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Take home message

ANNs are a model independent tool that can help us
reconstruct cosmological (and not only) parameters.
We can use them to distinguish between the plethora of
theories in the literature, based solely on the data without any
physical or statistical assumption.
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Gaussian processes

What are Gaussian processes?

Definition: A GP is a stochastic (random) process where any finite
subset is a multivariant Gaussian distribution with mean µ(x)
and covariance k(x , x ′).

Setting each µ(x) to zero, the covariance function can be used
to learn the behavior that produced the data points.
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Gaussian Process Regression

The covariance function contains non-physical
hyperparameters θ which define the distribution k(θ, x , x ′).
Iterating over these values using Bayesian inference (or
others) can produce better hyperparameters.
The result is a model independent reconstruction (in
physics) of the behabior of some parameter.
This is superior to regular fitting because it is nonparametric
and so assumes no physical model whatsoever.
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Squared Exponential H0 GP (GaPP code: Seikel et al. 2012)

H0 = 67.539 ± 4.772km/s/Mpc
H0 = 67.001 ± 1.653km/s/Mpc
H0 = 66.197 ± 1.464km/s/Mpc

H0 = 73.782 ± 1.374km/s/Mpc
H0 = 72.022 ± 1.076km/s/Mpc
H0 = 71.180 ± 1.025km/s/Mpc
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Gaussian processes

Open problems with GP reconstructions
Overfitting: GP is very prone to overfitting for small data sets,
which is especially pronounced at the origin, i.e. Hubble constant

Kernel Selection Problem: There is no natural kernel for cosmology
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Artificial Neural Networks (ANN)

ReFANN code from Wang et al. (2020)
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Training data for the ANN

P(z , α, λ) = λα

Γ(α)zα−1e−λz

Mean: σH = 14.25 + 3.42z
Upper error: σH = 21.37 + 10.79z
Lower error: σH = 7.14 − 3.95z
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Designing the ANN
Risk: Optimizes the number of hidden layers and neurons in an ANN

risk =
N∑

i=1
(Bias2

i + Variancei) =
N∑

i=1

(
[Hobs(zi) − Hpred(zi)]2 + σ2

H(zi)
)

Loss: Balances the number of iterations a system needs to predict the
observational data

1 Least absolute deviation (L1)

L1 =
N∑

i=1
|Hobs(zi) − Hpred(zi)|

2 Smoothed L1 (SL1)
3 Mean Square Error (MSE)

MSE = 1
N

N∑
i=1

(Hobs(zi) − Hpred(zi))2
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Building the ANN

Figure: Left: Risk function for one layer (number of neurons 2n, n ∈ 7, ..., 14),
Right: Evolution of L1, SL1 and MSE loss functions
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Using the ANN (KD, Levi Said et al. ’21) (KD, Mukherjee et al. ’23)

Figure: Reconstructed reduced Hubble parameter from the (i) Pantheon SN
compilation (left) and (ii) combined CC+BAO Hubble data set (right), using
ANNs.
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Om diagnostics (Sahni, Shafieloo, Starobinsky ’08) (Shafieloo, Clarkson ’10)

Distinguish ΛCDM from alternative dark energy and modified gravity models:

Om(z) = E 2(z) − 1
(1 + z)3 − 1 .

Figure: Reconstructed Om diagnostics using (i) ANNs (left) and (ii) GPs
(right) from the Pantheon SN data for three different priors.
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H0 diagnostics (Krishnan, Colgáin, Sheikh-Jabbari, Yang ’20)

It is defined as
H0 = H(z)√

Ωm0(1 + z)3 + 1 − Ωm0
,

and its non-constancy suggests evidence for new physics beyond ΛCDM.

Figure: Reconstructed H0 diagnostics using (i) ANNs (left) and (ii) GPs
(right) from the Pantheon SN data for three different priors.
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Constraining theories Arjona, Cardona, Nesseris ’19

Example: Horndeski mapping:

G2 = K (X ), G3 = G(X ), G4 = 1/2, and G5 = 0 ,

The action is given by:

S =
∫

d4x
√

−g
(R

2 − K (X ) − G(X )□ϕ
)

+ Smat(ψ, gµν) .

Cosmological equations (flat FLRW):

K (X ) = −3H2
0 (1 − Ωm0) + J

√
2XH2(X )

H2
0 Ωm0

− J
√

2X (1 − Ωm0)
Ωm0

,

and
GX (X ) = −2J H ′(X )

3H2
0 Ωm0

.
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(KFD, Mukherjee, Levi Said, Mifsud ’23)
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We can also compute the DE EoS as

wϕ = −K +
√

2XẊGX

K − 2X (KX + 3
√

2XHGX )
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Figure: Plots for dark energy EoS wϕ(z) (left) and its compactified form
arctan(1 + wϕ(z)) (right) considering R21, TRGB, and P18 H0 priors.
The shaded regions with ‘−’, ‘|’ and ‘×’ hatches represent the 1σ
confidence levels for the above priors respectively.
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Figure: Plots showing the posteriors of probability distribution of the
compactified dark energy EoS for the theory at some sample redshifts for
the R21, TRGB, and P18 H0 priors, respectively.
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Conclusion and Prospects

GP and ANN both have positive features in reconstructing
cosmological data sets.
However, ANN shows greater promise in that they rely on less
rigid training data and can model more complex structures of
data sets.

From now on, it would be interesting to
forecast observations for experiments in progress that are
about to publish their results,
use the reconstructed Hubble parameter and its derivative to
constrain or even eliminate more alternative cosmological
models,
consider observations related to the perturbative part of the
theory, such as LSS or GWs, in the context of ANNs.
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