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The QCD J-angle
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It leads to CP-symmetry violation.

Chiral transformations, because of
the anomaly, change the 8-term
and physics depends only on:

0 =0+ Argdet M
M: quark mass matrix.

Experimentally constrained by
measurements of the neutron
electric dipole moment:

0 < 101
STRONG CP PROBLEM

QCD Thermodynamics

QCD at finite baryon density and
temperature.
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Many phases: QGP, color
superconductivity...

This talk: 8-angle physics at finite baryon density in two-color QCD.
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Understand the QCD phase diagram at finite density and 6-angle.

Focus on the SSB of CP symmetry at 6=rr.

Understand cosmological phase transitions from nonzero to zero 6.

Finite density QCD cannot be efficiently studied on lattice due to the
sign problem: the determinant of the Dirac operator is not real.

Two-color QCD: no sign problem thanks to the pseudo-reality of the quark
representations. Similar to QCD at finite isospin density (work in progress!).



Two-color QCD

Two-color QCD exhibits an enhanced U(2N;) symmetry, as compared
to the U(Ny)XU(N;) chiral symmetry of QCD.

In fact, thanks to the pseudoreality of the two-color Dirac operator the

quark fields g, and o,T1, gg* transform in the same color representation.
Hence we can introduce

_ qdL (0 1
Q o (iUngq*R) L= (—1 0) . 1Nf

and write the Lagrangian as

U o o~ P AP
L = _@GMV - GH -+ ZQO’ |:ay — ZGV . 5] Q — §quT’TQEQ + h.c. .

In this form the U(2N;) symmetry becomes manifest. The symmetry is
broken to SU(2N;) by the ABJ anomaly. The baryon charge is one of the
generators of SU(2N;) and baryons are diquark.



Two-color chiral Lagrangian

The infrared dynamics of the theory can be described by the following
chiral Lagrangian

Leg = V°Tr{0,Z0"S"} + m2*Tr{ MY + MTXT)

The chiral symmetry breaking is SU(2N;) — Sp(2Nj).

For the sake of simplicity, we consider a democratic mass matrix

I 0

and introduce the chemical potential p in the covariant derivative as:

. 0 —1
M2—302®1Nf=( )®1Nf
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Adding the B-angle

2

We introduce the topological charge: q(w) — 6Z7r2 EWPJFSVFSJ
i q(x)?
L) = Zq(.cz:)Tr[log >, — log ZT] — Oq(x) + T2

The coefficient of the quadratic term is the topological susceptibility of
the Yang-Mills theory. The coefficients reproduce the axial anomaly:

OuJs = 4Npq(x)

We can integrate out g(x) via its EOM to get

Lo = V*Tr{0,50"S"} + 4 *Tr{BX 0,5} + m2v/*Tr{Mx + M'E"}

. 2
+ 200 [Tr{EB"S'B} + Tr{BB}| — av’ (9 — %Tr{log > — log EW)




Vacuum structure

In the absence of the 6-angle we can look for a ground state of the form

die = (_1Nf 0 )cosgo+z(0 I) Sin 1 = (1Nf/2 0

Competition of mass and baryon chemical potential (chiral and diquark
condensates).

To take into account the 6-angle: we introduce the Witten variables q;

Yo = Ulas)Xe Ula,) = diag{e ™ ... e "N gt

e N

Each phase a;is an overall axial transformation for each left-right quark
pair.



Vacuum structure

The Lagrangian evaluated on the vacuum ansatz reads

Lo[Xo] = v* [4mer cos ¢ + 2u° Ny sin® ¢ — aéz}

529—20@-, X:Zcosaai

1 1

The equations of motion are

2
d sin (Nf COS Y — %X) =0

& 29’for sina; cosp = afl, 1= L,.., Ny




Superfluid phase transition

2
Consider the first EOM: sin ¢ (Nf COS Y — M_X) = (

€ normal phase (¢ =0)
Two solutions:

y m2
o€ superfluid phase (cos 0 =—= )
Nyp?
The superfluid phase transition is of the second order and is associated
with diquark (baryon) condensation. The energy reads

normal phase

— 092] ., superfluid phase

0=0: X=N;: superfluid phase transition at p=m._..

0#0: We need to know the 0-dependence in both phases: the energy is
minimized when X (normal phase) and X2 (superfluid phase) is
maximized.




O-dependence: normal phase

In the normal phase we have the well-known equation

Wy
2misinq; = af = a Q—E Q;
i

Then:Sin ¢; = SIn v;| We solve in powers of m,?/a. Leading order:

— =1,...
Q=13 Oé’. T el n(m —a) + (Ny —n)a =60 Mod 27
Q, i=n+1,..., Ny

Solution:

2K — N, —1
L it 0L k=0,...,N;—2n—1, n=0,.. |~2
(Nf—2?’l,) 2

The solutions with n#0 spontaneously break Sp(2N;) because of the
different phases for each flavour.



CP symmetry
f
CP is conserved when é = ) — Z ; = 0

This happens if: & 0=0 é m.2 =0

For 8=1r the Lagrangian is CP invariant. However, the vacua lie at

Ula;) = eﬁr_?lng Ula;) = e_&_?lng

The two solutions are related by a CP transformation U — UT and thus
CP is spontaneously broken by the vacuum.

DASHEN PHENOMENON
R. F. Dashen Phys.Rev.D 3 (1971) 1879-1889




0-dependence: superfluid phase

In the superfluid phase the equation of motion is

4

9 B
N?;QXsinai:an . =1,..,Ny.

In this case the natural expansion parameter is

We now proceed by considering fixed values of N;.



Nf — 2
At the leading order (in m_2/a or m_%/(a u?)) the EOM is

(11+(]{2:(9—|—2kﬂ' SiIl(ll :SiH(Q—I—Qkﬂ'—O{l)

There are two solutions

0 0 O0-+27 04 2
~I\/}{0‘51?O‘f2} — {5? 5 24 {()51,,&2} — { 9 9 9 }

The energy is minimized when X (normal phase) or X? (superfluid
phase) is maximized:
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The energy in the two phases is
g 1m2 . .60 1m?

5‘ eI

.0
sin — sin @

E(0) = —8m21? ( 5

) ,  normal phase

[ 4(micos® S+ ") misin?@  ml?sin®fcosd
E(0) = —v > T 1 2,6
M aj a’p

— ) ., superfluid phase

The superfluid phase transition occurs at

pe = M () = My [W* 7 (ﬂfﬂ

Hence it can be realized for tiny values y when 6=1r. We have

2
a 2




Nf =)

Normal phase: the solutions
cross at 0=t where | have
spontaneous breaking of CP
symmetry.

Superfluid phase: the energy
IS an analytic function of ©.
No spontaneous breaking of
CP symmetry at ©=Tr.

I T am
- - " -
- - \ 2m

0 = m—gsinﬁ =0
a 0=

This is exact to all orders in m_?/a.
In fact at =1 the EOM is

m4

T oin(2a) = 1 — 2
aﬂgsm(@) T — 2a



Nf :3

We have four solutions:

. g 0 06 . 0 +2m 04+27m 0+ 27 0+4m 6 +4m 6 + 47w .

1{555} 11.{ 3 s 3 s 3 }, 111.{ 3 , 3 , 3 }, 1v.{9—7‘r,6’—7r,27r—6’}
Normal phase: the ground Superfluid phase: No CP
state is given by solutions 1. SSB at 8=t but two novel
and 3. that cross at O=mr first-order phase transitions
where | have CP SSB. at 0=m11/2, 31/2.

=X
— =X%,
N _le

— _x?.h,

The non-minimum solutions represent metastable vacua which can be
long-lived. Later we will estimate their decay rate.



General N;

Solutions of the EOM are generally not periodic of 21 for ©.
The periodicity condition can be satisfied only if at least two solutions
cross. Consider »

U=c¢ zalsz

and ask when crossing can happen. We have

(9 + 2T kl (9 -+ 2T kg
COS ~ COS normal phase
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Supertluid phase: even N;

In the superfluid phase we have other solutions.

When N;is even we have the solution: ky = ko + Ny /2

Which does not depend on 8: the solutions organize themselves in
pairs (a and a+tm) with the same energy for every 0.
This holds to all orders in m_2/a. In fact given the EOM for a certain a:

m4

a,—g sin(2a) = 0 — Nya

7

we have the same EOM for a + 1 upon shifting 6 — 6 + Np7.
Then given the general solution

2K — N;—1
L it Ok k=0,...,N;—2n—1, n=0,.. |~L
(Nf—Q?’L) 2

The ground state has n=k=0 on (0, 1) and n=0, k= N-1 on (T, 2m)
along with their degenerate partners. SSB of CP at 6=t except for
N; =2.




Supertluid phase: odd N

In the superfluid phase we have other solutions.
When N;is odd we have the solution k; = Ny/2 — ko — 0 /7

It can be realized for 6=11/2 and 6=311/2.

The ground state is:

a=6IN, 0, /2)

a=m+(6- MIN, (12, 317/2)

a=(6-2m)/N; (311/2, 2m)

No spontaneous symmetry breaking of CP at 0=rr.

Two novel first order phase transitions at 6=11/2 and 6=311/2.



Domain walls

The tension of the domain wall between the two degenerate vacua at
0 = m for even N; in the superfluid phase reads

m4

T = 21/? [: dx {(Nf — 1) N/ (2)? — W@f ((Nf — 1) cos (a(x) + le) + cos (le - (Ny=1) a(x)))2]

Regardless of the exact form of the wall’s profile, its tension scales as

yszr To be compared withl" ~ v° m.. in the normal phase.
" [A. V. Smilga, Phys.Rev.D 59, 114021 (1999)]

The decay rate of the metastable vacua near @ =11 is

T ~

(~wr)
~exp | —
I' x exp (—C I ) a0

mS 8| ¢|? ( I/Qm?r)
ptol3

Here C is a positive constantand § = 7 + ¢ .




Symmetry breaking pattern

ANOMALY XxSB

We have QN? — Ny — 1 (pseudo)Goldstone modes from the xSB plus the
,2anomalous” singlet with a mass of order a.

M =0 | Sp(2Ny) = SUNy)z x SUNp)r x U(L)p ~ Sp(Ny)r x Sp(N¢)r

! VACUUM

We have N; — Ny — 1 massless Goldstone modes while the other modes
get a mass of order p.

mn¢0 Sp(2Ny) — SU(Ny)p x SU(Ny)r x U(1)p — SU(Ny)y x U(1)p — Sp(Ny)y
u m VACUUM

U

1
We have 5 r(Ny — 1)massless Goldstone modes.



Spectrum

1
WP =k + 42 5V (Vg + 1)
2 o | My X? 1
wy = k™ + (2N 5J\ff(z\ff—l)—l
2 (N7 + 3miX?) 1
w2 =k + N + A |GNp(Np = 1)
2 (,u4N2 + 3mf_‘rX2) 1 B
w? =k + JJGVJ%,u? — A|GNs(Ny = 1)
wi = k* 4+ M: 1
2 2
A= W (N3t 4 3miX2)" + ANFpmi X2k

2 _ WNG A 2ptm X (1 - ompX 2)

* 2uANE - 2miX?

2
PJQNf

Sp(Ny) representations




S p e Ct r u m Sp(N;) representations

1
WP =k + 42 5V (Vg + 1)
FEEINL S LNV 1) 1
2 2N 5V (Np —1) =
2 (/_L4N2 + 3m4X2) 1
2 2 f T
=k AI=N¢N;—1
Wi = RO N2 + A SNy (Ny = 1) + @
2 (,u4N2 + 3m4X2) 1
2 _ 2 / m _ A =Ng(Ny—1) |
=k A | 5NV ®
w4 -+ NJ%”Q 2 |
wi = k* 4+ M: 1 ®

- The number of d.o.f sum to dim ( = N(2N; — 1
é Spny) ) = NeNr =D

é w, describes Goldstone modes with speed v;=1.

é For m_=0, w, describes Goldstone modes with speed v;=1.



Then’

The Sp(N;) singlet with dispersion relation
ap*N? + 2u°m X? 4X2
2utN7 —2my X?
IS analogous to the n" meson of QCD.
CLNf

2 2
At the same time, the topological susceptibility is:%bzo — 2.2,

For m_=0 its mass is: M2 =

We, therefore, have

This is the Witten-Veneziano relation which still
holds at finite density in the chiral limit.




Conclusions

Two-color QCD displays a rich phase diagram in the p-6
plane depending on the number of flavours (even VS odd).

For a odd number of flavours there is no CP breaking at 6=1r.
However there are two novel first order phase transition at
0=11/2 and 8=311/2.

For every phase we determined the related symmetry
breaking pattern and the resulting spectrum of the theory.
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