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Inertial mass density 

Projecting	parallel	and	orthogonal	to				,	we	obtain	energy	and	momentum	conservation	equations,		

   Simplest (constant) 
deviation from null inertial 

mass density
dynamical deviation from 
null inertial mass density 

� = 0

� = 0

The	EMT	can	be	decomposed	relative	to				,	in	the	form	uµ

Einstein	field	equations	arises	from	the	twice	contracted	Bianchi	Identity	implying	

uµ

non-trivial behaviors

Dµp+ (⇢+ p)u̇µ = 0
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CDMnull inertial mass density

usual vacuum energy 

Momentum conservationLocal Energy conservation

Equivalent to the Newton’s second law of motion



a finite future bounce

H
2

H
2
0

=⌦ci0 [1 + 3(1 + wci0) ln(1 + z)] + ⌦k0(1 + z)2 + ⌦m0(1 + z)3 + ⌦r0(1 + z)4,

Two	simplest		ΛCDM	extensions	:Simple	graduated	DE	or	curvature	

	

                 The spatial curvature, in the 
case of spatially closed Universe 

⌦k0 < 0 w = �1/3

The fact that the Planck data favor positive spatial 
curvature on top of the ΛCDM model implying 
such dark energy models		

ΛCDM  point

   Simple graduated DE 
% < 0

wci0 < �1 , ⇢ci0 > 0

% > 0 wci0 > �1 , ⇢ci0 > 0

it resembles Λ today, 

alas leading to a future singularity dubbed as the Little 

Sibling of the Big Rip (LSBR)  

the de Sitter future of the ΛCDM


 Can these, together  or  separately, successfully  realize  such  a scenario?
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Ḣ = �1

2
% 6= 0

Ḣ = 0

% < 0 wci0 < �1 , ⇢ci0 > 0

promotes	null	inertial	
mass	density	of	
conventional	vacuum	
energy	to	an	arbitrary	
constant.

Reminiscent of PEDE,  
decreasing with increasing z, 

yet no extra dof

Does it compensate to make flat again?

Simple gDE coming from 

EMSG 
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Observational	analysis

Contrary to our initial expectations, the simple-gDE 
worsens the so-called H0 tension. The reason is being 
that the data favor ρci = (3.46 ± 4.76) × 10−31 g cm−3 
(wci0 = −0.937 ± 0.084) rather than a definitely negative 
inertial mass destiny.  

 

the negative correlation between Ωk0 and wci0.

Simple MC code [1411.1074] 
https://github.com/slosar/april, version May 2019. 
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TABLE I. Constraints (68% CL) on the parameters using the combined BAO+SN+H and BAO+SN+H+PLK datasets. Before
the two last rows, �2 lnLmax is used to compare best fit with respect to the standard ⇤CDM model. The last rows contain the
Bayesian evidence lnZ and the relative Bayesian evidence with respect to the standard ⇤CDM model � lnZ = lnZ�lnZ⇤CDM.
Dataset BAO+SN+H BAO+SN+H+PLK

⇤CDM o⇤CDM DE oDE ⇤CDM o⇤CDM DE oDE

⌦m0 0.307± 0.014 0.310± 0.020 0.304± 0.015 0.322± 0.022 0.3005± 0.0068 0.3009± 0.0067 0.3070± 0.0088 0.3071± 0.0091

⌦b0h
2
0 0.02204± 0.00047 0.02204± 0.00046 0.02204± 0.00047 0.02204± 0.00045 0.02245± 0.00015 0.02237± 0.00017 0.02242± 0.00015 0.02241± 0.00017

h0 0.6827± 0.0088 0.6862± 0.0268 0.6706± 0.0202 0.6884± 0.0260 0.6829± 0.0052 0.6849± 0.0067 0.6772± 0.0097 0.6773± 0.0099

wci0 �1 �1 �0.937± 0.084 �0.872± 0.097 �1 �1 �0.948± 0.041 �0.951± 0.045

⌦k0 — �0.011± 0.077 — �0.122± 0.117 — 0.0012± 0.0018 — �0.0001± 0.0019

%ci ⇥ 1031 [g cm�3] 0 0 3.46± 4.76 7.65± 5.72 0 0 3.06± 2.28 2.85± 2.58

⌦ci0 0.693± 0.014 0.700± 0.064 0.696± 0.015 0.800± 0.101 0.6994± 0.0068 0.6977± 0.0065 0.6929± 0.0088 0.6929± 0.0095

⌦kci0 — 0.690± 0.020 — 0.678± 0.022 — 0.6991± 0.0067 — 0.6928± 0.0091

zci⇤ — — < �0.96 or & 107 < �0.78 — — < �0.99 < �0.99

zkci⇤ (zkcc⇤) — > 1.26 — > 0.92 — > 9.62 — > 6.64

�2 lnLmax 58.97 58.96 58.28 56.91 60.46 59.27 58.24 58.24

lnZ �36.54± 0.19 �38.38± 0.21 �37.96± 0.21 �38.00± 0.21 �42.02± 0.26 �43.78± 0.26 �42.19± 0.25 �44.13± 0.27

� lnZ 0 �1.84± 0.28 �1.42± 0.28 �1.46± 0.28 0 �1.76± 0.37 �0.17± 0.36 �2.11± 0.37

FIG. 2. One- and two-dimensional (68% and 95% CLs) marginalized posterior distributions for the free parameters of DE,
oDE, ⇤CDM, and o⇤CDM models using the combined datasets of BAO+SN+H (left panel) and BAO+SN+H+PLK (right
panel).

over the extended models, as for which |� lnZ| ⇠ 1.5. It
is striking that, when only the models including spatial
curvature are compared with each other, there is no ev-
idence to prefer the o⇤CDM model, which yields ⌦k0 =
�0.011 ± 0.077 consistent with spatially flat universe,
over the oDE model, which yields ⌦k0 = �0.122 ± 0.117
suggesting spatially closed universe with high signifi-
cance. The constraints on ⌦b0h

2
0 are almost exactly

the same for all the models, but the constraint on the
Hubble constant (or h0) in the case of the DE model,
H0 = 67.06 ± 2.02 km s�1Mpc�1, is smaller than the
one in the case of the ⇤CDM model, H0 = 68.27 ±

0.88 km s�1Mpc�1. Namely, the combined BAO+SN+H

dataset suggests that, contrary to our initial expecta-
tions discussed in Sec. II, the simple-gDE (3) upgrad-
ing the null inertial mass density of the usual vacuum
energy to an arbitrary constant worsens the so-called
H0 tension. The reason is being that the data favor
%ci = (3.46 ± 4.76) ⇥ 10�31g cm�3 (corresponding to
wci0 = �0.937 ± 0.084) rather than a definitely nega-
tive inertial mass destiny %ci < 0 (viz. phantom char-
acter today, i.e., wci0 < �1 and ⇢ci0 > 0)—see the neg-
ative correlation between h0 and wci0 in Fig. 2. The
inclusion of spatial curvature however lifts H0 to the val-



Interplay	between	 H0 , % and ⌦k0

The joint data set, including the Planck data, presents no evidence for a deviation from spatial 
flatness, but almost the same evidence for a cosmological constant and the simple-gDE with an 
inertial mass density of order O(10−12)eV4. 

Vacuum inertial mass density may be a constant of nature, rather than vacuum energy density



Graduated	dark	energy	-a	spontaneous	sign	switch	in	
AKARSU, BARROW , ESCAMILLA, VAZQUEZ, PRD  101 063528  

For	large	negative	values	of	λ,	it	creates	a	phenomenological	model	described	by	a	smooth	function	that	approximately	describes	
the	Λ	spontaneously	switching	sign	in	the	late	universe	to	become	positive	today.	

Observations suggesting the presence of a DE source passing below PDL at z 
around 0.6 with high confidence would imply a strong reason for favoring the BD 

gravity over GR, or vice versa. 

AKARSU, DI VALENTINO, KUMAR, NUNES, VAZQUEZ, YADAV

ΛsCDM model, 2307.10899

 AKARSU ETAL PRD 104, 123512 (2021) 2108.09239, PRD 108 023513 (2023), 2211.05742 

ıf the transition are not rapid enough, 

it does not working on solving tensions



Conventional vacuum energy has  
vanishing inertial mass density,  

ds2 = �dt2 + S2
h
e

4p
6
'dx2 + e�

2p
6
'(dy2 + dz2)

i

�2 = �ij�
ij'̇2 = �2

Tab = ⇢uaub + piso hab + ⇡ab,

General relativity with anisotropy

   GEOMETRY :    LRS Bianchi type-I metric described by the line element 


 MATTER:         the most general form of the EMT, accommodated by this metric


GENERAL RELATIVITY:        

Dapiso + (⇢+ piso + ⇡a
a)u̇

a + (div⇡)a = 0

rbG
ab = 0 ! rbT

ab = 0. ⇢+ p = 0

shear  is time derivative of spatial metric.

⇢̇+⇥(⇢+ piso) + �ab⇡ab = 0

     GR with anisotropy  + a fluid still has

⇢inert,x ⌘ ⇢+ piso + ⇡1
1

⇢inert,y(z) ⌘ ⇢+ piso + ⇡2
2

� = wy � wx

py(z) = px + �⇢
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1

3

�
⇢inert,x + 2⇢inert,y(z)

�
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1

3
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2
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⇡2
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⇢̄inert = ⇢+ px +
2

3
�⇢

wx = �1� 2�

3

Particular relation with EoS 
and skewness parameters

Trace-free anisotropic pressure 

Anisotropic dark energy with scalar field emulator
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We introduce a generalization of the usual vacuum energy, called ‘deformed vacuum energy’,
which yields anisotropic pressure whilst preserving zero inertial mass density. It couples to the
shear scalar in a unique way, such that they together emulate the canonical scalar field with an
arbitrary potential. This opens up a new avenue by reconsidering cosmologies based on canonical
scalar fields, along with a bonus that the kinetic term of the scalar field is replaced by an observable,
the shear scalar. We further elaborate the aspects of this approach in the context of dark energy.

I. INTRODUCTION

II. DEFORMED VACUUM ENERGY

It is possible to look for some phenomenological gen-
eralizations of the usual vacuum energy of the QFT
starting from the fact that it yields zero inertial mass
density ⇢inert = 0. For some recent works considering
this approach, see, for instance, the simple-graduated
dark energy (simple-gDE) model [75] (see also Ref. [76]),
which considers a minimal deviation from the null iner-
tial mass density by promoting it to an arbitrary con-
stant (⇢inert = const), and the graduated dark energy
(gDE) model [77] (see also Refs. [78–80]), which consid-
ers a minimal dynamical deviation from the null inertial
mass density in the form ⇢inert / ⇢

�
< 0 with � being a

ratio of two odd integers. In the current work, we argue
that it is possible to consider an alternative way of such
a minimal phenomenological generalization while still re-
specting the zero inertial mass density property of the
usual vacuum energy, if the isotropy of its pressure is al-
lowed to be deformed anisotropically. In what follows,
we will proceed with an investigation of this possibility
and its cosmological consequences within the framework
of the simplest anisotropic spacetime metric.

We begin with, for simplicity sake, the locally rotation-
ally symmetric (LRS) Bianchi type I metric given by

ds2 = �dt2 + a
2 dx2 + b

2 (dy2 + dz2), (1)

where {a, b, b} = {a(t), b(t), b(t)} are the directional scale
factors along the principal axes {x, y, z}, respectively,
with t being the cosmic (proper) time; it simply allows a
di↵erent scale factor along one of the principal axes of the
spatially flat RW metric, while preserving the isotropy of
the spatial curvature [32–34]. We rewrite this metric (1)
in a mathematical form more suitable for our purposes
in this study;

ds2 = �dt2 + s
2
h
e

4p
6
'dx2 + e

�
2p
6
'(dy2 + dz2)

i
, (2)
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for which, without losing generality, we redefine the scale

factors as follows; a2 ⌘ s
2
e

4p
6
' and b

2 ⌘ s
2
e
�

2p
6
'. Here

s ⌘ v
1/3 is the mean scale factor with v = ab

2 being the
comoving volume scale factor, from which the average
Hubble parameter is defined asH ⌘ ṡ

s
= 1

3 (Hx+Hy+Hz)

with Hx = ȧ

a
and Hy = Hz = ḃ

b
being the directional

Hubble parameters along the x-axis and y- and z-axes,
respectively. And, the term ' is related to the shear
scalar, �2 = 3

2 (Hx �H)2, as �
2 = '̇

2 (which is defined,
to quantify the anisotropic expansion, as �

2 = �↵��
↵� ,

where �↵� = 1
2 (uµ;⌫ +u⌫;µ)hµ

↵
h
⌫

�
� 1

3u
µ

;µh↵� is the shear
tensor with hµ⌫ = gµ⌫ + uµu⌫ being the projection ten-
sor [34]). We use the geometrised units c = 1 = 8⇡G and
a dot denotes d/dt.
In a generic inertial frame, the most general energy-

momentum tensor accommodated by the metric given in
Eq. (2) can be decomposed relative to a unique four-
velocity u

µ (uµu
µ = �1 and r⌫u

µ
uµ = 0) in the form

Tµ⌫ = ⇢uµu⌫ + piso hµ⌫ + ⇡µ⌫ . (3)

Here ⇢ = ⇢(uµ) = Tµ⌫u
µ
u
⌫ is the relativistic energy den-

sity relative to u
µ, piso = 1

3Tµ⌫h
µ⌫ is the isotropic pres-

sure and ⇡µ⌫ = T�⇣ h
�
hµ h

⇣
⌫i is the trace-free anisotropic

pressure, where hµ⌫ = gµ⌫ + uµu⌫ (gµ⌫ being the met-
ric tensor) is the projection tensor into the instanta-
neous rest frame of comoving observers. The set of equa-
tions arises from the twice-contracted Bianchi identities
(rµ

Gµ⌫ = 0), which by means of Einstein field equa-
tions (Gµ⌫ = �Tµ⌫), implies the conservation equations
(rµ

Tµ⌫ = 0). Projecting parallel and orthogonal to u
µ,

we obtain the energy and momentum conservation equa-
tions, correspondingly,

⇢̇+⇥(⇢+ piso) + �µ⌫⇡
µ⌫ = 0, (4)

Dµ
piso + (⇢+ piso + ⇡

µ

µ
)u̇µ + (div⇡)µ = 0, (5)

where ⇥ = Dµ
uµ is the volume expansion rate, �µ⌫ =

Dhµu⌫i is the shear tensor, and we used r⌫uµ = D⌫uµ �
u̇µu⌫ with D⌫uµ = 1

3⇥hµ⌫ + �µ⌫ [33, 34]. We note that
u̇
µ is the four-acceleration, and thereby the multipliers

⇢+ piso +⇡
µ

µ
for the spatial components in Eq. (5) define



Tµ
⌫ =diag


�1,�1� 2

3
�,�1 +

1

3
�,�1 +

1

3
�

�
⇢,

  Anisotropic extension of vacuum energy

No correspondence from known anisotropic source 


(i.e. vector fields, topological defects)

Deformed vacuum energy gives, on average, 

zero inertial mass density 
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The Einstein field equations in the presence of the 

deformed vacuum energy described above for the 


simplest anisotropic background read

   If we set cosmic triad , then these three resembles usual vacuum energy.

Similarly, arbitrary number of them oriented in 


arbitrary directions  would on average lead, stochastically, 

to the usual vacuum energy 

where average Hubble parameter 

Shear scalar 

2

the inertial mass densities along the principal axes as

⇢inert,x ⌘ ⇢+ piso + ⇡
1
1 ,

⇢inert,y = ⇢inert,z ⌘ ⇢+ piso + ⇡
2
2 .

(6)

Furthermore, we can define an average inertial mass den-
sity as

⇢̄inert ⌘
1

3
(⇢inert,x + 2⇢inert,y) , (7)

which along with Eq. (6) leads to

⇢̄inert = ⇢+ piso +
1

3
⇡
1
1 +

2

3
⇡
2
2 . (8)

As the pressure along the x-axis is px = piso+⇡
1
1 and the

ones along the y- and z-axes are py = pz = piso + ⇡
2
2 , we

can write py = px + �⇢ with �⇢ ⌘ ⇡
2
2 � ⇡

1
1 measuring the

deviation of py from px, so that Eq. (8) can be re-written
as

⇢̄inert = ⇢+ px +
2

3
�⇢. (9)

Staying loyal to the zero inertial mass density of the usual
vacuum energy (⇢̄inert,v = ⇢v + pv = 0), we thus assume

⇢̄inert = 0, (10)

leading, when used in Eq. (9), to px = �⇢ � 2
3�⇢ (or

py = �⇢+ 1
3�⇢), from which, we finally reach a particular

kind of anisotropic energy-momentum tensor, written in
the metric independent form as follows;

Tµ
⌫ = diag


�1, �1� 2

3
�, �1 +

1

3
�, �1 +

1

3
�

�
⇢, (11)

which, henceforth, we call deformed vacuum energy (dv
energy). Here, for convenience, we use the notation
Tµ

⌫ ⌘ diag [�1, wx, wy, wz] ⇢ = diag [�1, wx, wx+�, wx+
�] ⇢ with � = wy�wx being the skewness parameter pro-
viding a measure for the anisotropy of the fluid.

This is a well behaved anisotropic generalization of
the usual vacuum energy of the QFT, which is isotropic
(� = 0). Such that, if we set a cosmic triad [81], that
is a set of three identical of them (11) pointing mutually
in orthogonal spatial directions, then these three resem-
ble exactly the usual vacuum energy. Similarly, arbi-
trary number of them (11) oriented in arbitrary direc-
tions would on average lead, stochastically, to the usual
vacuum energy, cf. Ref. [82]. Besides, it does not repre-
sent any of the well known anisotropic sources such as
vector fields, topological defects, etc. [39]. For instance,
the equation of state (EoS) of a vector field Aµ with a

mass of m, �wx = wy = wz = Ȧ
2
�m

2
A

2

Ȧ2+m2A2 [51], implies

wx = ��/2 with �2  �  2 for m2 � 0, which does not
satisfy Eq. (11). Similarly, the topological defects such
as cosmic strings {wx, �} = {�1, 1}, or domain walls
{wx, �} = {0,�1}, do not satisfy Eq. (11).

III. EMULATING CANONICAL SCALAR
FIELD WITH AN ARBITRARY POTENTIAL

The Einstein field equations in the presence of the de-
formed vacuum energy described in Eq. (11) for the sim-
plest anisotropic background (2) read

3H2 � 1

2
�
2 = ⇢dv, (12)

�2Ḣ� 3H2 � 1

2
�
2 + 2

r
1

6
(�̇ + 3H�) = �⇢dv �

2

3
�⇢dv,

(13)

�2Ḣ� 3H2 � 1

2
�
2 �

r
1

6
(�̇ + 3H�) = �⇢dv +

1

3
�⇢dv

(14)

for the energy density and pressure equations along the x-
and y- (or z-) axes, correspondingly. After some manipu-
lations, this set of equations can be rewritten as follows;

3H2 =
1

2
�
2 + ⇢dv, (15)

�2Ḣ� 3H2 =
1

2
�
2 � ⇢dv, (16)

�̇ + 3H� = �
r

2

3
�⇢dv, (17)

which are the energy density (15), average pressure (16)
and shear propagation (17) equations, respectively. Com-
paring the energy density (15) and average pressure (16)
equations, we see that the shear scalar term �

2
/2 and

the energy density of the deformed vacuum ⇢dv together
resemble the canonical SF; namely, they appear as the
kinetic term �̇

2
/2 and potential V of a canonical SF,

correspondingly. Further the shear propagation equa-
tion (17) resembles the scalar field (Klein-Gordon) equa-
tion. Thus, this system of Eqs. (15)-(17) has exactly the
same mathematical form of the standard isotropic Fried-
mann equations(based on the spatially flat RW metric)
in the presence of a canonical SF

3H2 =
1

2
�̇
2 + V (�), (18)

�2Ḣ � 3H2 =
1

2
�̇
2 � V (�), (19)

�̈+ 3H�̇ = �dV

d�
, (20)

under the following transformations:

H ! H , � ! �̇ , ⇢dv ! V (�) , � !
r

3

2

1

V

dV

d�
. (21)

H ! H �̇ ! � V (�) ! ⇢dv

r
3

2

1

V

dV

d�
! � (22)

we↵ = �1 (23)
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Staying loyal to the zero inertial mass density of the usual
vacuum energy (⇢̄inert,v = ⇢v + pv = 0), we thus assume
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leading, when used in Eq. (9), to px = �⇢ � 2
3�⇢ (or

py = �⇢+ 1
3�⇢), from which, we finally reach a particular

kind of anisotropic energy-momentum tensor, written in
the metric independent form as follows;
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energy). Here, for convenience, we use the notation
Tµ

⌫ ⌘ diag [�1, wx, wy, wz] ⇢ = diag [�1, wx, wx+�, wx+
�] ⇢ with � = wy�wx being the skewness parameter pro-
viding a measure for the anisotropy of the fluid.

This is a well behaved anisotropic generalization of
the usual vacuum energy of the QFT, which is isotropic
(� = 0). Such that, if we set a cosmic triad [81], that
is a set of three identical of them (11) pointing mutually
in orthogonal spatial directions, then these three resem-
ble exactly the usual vacuum energy. Similarly, arbi-
trary number of them (11) oriented in arbitrary direc-
tions would on average lead, stochastically, to the usual
vacuum energy, cf. Ref. [82]. Besides, it does not repre-
sent any of the well known anisotropic sources such as
vector fields, topological defects, etc. [39]. For instance,
the equation of state (EoS) of a vector field Aµ with a

mass of m, �wx = wy = wz = Ȧ
2
�m

2
A

2

Ȧ2+m2A2 [51], implies

wx = ��/2 with �2  �  2 for m2 � 0, which does not
satisfy Eq. (11). Similarly, the topological defects such
as cosmic strings {wx, �} = {�1, 1}, or domain walls
{wx, �} = {0,�1}, do not satisfy Eq. (11).

III. EMULATING CANONICAL SCALAR
FIELD WITH AN ARBITRARY POTENTIAL

The Einstein field equations in the presence of the de-
formed vacuum energy described in Eq. (11) for the sim-
plest anisotropic background (2) read
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for the energy density and pressure equations along the x-
and y- (or z-) axes, correspondingly. After some manipu-
lations, this set of equations can be rewritten as follows;
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�2Ḣ� 3H2 =
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2 � ⇢dv, (16)
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�⇢dv, (17)

which are the energy density (15), average pressure (16)
and shear propagation (17) equations, respectively. Com-
paring the energy density (15) and average pressure (16)
equations, we see that the shear scalar term �

2
/2 and

the energy density of the deformed vacuum ⇢dv together
resemble the canonical SF; namely, they appear as the
kinetic term �̇

2
/2 and potential V of a canonical SF,

correspondingly. Further the shear propagation equa-
tion (17) resembles the scalar field (Klein-Gordon) equa-
tion. Thus, this system of Eqs. (15)-(17) has exactly the
same mathematical form of the standard isotropic Fried-
mann equations(based on the spatially flat RW metric)
in the presence of a canonical SF
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the inertial mass densities along the principal axes as

⇢inert,x ⌘ ⇢+ piso + ⇡
1
1 ,

⇢inert,y = ⇢inert,z ⌘ ⇢+ piso + ⇡
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Furthermore, we can define an average inertial mass den-
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deviation of py from px, so that Eq. (8) can be re-written
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Staying loyal to the zero inertial mass density of the usual
vacuum energy (⇢̄inert,v = ⇢v + pv = 0), we thus assume

⇢̄inert = 0, (10)

leading, when used in Eq. (9), to px = �⇢ � 2
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which, henceforth, we call deformed vacuum energy (dv
energy). Here, for convenience, we use the notation
Tµ

⌫ ⌘ diag [�1, wx, wy, wz] ⇢ = diag [�1, wx, wx+�, wx+
�] ⇢ with � = wy�wx being the skewness parameter pro-
viding a measure for the anisotropy of the fluid.
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(� = 0). Such that, if we set a cosmic triad [81], that
is a set of three identical of them (11) pointing mutually
in orthogonal spatial directions, then these three resem-
ble exactly the usual vacuum energy. Similarly, arbi-
trary number of them (11) oriented in arbitrary direc-
tions would on average lead, stochastically, to the usual
vacuum energy, cf. Ref. [82]. Besides, it does not repre-
sent any of the well known anisotropic sources such as
vector fields, topological defects, etc. [39]. For instance,
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which are the energy density (15), average pressure (16)
and shear propagation (17) equations, respectively. Com-
paring the energy density (15) and average pressure (16)
equations, we see that the shear scalar term �
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/2 and

the energy density of the deformed vacuum ⇢dv together
resemble the canonical SF; namely, they appear as the
kinetic term �̇

2
/2 and potential V of a canonical SF,

correspondingly. Further the shear propagation equa-
tion (17) resembles the scalar field (Klein-Gordon) equa-
tion. Thus, this system of Eqs. (15)-(17) has exactly the
same mathematical form of the standard isotropic Fried-
mann equations(based on the spatially flat RW metric)
in the presence of a canonical SF
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shear tracks the vacuum energy deforming it


Anisotropization as the universe expands 
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Accordingly, given that the energy density and pressure
of a canonical SF are ⇢� = 1

2 �̇
2 + V (�) and p� = 1

2 �̇
2 �

V (�), if we define e↵ective energy density and pressure
as

⇢e↵ ⌘ 1

2
�
2 + ⇢dv and pe↵ ⌘ 1

2
�
2 � ⇢dv, (24)

correspondingly, we further have the transformations:

⇢e↵ ! ⇢�, pe↵ ! p� and we↵ ⌘ pe↵

⇢e↵
! w� ⌘ p�

⇢�
. (25)

It is straightforward to see that as the Klein-Gordon
equation (20) leads to the continuity equation, ⇢̇� +
3H(⇢�+p�) = 0, for the SF, the shear propagation equa-
tion (17) leads to the continuity equation

⇢̇e↵ + 3H⇢e↵(1 + we↵) = 0, (26)

for the e↵ective source defined from the cooperation of
the deformed vacuum energy with the shear scalar—as
long as the shear propagation equation is not altered by
any other anisotropic contribution.

While the condition for a canonical SF to be able to
drive accelerated expansion, w� < �1/3, implies �̇2

< V

(or �̇2
/2 < ⇢�/3), in our model, correspondingly, we↵ <

�1/3 implies �2
< ⇢dv (or �2

/2 < ⇢e↵/3). On the other
hand, to give rise to an accelerated expansion using SF, it
is often required a flat potential satisfying �̇2 ⌧ V , which
leads to w� ' �1+ 2

3✏, where ✏ ⌧ 1 is the so-called slow
roll parameter defined as ✏ = 1

2 (
1
V

dV
d� )

2. Considering the

relations given in Eqs. (20) and (22), it turns out that
the role of the slow-roll parameter is taken over by the
skewness of the deformed vacuum energy as �

2
/3 ! ✏

and hence one should require small anisotropy �
2 ⌧ ⇢dv,

which leads to we↵ ' �1+ 2
9�

2 with |�| ⌧
p
3. And, the

role of the flatness of the potential (quantified by ✏) is
taken over by the ratio-squared of the rate of change of
the energy density of the deformed vacuum to the shear
scalar, namely,

✏ =
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3
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⇢̇dv

⇢dv

◆2 1

�2
. (27)

There is no-go theorem which forbids a single canon-
ical SF (real SF �̇

2 � 0 with a non-negative potential
V (�) � 0) to cross below the w = �1 boundary of the
usual vacuum energy, viz., its EoS parameter is confined
to the range �1  w�  1. In line with that, in our
model, the non-negativity condition on the density of the
deformed vacuum energy—as an actual physical source
with negative density would be physically ill—(⇢dv � 0)
along with that the shear scalar is non-negative definite
by itself (�2 � 0) guarantee that �1  we↵  1.

IV. COSMOLOGY WITH DEFORMED
VACUUM ENERGY

We proceed with an investigation of the cosmologies
in the presence of the deformed vacuum energy. We con-

sider the isotropic perfect fluids—representing usual cos-
mological fluids such as dust and radiation—described by
constant EoS parameters, wi = pi/⇢i = const (i stands
for ith fluid), for the other sources present along with the
deformed vacuum energy in the Universe. As these are
isotropic, these alter neither the form of the shear propa-
gation equation (17) nor the features that arise from the
deformed vacuum energy, see Eqs. (22)-(26).
Using dt = � dz

H(1+z) , where z is the average redshift

defined from the mean scale factor as z = �1 + s(t=0)
s(t) ,

we reach the following anisotropic Friedmann equation

3H2 =
X

i

⇢i0(1 + z)3(1+wi) + ⇢e↵ , (28)

where

⇢e↵ = ⇢e↵0 e
3
R
(1+weff ) d ln (1+z)

. (29)

This is mathematically exactly the same with the usual
Friedmann equation, but physically di↵erent. Note that
here ⇢e↵ = ⇢�2 +⇢dv consists of the energy density corre-
sponding to the shear scalar, i.e., expansion anisotropy,

⇢�2 ⌘ �
2

2
=

1 + we↵

2
⇢e↵ , (30)

and the energy density of the deformed vacuum energy,

⇢dv =
1� we↵

2
⇢e↵ , (31)

whose EoS parameter is skewed as

� =
w

0

e↵(1 + z)� 3(1� w
2
e↵)p

2 + 2we↵(1� we↵)

s

1 +

P
i
⇢i

⇢e↵
, (32)

where 0 denotes d/dz; obtained by substituting H (28),
⇢e↵ (29), � (30) and ⇢dv (31) into the shear propaga-
tion equation (17). Eq. (32) is the equation which gives
the deformation in the isotropy of the pressure of the de-
formed vacuum energy (i.e., the deviation from � = 0 in
our model) corresponding to a given SF model—through
the transformations given in Eq. (25)—considered in a
spatially homogeneous and isotropic cosmological setup.
We see that the ratio of the energy density correspond-

ing to the expansion anisotropy to that of the deformed
vacuum energy is determined solely by we↵ as

⇢�2

⇢dv
=

⌦�2

⌦dv
=

1 + we↵

1� we↵
. (33)

Here and henceforth, ⌦ = ⇢/⇢cr (with ⇢cr = 3H2 being
the critical energy density) is the density parameter of the
component denoted by its subscript. Accordingly, if the
energy density/EoS of a SF is given in terms of redshift,
then one can straightforwardly study its correspondence
in our model via the transformations ⇢�(z) ! ⇢e↵(z) or
w�(z) ! we↵(z) [see Eq. (25)]; of course, upon first re-
placing the RW background by the Bianchi type I (viz.,
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the evolution of  the comoving volume element [viz., H(z)] ’s for

the An-ΛCDM and dv-wCDM models are observationally 
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radiation transition epoch. 
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TABLE I. Equations for An-⇤CDM and dv-wCDM models.

An-⇤CDM dv-wCDM

⇢e↵ ⇢dv + ⇢�20(1 + z)6 ⇢e↵0(1 + z)3(1+weff )

we↵
⇢�20(1+z)6�⇢dv

⇢�20(1+z)6+⇢dv
const. � �1

⇢�2 ⇢�20(1 + z)6 1
2 (1 + we↵)⇢e↵0(1 + z)3(1+weff )

⇢dv const 1
2 (1� we↵)⇢e↵0(1 + z)3(1+weff )

� 0 �3

r
1+weff

2

h
1 + ⇢m0

⇢eff0
(1 + z)�3weff

i

recent study that ⌦�0 . 10�3 from Hubble and Pan-
theon data, and, when the baryonic acoustic oscillations
(BAO) and cosmic microwave background (CMB) data
are included, ⌦�20 . 10�15, for which anisotropy be-
comes irrelevant to the matter-radiation equality redshift
and the peak of the matter perturbations, but the CMB
quadrupole temperature changes up to values beyond its
actual value, viz., ⇠ 11mK [35]. Besides, it was sug-
gested in the same study that the anisotropy has no sig-
nificant e↵ect on the standard Big Bang Nucleosynthesis
(BBN) provided that ⌦�20 . 10�23, for which anisotropy
remains irrelevant to the CMB quadrupole tempera-
ture. On the other hand, in the dv-wCDM model, the
shear scalar tracks the deformed vacuum energy—both
of which evolve as (1+z)3(1+weff )—and hence, as like the
DE in the usual wCDM, it would reach considerable val-
ues at late times only, and consequently the constraints
on the anisotropy can be relaxed. Namely, in this case,
the Universe anisotropizes as it expands, which implies
that the expansion anisotropy would be irrelevant to the
dynamics of the early Universe and the tight constraints
on its present-day density parameter from its e↵ect on
the expansion rate of the comoving volume of the early
Universe (e.g., from BBN) would be evaded. This re-
laxed amount of anisotropic expansion would allow us to
manipulate the CMB quadrupole temperature on top of
its statistical value. This is the observationally distin-
guishing feature of the dv-wCDM model from the usual
wCDM model.

A. Manipulating CMB quadrupole temperature

The observed quadrupole power spectrum of tempera-
ture fluctuations in the CMB (multipole ` = 2, the corre-
sponding angular scale ✓ = ⇡/2) is �TPLK ⇡ 14µK [41]
lower than the ⇤CDM predicted value, �Tst ⇡ 34µK

(or �Tst+variance ⇡ 28µK when the cosmic variance is
included) [46, 99]. It is suggested in Refs. [46–55] that
this discrepancy can be addressed by an ellipsoidal ex-
pansion (within LRS Bianchi type I spacetime) driven
by an anisotropic DE. The evolution of the free stream-
ing photon temperature in the i

th direction can be given
as Ti = T0

ai0
ai

= T0e
�

R
Hidt ' T0 �T0

R
Hidt (i = x, y, z)

where T0 = 2.7255 ± 0.0006K [100] is the present-day
CMB monopole temperature [39, 101]. Thus, as Hx =

H+ 2
p
6
�, Hy = H� 1

p
6
�, and ⌦�2 = �

2
/2

3H2 , the di↵erence

between photon temperatures along the x-axis and the y-
(or z-)-axes since the recombination (zrec = 1100) to the
present time (z = 0) due to the anisotropic expansion,
�T�2 = Tx � Ty, reads

�T�2 = T0

Z
t0

trec

(Hx � Hy)dt = 3T0

Z
zrec

0

p
⌦�2 d ln(1 + z).

Accordingly, provided that the orientation of the ex-
pansion anisotropy is set appropriately, by means of
�T�2 ⇡ 20µK it is possible to reduce �Tst ⇡ 34µK

predicted within the ⇤CDM model to the observed value
�TPLK ⇡ 14µK [41]. However, within the An-⇤CDM
model, it is not possible to have this reduction, since
the upper limit ⌦�20 ⇠ 10�23 from BBN allows only up
to �T�2 ⇠ 1µK reduction [35]. In our model (even in
the simplest case, dv-wCDM, we have elaborated here),
we are able to manipulate the evolution of ⌦�2 so as to
evade this limit on ⌦�20 from BBN and manipulate �T�2

at the required amount. This can be done by demanding,
for instance, from the simplest case dv-wCDM, to lead
to �T�2 ⇠ 20µK change on top of �Tst ⇡ 34µK via a
suitably choosing, e.g., present-day value of the expan-
sion anisotropy, or, in a robust way, e.g., by including
�TPLK ⇡ 14µK as a prior while modelling anisotropic
distribution of the data in the sky.

B. Observational constraints for dv-wCDM

We perform a parameter estimation and provide obser-
vational constraints of the free parameters of the models
given in Table I. In order to explore the parameter space,
we make use of a modified version of a simple and fast
Markov Chain Monte Carlo (MCMC) code, named Sim-
pleMC [102, 103], that computes expansion rates and dis-
tances using the Friedmann equation. For the dv-wCDM
model, the Friedmann equation (26) in the presence of
radiation (wr =

1
3 ) and dust (CDM+baryons) (wm = 0)

reads:

H2

H2
0

= ⌦e↵0(1 + z)3(1+weff ) + ⌦m0(1 + z)3 + ⌦r0(1 + z)4,

where ⌦e↵0 = ⌦�20 + ⌦dv0.
The SimpleMC code uses a compressed version of the

recent Planck information (PLK) (where the CMB is
treated as a “Baryon Acoustic Oscillation (BAO) exper-
iment” at redshift z = 1090) measured by the angular
scale of the sound horizon at that time, a recent anal-
ysis of Type Ia supernova (SN) data called Joint Light-
curve Analysis compressed into a piece-wise linear func-
tion fit over 30 bins evenly spaced in log z, and high-
precision BAO measurements from comoving angular di-
ameter distances, Hubble distance and the volume aver-
aged distance, at di↵erent redshifts up to z = 2.36 [103].





CONCLUSIONS

 

On the other hand, there are suggestions to address this tension by 
reanalyzing the cosmological data by 

breaking down of the RW framework, e.g., allowing anisotropic 
expansion in the late universe; suggesting, 

in essence, that the problem in fact is not H_0 itself.  

. 

The Cosmological Principle                         Cosmic expansion determined 
by single parameter  


Implications of the H0 tension may extend beyond ΛCDM to the CP 
itself.

Deformed vacuum energy emulates the quintessence DE models, is not 
expected to address the H0 tension  through its affect on the average 
expansion rate of the Universe. 
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zero rank tensor
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