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Motivation

Modified gravity spectrum
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Motivation
Cosmological tensions

Plethora of theories

Take home message

@ ANNSs are a model independent tool that can help us
reconstruct cosmological (and not only) parameters.

@ We can use them to distinguish between the plethora of
theories in the literature, based solely on the data without any

physical or statistical assumption.
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Reconstruction Methods

Gaussian processes

What are Gaussian processes?
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Reconstruction Methods

Gaussian processes

What are Gaussian processes?
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Definition: A GP is a stochastic (random) process where any finite
subset is a multivariant Gaussian distribution with mean p(x)
and covariance k(x, x’).

Setting each p(x) to zero, the covariance function can be used
to learn the behavior that produced the data points.
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Reconstruction Methods .
Gaussian processes

Gaussian Process Regression

@ The covariance function contains non-physical
hyperparameters 6 which define the distribution k(0, x, x’).

e lterating over these values using Bayesian inference (or
others) can produce better hyperparameters.

@ The result is a model independent reconstruction (in
physics) of the behabior of some parameter.

@ This is superior to regular fitting because it is nonparametric
and so assumes no physical model whatsoever.
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Reconstruction Methods

Gaussian processes

Squared Exponential Hy GP (GaPP code: Seikel et al. 2012)
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Reconstruction Methods

Gaussian processes

Open problems with GP reconstructions

e Overfitting: GP is very prone to overfitting for small data sets,
which is especially pronounced at the origin, i.e. Hubble constant
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o Kernel Selection Problem: There is no natural kernel for cosmology
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Artificial Neural Networks Nt
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Construction and Training of an ANN

Recons ing H(z) and H/{:)
Artificial Neural Networks Null

Constraining

Training data for the ANN
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Constructlon and Tralnlng of an ANN

Artificial Neural Networks

Designing the ANN

o Risk: Optimizes the number of hidden layers and neurons in an ANN
N

N
risk = Z(Bias? + Variance;) = Z ([Hobs(z,-) — Hpred(z,-)]2 + 0,2_,(2,-))
i=1 i=1
o Loss: Balances the number of iterations a system needs to predict the
observational data
@ Least absolute deviation (L1)

N
L1= Z |Hobs(zi) - Hprcd(zi)|
i=1

@ Smoothed L1 (SL1)
© Mean Square Error (MSE)

MSE = — Z obs(2i) — pred(zl))2
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Construction and Training of an ANN
Reconstructing H(z) and H'(z)
Artificial Neural Networks Null te

Constraining theories vity

Building the ANN
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Figure: Left: Risk function for one layer (number of neurons 2", n € 7, ..., 14),
Right: Evolution of L1, SL1 and MSE loss functions
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Construction and Traini f an ANN
Reconstructing H(z) and H'(z)
Artificial Neural Networks Null test:

Constraining theories vity

USing the ANN (KD, Levi Said et al. '21) (KD, Mukherjee et al. '23)
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Figure: Reconstructed reduced Hubble parameter from the (i) Pantheon SN

compilation (left) and (ii) combined CC4+BAO Hubble data set (right), using
ANNS.
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C ruction and Training
F nstructing H(z) and H
Artificial Neural Networks Null tests

Constraining theories o

Om diagnostics (Sahni, Shafieloo, Starobinsky '08) (Shafieloo, Clarkson '10)

Distinguish ACDM from alternative dark energy and modified gravity models:

Om(z) = E(z)-1
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Figure: Reconstructed Om diagnostics using (i) ANNs (left) and (ii) GPs
(right) from the Pantheon SN data for three different priors.
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struction and Traini f an ANN
constructing H(z) and
Artificial Neural Networks Null tests
Constraining theories

HO diagnostics (krishnan, Colgéin, Sheikh-Jabbari, Yang '20)

It is defined as
H(z)

V(14 2P +1—Quo
and its non-constancy suggests evidence for new physics beyond ACDM.
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Figure: Reconstructed Hq diagnostics using (i) ANNs (left) and (ii) GPs
(right) from the Pantheon SN data for three different priors.
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iction and Trainin /
ting H(z) and H’(:)
Artificial Neural Networks Null tests
Constraining theories of gravity

Constraining theories Arjona, Cardona, Nesseris '19

Example: Horndeski mapping:
Gy = K(X), G3 = G(X), G4 =1/2,and G5 =0,

The action is given by:
R
s=[axvz (2 CK(X) - G(X)D¢> 4 Sunae (s g)

Cosmological equations (flat FLRW):

JV2XH*(X)  JV2X (1 — Qmo)
Hngo QmO ’

K(X) = —3H2 (1 — Qmo) +

and
2T H'(X)

T a2
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Construction and Training of an ANN
Reconstructing H(z) and H’(z)

Artificial Neural Networks Null tests
Constraining theories of gravity
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Construction and Training of an ANN
Reconstructing H(z) and H'(z)

Artificial Neural Networks Null tests
Constraining theories of gravity

We can also compute the DE EoS as
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Figure: Plots for dark energy EoS wy(z) (left) and its compactified form
arctan(1 + wy(z)) (right) considering R21, TRGB, and P18 Hy priors.
The shaded regions with ‘—’, ‘|" and ‘X' hatches represent the 1o
confidence levels for the above priors respectively.

Kostas Dialektopoulos Update on the use of Artificial Neural Networks in cosmology



Construction and Training of an ANN
Reconstructing H(z) and H'(2)

Artificial Neural Networks Null tes:
Constraining theories of gravity
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Figure: Plots showing the posteriors of probability distribution of the
compactified dark energy EoS for the theory at some sample redshifts for
the R21, TRGB, and P18 Hy priors, respectively.
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Conclusions

Conclusion and Prospects

@ GP and ANN both have positive features in reconstructing
cosmological data sets.

@ However, ANN shows greater promise in that they rely on less
rigid training data and can model more complex structures of
data sets.

From now on, it would be interesting to

@ forecast observations for experiments in progress that are

about to publish their results,

@ use the reconstructed Hubble parameter and its derivative to
constrain or even eliminate more alternative cosmological
models,

@ consider observations related to the perturbative part of the
theory, such as LSS or GWs, in the context of ANNSs.
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