5 v 0,0, ,
1
a = ay doxt + 5 dx*dx” .

The duality pairing is given by

1
(a,v) = auv! + 5 au,,véw
Dimensions
dim(M) =n =4,
dim(T,M) =n =4,
dim( Ty M) = M1F3) gy
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Coordinate transformations
Structure group of Tp M is the Itd group:
G! = GL(n,R) x Lin(R" ® R",R")

such that (v, vy) € ToM transforms under x# — X* as

oH XM 1 _9PRM Vel
_ OxV 2 K A
(o) = (% 2o ) (1)
2 Ox® Gx\ 2

= v* does not transform covariantly.
There exist covariant representations:

1
oH = vP + > Ty,
o=
where I is the first order Christoffel symbol.

A similar analysis applies to forms.
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Lorentz symmetry

Under the Lorentz symmetry, second order vectors transform as

\78 _ ad e’léa“/\af Vd
vbe) L0 ABAS )\ v

where A € SO*(3,1) and

a__ su a_  pb o a
vi=0lel — vy wi)
bc _ uv_b_c
v =v"e e,

with e the polyad (vielbein) and w the spin connection.

= Lorentz symmetry is deformed by the off-diagonal term.

Deformations vanish in two limits:
@ No fluctuations: A — 0= v — 0; et
o Flat space(time): G — 0= 0\ — 0.
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Second order Metric

Inner product on the tangent spaces:

, oy 1 o 1 007 o1 o A
gu Vv = G 0M0 +§GM(HA)VMV5/\+§G(PU) 05708 + = G(pa)(,n@,\) 0P m\

where
8uv 0
G,uu G[J,(Ii)\) > -2 2(1-a)
= ¢ 8prBor t 8pA8or n
<G<pa)u Gloo)(n2) o = ( g g >

+b (Rpmr)\ + Rp)\mf)

@ /5 a small length scale;

e acR;

e n = dim(M);

@ b is related to the Pauli-DeWitt term:

o B.S. DeWitt, Rev. Mod. Phys. 29 (1957) = b =1
o B.S. DeWitt, Int. Ser. Monogr. Phys. 114 (2003) =>b—f
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Killing vectors
Lie derivative!l of a first order tensor along a second order vector field:
L) T=LoT+ V" (V Vo +R )T

= Killing equation?!?
Viukyy = KSR ypvo

— For any diffeormorphism generated by (v, v2)
(80p V"V + VI Rypwo) TH = 0.
= Gravitational anomaly as V,(T*") # 0.
— For any Killing vector one can define a conserved current

~ A 1 A
o=k, = <k” + Y kgg) T = V=0,

2 7

HFK, JHEP 05 (2021); Q. Huang, J.C. Zambrini, J. Nonlinear Sci. (2023).
2FK, Springer Proc. Math. Stat. (2022).
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Implications and Extensions
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Path integral measure

Any physical theory must depend on the second order vectors
{(v4, v2), (v—, va)} or {(vo, v2), (v, v2)}, such that

L(x,v) = L(x, Vo, vi, v2)
Thus, the path integral measure is given by
dp(X) = e/ Loxveviw)dr pyx
On a flat space(time),
dp(X) = el [ Loovo)dr gi [ Lixvi ) ol [ L(xwa)dr px

Hence, the new parts containing v; and v, only affect the normalization.

On curved space(times) one must consider the full measure, as v,, v|
couple to vs.
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Hamiltonian

The Hamiltonian is constructed through a second order Legendre
transform:13

H(Xa Po, aL’ p2) = <p05 VO> + <PL Vl> - L(Xa Vo, V1, V2)
Example for free particle:
€ AO A0 A v o}
H=" e { (s + prot) + - L G0 5252 4 2

Note:
@ One obtains a modified energy-momentum relation.

@ The Hamiltonian is quadratic in all momenta = it is bounded from

below.
o Ostragradski's theorem does not apply, as we consider 9%, d2x dxdx
g 5 PP dr’ dr 7 drt
dx d-°x
instead of 7%, 5.

13Q. Huang, J.C. Zambrini, J. Nonlinear Sci. (2023)
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Field Theory

All analysis so far was for the single particle.
However, we can derive some implications for field theories:

@ A QFT on curved spacetime has a deformed Lorentz symmetry <>
modified dispersion relations;

@ Deformations scale with 7 G = Ig.

@ Field theories are defined on the second order jet bundle
L(¢, V) = L(¢, V9, VV ).

@ Ostragradski’'s theorem is avoided = ghosts may be avoided.

@ = Quadratic gravity may be both normalizable and ghost-free.
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Unification?

TM— TM=TMe TM @ Sym(TeM @ TyM)

dim(T,M) =n =4 =(1,3),
dim(fXM):N:n(n—i_B):lS: (5,13) if a>0,
2 (6,12) if a<0.

It has been suggested that n = 4 < N allows for unification of forces'#

e For N = 14, scenario with!® SO(1,13) and® SO(3,11).
e For N = 18, scenario with!” SO(1,17) and'® SO(2, 16).

@ Unification in kth-order ge;eometry.19

“Krasnov, Percacci, Class. Quantum Grav. 35 (2018).

®Percacci, Phys. Lett. B144 (1984); Chamseddine, Mukhanov, JHEP 03 (2016).
6Nesti, Percacci, Phys.Rev.D 81 (2010).

"Konitopoulos, Roumelioti, Zoupanos, Forthschr. Phys. 72 (2024).
BRoumelioti, Stefas, Zoupanos, Eur.Phys.).C 84 (2024).

1°Bies, arXiv:2406.06605 [math.DG] (2024).
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Extensions: non-commutative geometry
We have assumed a symmetric second order vector field, since
f=v"o,f L 10,0, f
dof = vHO,f + §v2 LOuf .
By promoting 0, — D,, with [D,, D,] #0, v = & ;’X is no longer

required to be symmetric. This imposes a spacetime non-commutativity
relation of the form

[x*,x"] = B*(x).
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Extensions: non-commutative geometry

We have assumed a symmetric second order vector field, since
f =vH*o,f L f
dof = vFO,f + §v2 0, 0uf .

By promoting 0, — D,, with [D,, D,] #0, v = & ix is no longer
required to be symmetric. This imposes a spacetime non-commutativity
relation of the form

[x*,x"] = B*(x).

We may also extend to infinite order geometry:

1 1
dof = V'O + SV5" 0,0,F + S V5" 00,0y + .

This corresponds to studying non-continuous paths X ¢ C°. This can be
related to a space-time non-commutativity relation of the form?°

[x!', x"] = C)"(x) x”.

2 Arzano, FK, arxiv:2409.xxxxx (2024).
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Conclusions & Outlook
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Conclusions
@ Path integrals violate basic assumptions of Riemannian geometry
= incompatibility between Quantum theory and Gravity;
@ Solution: Higher order Geometry.
o Implication: dim(7, M) > dim(M) = 4.

Outlook I: Further development of 2"d-order geometry

e Math: generalize concepts from 1%t-order to 2"4-order geometry.
@ Physics: investigate consequences such as

o Dynamical theory of gravity in 2"9-order geometry

e Unification of gauge forces and gravity

Outlook II: Generalizations beyond 2"9-order geometry
o Rougher paths: consider C1/% paths with k € N
o requires k''-order geometry.
o k— o0 =[xt x"] = CI"xP.
e Non-symmetric v, fields = [x*, x"] = B*
@ Sector (vo, Vv ) <> generalized geometry?
° ...
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