Precise prediction for the W-boson mass in U(1) extensions of the standard model

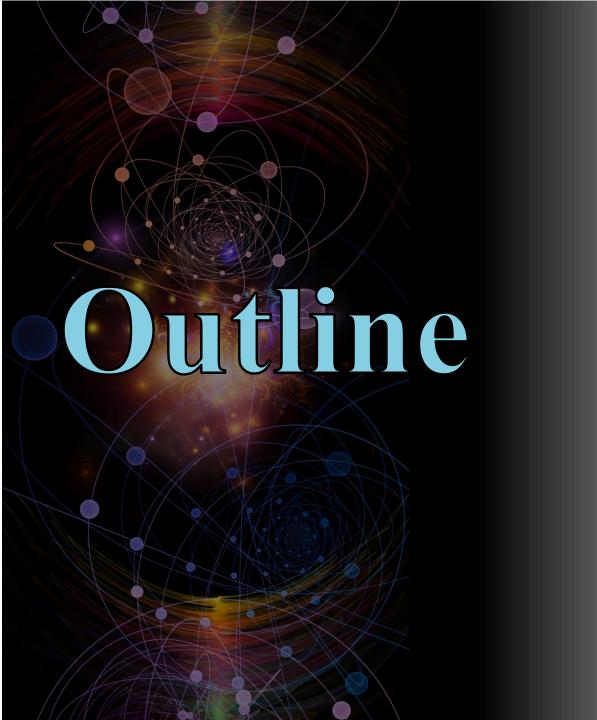
Zoltán Péli

Eötvös Loránd University zoltan.peli@ttk.elte.hu

in collaboration with Zoltán Trócsányi

Workshop on
Standard Model and Beyond
Aug. 27. – Sept. 7., 2023
Corfu

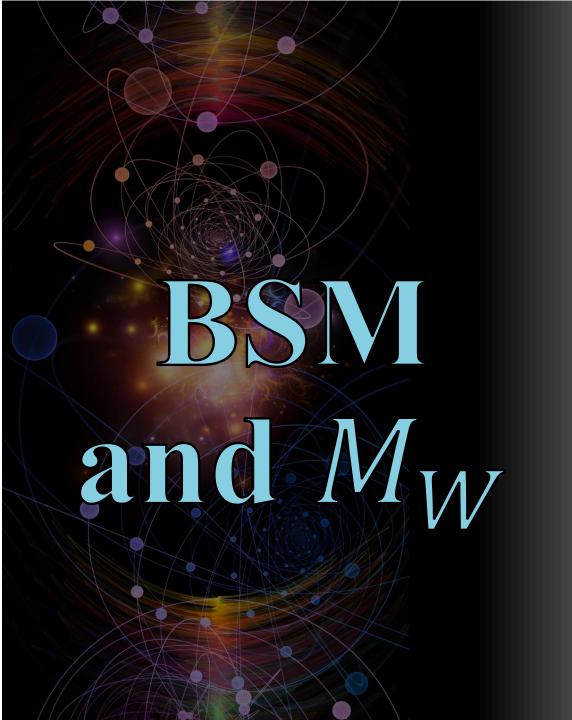
[2305.11931]



W-boson mass and BSM physics

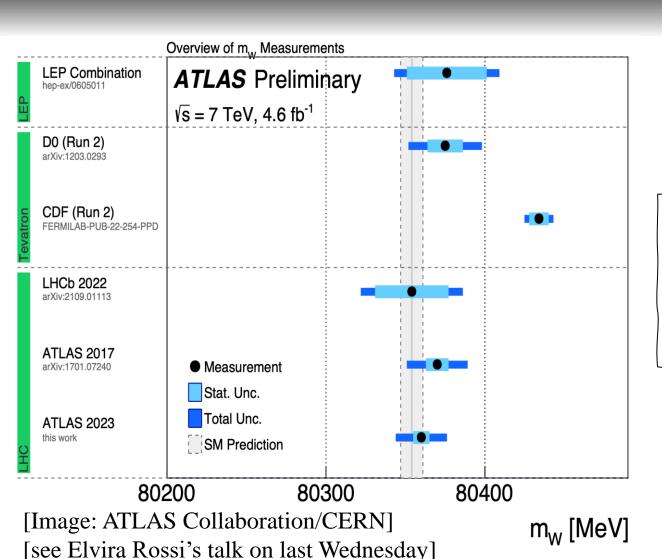
• U(1) extensions of the standard model

• On the effect of the full 1-loop correction to the W-mass

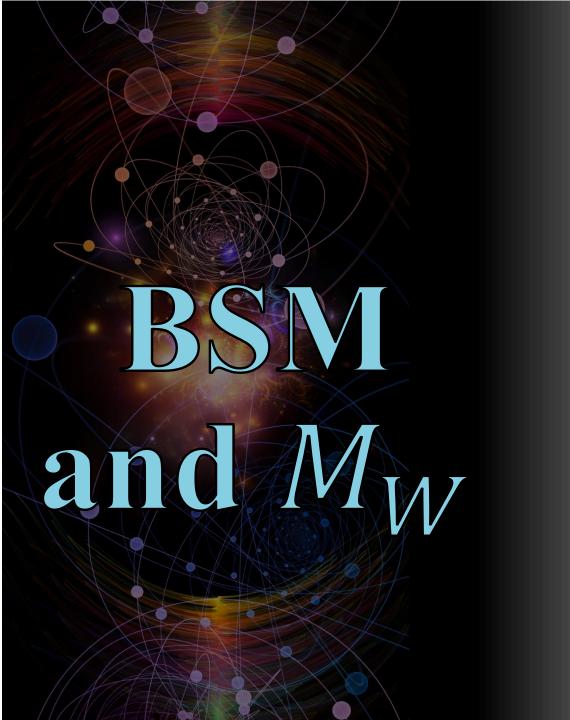


• Small uncertainty (~10 MeV) in theory and experiment

Prediction & measurement of M_W



- Theory (SM, MS-bar [1411.7040]): $M_W^{\text{theo}} = 80353 \pm 9 \text{ MeV}$ (with PDG 2022 inputs)
- Experiment (PDG 2022 world. avg.): $M_W^{\text{exp.}} = 80377 \pm 12 \text{MeV}$



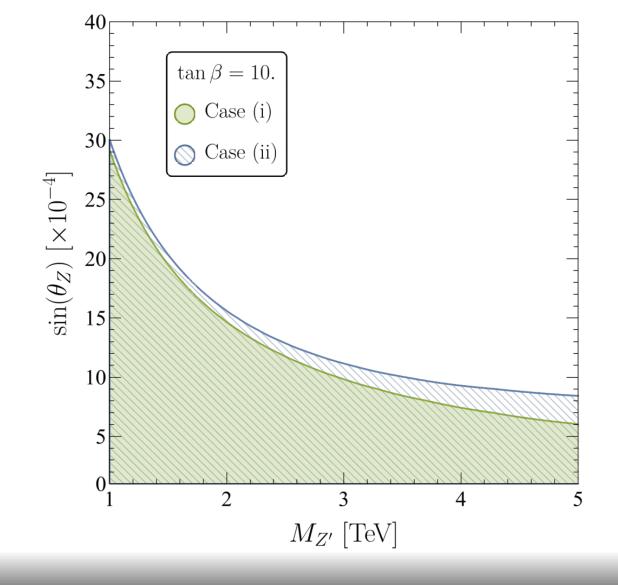
• Small uncertainty (~10 MeV) in theory and experiment

• Small BSM effects on M_W can be exposed

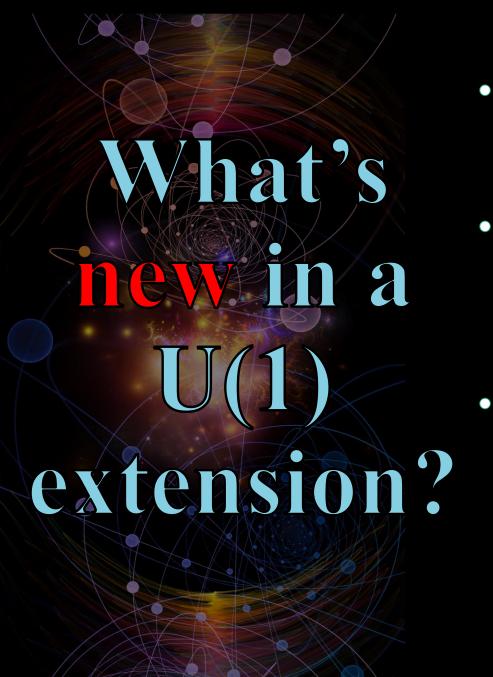
• U(1) extensions affect M_W at tree level so precision is important (1-loop)

- Precise predictions in BSM models are important
- Full Δr at 1-loop in U(1)
 extensions is computed
- Full Δr (Case i.) may become important for heavy $M_{Z'}$
- ...compared to the available predictions (Case ii.)
- Fig. shows region where:

$$\left|M_W^{\text{exp.}} - M_W\right| < 2\sigma$$



Take home message



- SM gauge group + an extra U(1) adds a new interaction
- May add new scalar field(s), can stabilize the EW vacuum
- May add righthanded (sterile) neutrinos: neutrino mass generation via see-saw, dark matter

(2 gauge + 3 scalar) • $tan\beta = \frac{w}{v}$: ratio of new VEV to BEH VEV

Gauge sector:

- M_Z' : mass of the new gauge boson Z'
- S_Z : new gauge mixing angle, rotation of gauge eigenstates to mass eigenstates:

New parameters:
$$\begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \\ B_{\mu}' \end{pmatrix} = \begin{pmatrix} c_{W} & -s_{W} & 0 \\ s_{W} & c_{W} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{Z} & -s_{Z} \\ 0 & s_{Z} & c_{Z} \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z_{\mu}' \end{pmatrix}$$

Scalar sector:

- M_S : mass of the new scalar boson
- S_S : new scalar mixing angle to mass eigenstates

$$\begin{pmatrix} \phi^0 \\ \chi \end{pmatrix} = \begin{pmatrix} c_S & -s_S \\ s_S & c_S \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

Gauge boson masses

Concise relation:

$$\frac{M_W^2}{c_W^2} = c_Z^2 M_Z^2 + s_Z^2 M_{Z'}^2$$

Express predictions withLagrangian couplings or **pheno**

parameters e.g.:

$$\rho = \frac{M_W^2}{c_W^2 M_Z^2} = 1 - s_Z^2 \left(1 - \frac{M_{Z'}^2}{M_Z^2} \right)$$

Gauge boson masses

Concise relation:

$$\frac{M_W^2}{c_W^2} = c_Z^2 M_Z^2 + s_Z^2 M_{Z'}^2$$

Express predictions with Lagrangian couplings or pheno parameters e.g.:

$$M_W^2 = \frac{\rho M_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha}{\sqrt{2} G_F \rho M_Z^2}} (1 + \Delta r) \right)$$

Renormalization

- Split bare parameters into $g^{(0)} \rightarrow g + \delta g$
- The Weinberg angle changes at tree level:

The Welliberg angle changes at tree level.
$$M_W^2 \frac{\delta c_W^2}{c_W^2} = \delta M_W^2 - c_W^2 (c_Z^2 \delta M_Z^2 + s_Z^2 \delta M_{Z'}^2 - 2s_Z (M_Z^2 - M_{Z'}^2) \delta s_Z)$$

Renormalization

- Split bare parameters into $g^{(0)} \rightarrow g + \delta g$
- The Weinberg angle changes at tree level:

The Weinberg angle changes at tree level:
$$M_W^2 \frac{\delta c_W^2}{c_W^2} = \delta M_W^2 - c_W^2 (c_Z^2 \delta M_Z^2 + s_Z^2 \delta M_{Z'}^2 - 2s_Z (M_Z^2 - M_{Z'}^2) \delta s_Z)$$

Ar receives completely new corrections:

 Δr collectes the radiative corrections to the μ -decay and hence to M_W

$$\Delta r = \left(\text{formally } \Delta r^{\text{SM}} \text{ with BSM loops} \right) - \\ -s_Z^2 \frac{c_W^2}{s_W^2} \frac{c_W^2}{M_W^2} \left(\text{Re} \Pi_{ZZ}(M_Z^2) - \text{Re} \Pi_{Z'Z'}(M_{Z'}^2) + 2(M_Z^2 - M_{Z'}^2) \frac{\delta s_Z}{s_Z} \right)$$

$$\frac{G_F}{\sqrt{2}} = \frac{\pi \alpha}{2 M_W^2 s_W^2} (1 + \Delta r)$$

$$\Delta r^{\text{SM}} = \frac{2\delta e}{e} + \left(\frac{\text{Re}\Pi_{WW}(M_W^2) - \Pi_{WW}(0)}{M_W^2}\right) + \delta_{\text{BV}}$$

Renormalization of the electric charge, formula known all order Diagrammatic corrections to the muon decay graph: W-propagator and box and vertex diagrams

$$+\frac{c_W^2}{s_W^2}\left(\frac{\operatorname{Re}\Pi_{ZZ}(M_Z^2)}{M_Z^2}-\frac{\operatorname{Re}\Pi_{WW}(M_W^2)}{M_W^2}\right)$$

Checks

- The ε poles cancel in Δr in R_{ξ} -gauge with general z-charge assignment
- For several benchmark points Δr is independent of the gauge parameters ξ_i , with i = W, A, Z, Z'
- Compare Δr in two cases:

Case I.:

$$\frac{\Delta r}{\int -s_Z^2 \frac{c_W^2}{s_W^2} \frac{c_W^2}{M_W^2}} \left(\text{Re}\Pi_{ZZ}(M_Z^2) - \text{Re}\Pi_{Z'Z'}(M_{Z'}^2) + 2(M_Z^2 - M_{Z'}^2) \frac{\delta s_Z}{s_Z} \right)$$

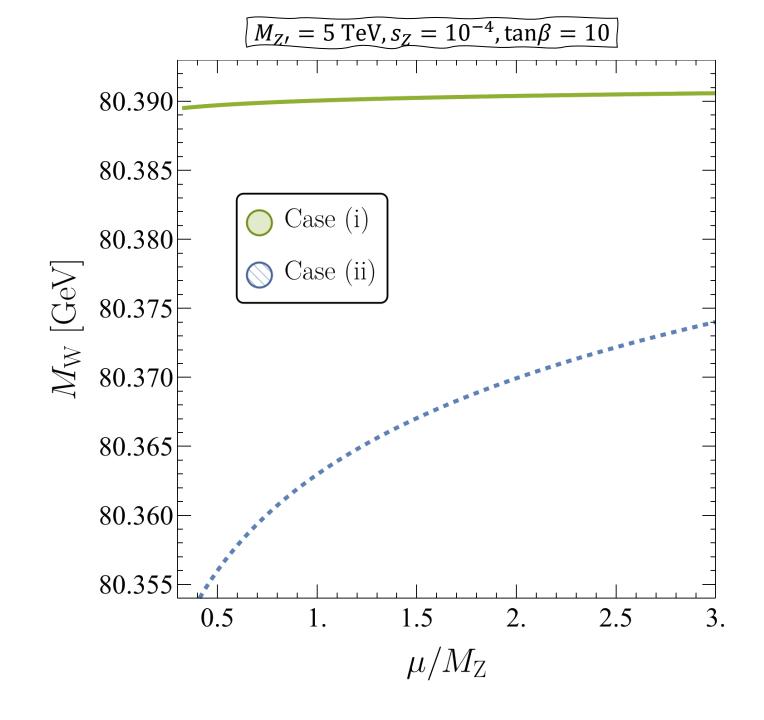
When is it safe to neglect the **new** terms?

Case II.:

 $\Delta r =$ (formally Δr^{SM} with BSM loops)

Checks

- The ε poles cancel in Δr in R_{ξ} -gauge with general z-charge assignment
- For several benchmark points Δr is independent of the gauge parameters ξ_i , with i = W, A, Z, Z'
- Weak dependence on the renormalization scale μ at fixed benchmark points



Benchmarks: $M_W - M_{W,SM}$ [MeV]

SMALL $M_{Z'} = 50 \text{ MeV}$ and $s_S = 0.1$ **Irrelevant**

s_Z		$5 \cdot 10^{-4}$					
	M_S	0.5	5 TeV	5 TeV			
$\tan \beta$		(i)	(ii)	(i)	(ii)		
0.1		-1	-1	-2	-2		
1		-1	-1	-2	-2		
10		-1	-1	-2	-2		

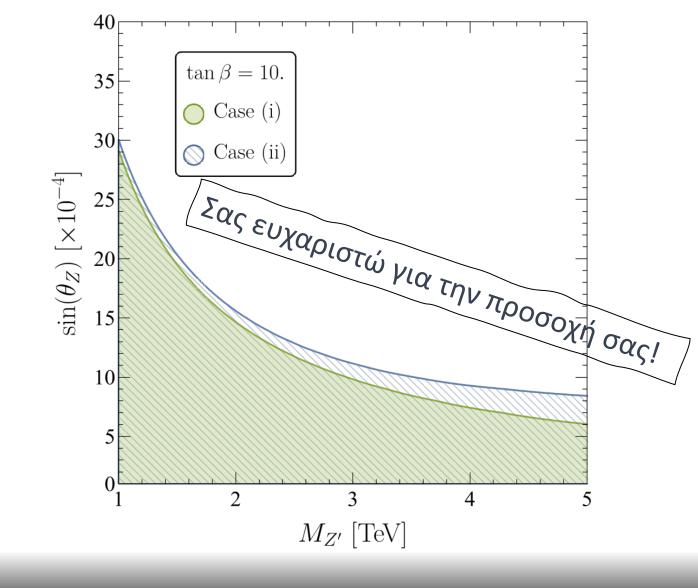
BSM corrections to the SM prediction for M_W in MeV units

LARGE $M_{Z'} = 5 \text{ TeV}$ and $s_S = 0.1$ Potentially relevant

s_Z		$5 \cdot 10^{-4}$				$7 \cdot 10^{-4}$				
M_S	$0.5\mathrm{TeV}$		$5\mathrm{TeV}$		$0.5\mathrm{TeV}$		$5 \mathrm{TeV}$			
$\tan \beta$	(<u>i</u>)	(i) (ii)		(i) (ii)		(i) (ii)		(i) (ii)		
10	37	10	35	13	75	29	73	36	7	
20	39	34	35	34	81	76	74	79		
30	40	38	35	37	83	85	75	85		

- Precise predictions in BSM models are important
- Full Δr at 1-loop in U(1)
 extensions is computed
- Full Δr (Case i.) may become important for heavy $M_{Z'}$
- ...compared to the available predictions (Case ii.)
- Fig. shows region where:

$$\left|M_W^{\text{exp.}} - M_W\right| < 2\sigma$$



Conclusions

How to obtain δs_Z I.

• Relate unrotated and rotated fields:

$$B_{\mu}^{(0)} = c_W^{(0)} A_{\mu}^{(0)} - s_W^{(0)} (c_Z^{(0)} Z_{\mu}^{(0)} - s_Z^{(0)} Z_{\mu}^{(0)})$$

$$B_{\mu}^{\prime(0)} = s_Z^{(0)} Z_{\mu}^{(0)} + c_Z^{(0)} Z_{\mu}^{\prime(0)}$$

• Also true for renormalized fields:

$$B_{\mu} = c_W A_{\mu} - s_W (c_Z Z_{\mu} - s_Z Z_{\mu}')$$

$$B_{\mu}' = s_Z Z_{\mu} + c_Z Z_{\mu}'$$

• Unrotated fields are renormalized such that

$$B_{\mu}^{(0)} = \sqrt{Z_B} B_{\mu}$$
 and $B_{\mu}^{\prime(0)} = \sqrt{Z_{B'}} B_{\mu}^{\prime}$

• Rotated fields may mix:

$$\begin{pmatrix} A_{\mu}^{(0)} \\ Z_{\mu}^{(0)} \\ Z_{\mu}^{\prime(0)} \end{pmatrix} = \begin{pmatrix} \sqrt{Z_{AA}} & \frac{1}{2}Z_{AZ} & \frac{1}{2}Z_{AZ'} \\ \frac{1}{2}Z_{ZA} & \sqrt{Z_{ZZ}} & \frac{1}{2}Z_{ZZ'} \\ \frac{1}{2}Z_{Z'A} & \frac{1}{2}Z_{Z'Z} & \sqrt{Z_{Z'Z'}} \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z_{\mu}' \end{pmatrix}$$

How to obtain δs_Z II.

• Express bare fields with renormalized ones and collect coefficients:

$$\sqrt{Z_B} c_W = c_W^{(0)} \sqrt{Z_{AA}} - \frac{1}{2} s_W^{(0)} \left(c_Z^{(0)} Z_{ZA} - s_Z^{(0)} Z_{Z'A} \right)
\sqrt{Z_{B'}} s_Z = s_Z^{(0)} \sqrt{Z_{ZZ}} + \frac{1}{2} c_Z^{(0)} Z_{Z'Z}
\sqrt{Z_{B'}} c_Z = \frac{1}{2} s_Z^{(0)} Z_{ZZ'} + c_Z^{(0)} \sqrt{Z_{Z'Z'}}$$

- First equation is used to derive δe [hep-ph/0209084] (U(1) Ward identity $\sqrt{Z_B} Z_{g_v} = 1$)
- 2nd and 3rd ones are divided to cancel $\sqrt{Z_{B'}}$ and express δs_Z