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Introduction

The Standard Model of particle physics is very successful in
interpreting experimental results as of today. However, the
Standard Model is not considered as a complete theory as it
leaves a number of unanswered questions including the
hierarchy problem, neutrino masses, dark matter and does not
include gravity.

Supersymmetry is an extension of the Standard Model that has
been extensively studied. It can help to resolve some of these
issues, e.g. provide a technical solution to the hierarchy
problem.

However, experiments have not provided any signs of SUSY yet.
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String Theory

String theory is our best candidate for a consistent theory of
quantum gravity that incorporates gauge interactions including
the Standard Model of Particle Physics.

String phenomenology focuses on the construction and study
of phenomenological features of string derived gauge models.
These include extensions of the SM or GUTs that comprise the
SM. The research in this field has yielded low energy effective
models with realistic characteristics, including the SU(3)3,
flipped SU(5)× U(1), Pati-Salam models. All these models
exhibit N = 1 space-time supersymmetry.
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Non-supersymmetric strings

Space-time supersymmetry is not required for consistency in string
theory.

From the early days of the first string revolution it was known that
heterotic strings in 10D comprise both the supersymmetric E8 × E8
and SO(32) models and the non-supersymmetric tachyon free
SO(16)× SO(16) theory.

However, non-supersymmetric string models face serious challenges:
• Tachyon instabilities.
• The cosmological constant does not vanish.
Recent developments provide some interesting solutions to these
issues.

∗ see e.g. S. Abel, K. R. Dienes and E. Mavroudi (2015,2017) , J. R. and I. Florakis
(2016,2017) , Y. Sugawara, T. Wada (2016) , A. Lukas, Z. Lalak and E. E. Svanes (2015) ,
S.G. Nibbelink, O. Loukas, A. Mütter, E. Parr, P. K. S. Vaudrevange (2017), Faraggi et all
(2020) , T. Coudarchet, E. Dudas, H. Partouche (2021)... 3



Coordinate dependent compactifications

Supersymmetry may be spontaneously broken within a string
theory setup admitting an exact worldsheet description via
coordinate-dependent compactifications which essentially
realise the stringy analogue of the Scherk-Schwarz mechanism.
A (minimal) implementation of a stringy Scherk–Schwartz
mechanism requires an extra dimension X5 and a conserved
charge Q. Upon compactification

Φ
(
X5 + 2πR

)
= eiQΦ

(
X5
)

we obtain a shifted tower of Kaluza–Klein
states for charged fields, starting at
MKK = |Q|

2πR

Φ(X5) = e
i QX5
2πR

∑
n∈Z

Φn ei nX
5/R
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Coordinate dependent compactifications

Choosing

Q = Fermion Number

Leads to different masses for fermions-bosons (lying in the
same supermultiplet) and thus to spontaneous breaking of
supersymmetry.

SUSY breaking related to the compactification radius M ∼ 1
R

see e.g.
J. Scherk and J. H. Schwarz (1978,1979) , R. Rohm (1984) , C. Kounnas and M. Porrati
(1988) , S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner (1989) , C. Kounnas and
B. Rostand (1990) , C. Kounnas, H. Partouche (2017)
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Gravitino mass

We focus on compactifications of the six internal dimensions
in three separate two-tori parametrised by the T(i),U(i),
i = 1, 2, 3 moduli. For simplicity, we will assume that the
Scherk–Schwartz mechanism is realised utilising the first torus
T(1) = T(1)1 + iT(1)2 ,U(1) = U(1)

1 + iU(1)
2 .

At tree level the gravitino receives a mass, e.g.

m3/2 =
|U(1)|√
T(1)2 U(1)

2

=
1
R1
,

for a square torus: T = ıR1 R2,U = ıR2/R1.
Moreover, at tree level, all T(i),U(i) moduli remain massless.

At R1 → ∞ we have m3/2 = 0 and the supersymmetry is
restored.
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One loop potential

The effective potential at one loop, as a function moduli
tI = T(i),U(i), is obtained by integrating the string partition
function Z(τ1, τ2; tI) over the worldsheet torus Σ1

Vone−loop(tI) = − 1
2(2π)4

∫
F

d2τ
τ 32

Z(τ, τ̄ ; tI) ,

where F is the fundamental domain .

For given values of the moduli

Z =
∑
n∈Z/2
n≥−1/2

∑
m∈Z

Zn,m qnr qmi =
∑
n∈Z/2
n≥−1/2

 [n]+2∑
m=−[n]−1

Zn,m qmi

 qnr .

where qr = e−2πτ2 and qi = e2πiτ1 .
7



One loop partition function

Z =
1

η2η̄2
1
24

∑
h1,h2,H,H′

g1,g2,G,G′

1
23

∑
a,k,ρ
b,ℓ,σ

1
23

∑
H1,H2,H3
G1,G2,G3

(−1)a+b+HG+H
′G′+Φ

×
ϑ[ab]

η

ϑ[a+h1b+g1 ]

η

ϑ[a+h2b+g2 ]

η

ϑ[a−h1−h2b−g1−g2 ]

η

× ϑ̄[kℓ]
3

η̄3
ϑ̄[k+H

′

ℓ+G′ ]

η̄

ϑ̄[k−H
′

ℓ−G′ ]

η̄

ϑ̄[k+h1ℓ+g1 ]

η̄

ϑ̄[k+h2ℓ+g2 ]

η̄

ϑ̄[k−h1−h2ℓ−g1−g2 ]

η̄

×
ϑ̄[ρ+H

′

σ+G′ ]

η̄

ϑ̄[ρ−H
′

σ−G′ ]

η̄

ϑ̄[ρσ]
2

η̄2
ϑ̄[ρ+Hσ+G]

4

η̄4

×
Γ
(1)
2,2[

H1
G1 |

h1
g1 ](T(1),U(1))

η2η̄2
Γ
(2)
2,2[

H2
G2 |

h2
g2 ](T(2),U(2))

η2η̄2
Γ
(3)
2,2[

H3
G3 |

h1+h2
g1+g2 ](T

(3),U(3))

η2η̄2
,

where T(i) = T(i)1 + iT(i)2 , U(i) = U(i)
1 + iU(i)

2 are the moduli of the three
two tori, η(τ) is the Dedekind eta function and ϑ[αβ ](τ) stand for the
Jacobi theta functions. 8



Twisted/shifted lattices

The Scherk–Schwarz breaking is implemented utilising orbifold
shifts parametrised by Gi,Hi, i = 1, 2, 3

Γ2,2[
Hi
Gi |

h
g](T,U) =


∣∣ 2η3
ϑ[1−h
1−g]

∣∣2 , (Hi,Gi) = (0, 0) or (Hi,Gi) = (h,g)

Γshift
2,2 [

Hi
Gi ](T,U) , h = g = 0

0 , otherwise

,

Γshift
2,2 [

Hi
Gi ](T,U) =

∑
m1,m2
n1,n2

(−1)Gi(m1+n2) q
1
4 |PL|

2 q̄
1
4 |PR|

2
,

with

PL =
m2 +

Hi
2 − Um1 + T(n1 + Hi

2 + Un2)√
T2U2

,

PR =
m2 +

Hi
2 − Um1 + T̄(n1 + Hi

2 + Un2)√
T2U2

.
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One loop potential: Large volume limit

The asymptotic behaviour of the one loop potential is

lim
T2≫1

Vone-loop(T,U) = − (nB − nF)
24π7T22

∑
m1,m2∈Z

U32∣∣m1 +
1
2 + Um2

∣∣6 +O
(
e−

√
2πT2

)

lim
T2≫1

Vone-loop(T,U) = ξ
(nB − nF)

T22
+ exponentially supressed

where ξ is a constant and T2 = R2 for a square torus.
nB,nF stand for the number of massless bosonic and fermionic
degrees of freedom respectively.

Cosmological constant is exponentially small for large R for models
with fermion-boson degeneracy nB = nF, the “super-no-scale
models”, termed so by Costas Kounnas an excellent physicist and
great friend who passed away last year.
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Shape of the potential

The self-dual points under the duality symmetry T2 → 1/T2
correspond to extrema of the potential V(T2) = V

(
ℓ2s/T2

)
.

Typically, the potential is of the form

V( )T2

T2

`s
2

This leads to SUSY breaking at the string scale.
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Shape of the potential

It has been shown that there exist models with potentials of
the form

V( )T2

T2

T2

`s
2

` >>s
2

non-perturbative
effects?

This brings the possibility of supersymmetry breaking at a low
scale provided a mechanism for modulus stabilization at
T2 ≫ ℓ2s. 12



Free fermionic formulation of the heterotic string

The heterotic string is a hybrid construction that combines the
10-dimensional superstring with the 26-dimensional bosonic string.

In the free fermionic formulation of the heterotic string all
world-sheet bosonic coordinates are fermionized (except the ones
associated with 4D space-time). World-sheet supersymmetry is
preserved as it is non-linearly realized among left moving fermions.
In the standard notation the fermionic coordinates in the light-cone
gauge are:

Left: ψµ, χ1,...,6, y1,...,6, ω1,...,6
Right: ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄1,...,8

In this framework a model is defined by a set of basis vectors which
encode the parallel transport properties of the fermionic fields along
the non-contractible loops of the world-sheet torus, and a set of
phases associated with generalised GSO projections (GGSO).
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The non-supersymmetric Pati–Salam model

Based on “Lepton Number as the Fourth Color”, J. C. Pati and A.
Salam (1974)

Gauge symmetry : SU(4)×SU(2)L×SU(2)R
SM Fermions:

FL(4, 2, 1) = Q(3, 2,−1/6) + L(1, 2, 1/2) ,
FR(4, 1, 2) = uc(3, 1, 2/3) + dc(3, 1,−1/3) + ec(1, 1,−1) + νc(1, 1, 0)

Extra triplets: (6, 1, 1)
Pati-Salam Higgs scalars: H (4, 1, 2)
SM Higgs scalars:

h (1, 2, 2) = Hu
(
1, 2,+ 12

)
+ Hd

(
1, 2,− 12

)
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Pati–Salam string models

A class of Pati-Salam models can be generated by the basis
β1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄1,...,8} ,
β2 = S = {ψµ, χ1,...,6} ,
β3 = T1 = {y12, ω12|ȳ12, ω̄12} ,
β4 = T2 = {y34, ω34|ȳ34, ω̄34}
β5 = T3 = {y56, ω56|ȳ56, ω̄56} ,
β6 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, ψ̄1,...,5, η̄1} ,
β7 = b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, ψ̄1,...,5, η̄2} ,
β8 = z1 = {ϕ̄1,...,4} , β9 = z2 = {ϕ̄5,...,8} , β10 = α = {ψ̄4,5, ϕ̄1,2} ,
and a set of 10(10− 1)/2+ 1 = 46 GGSO phases c

[
βi
βj

]
= ±1.

This class compises 246 ≈ 7× 1013 models.
Gauge group:

G = SU(4)× SU(2)L × SU(2)R × U(1)3 × SU(2)4 × SO(8)
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β5 = T3 = {y56, ω56|ȳ56, ω̄56} ,
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Phenomenological criteria

(a) Absence of physical tachyons in the string spectrum
(b) Existence of complete chiral fermion generations
(c) Existence of Pati–Salam and SM symmetry breaking scalar
Higgs fields
(d) Absence of observable gauge group enhancements
(e) Vector-like fractionally charged exotic states
(f) Consistency with the Scherk–Schwarz SUSY breaking
(g) Compliance with the super-no-scale condition, that is
translated to equality of the fermionic and bosonic degrees of
freedom
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Phenomenologically promising Pati–Salam string models

A comprehensive computer scan over the full parameter space
(1.7× 1010 models) yields

-16 -12   -8 -4 4 8 12 16

10

10

4

3

105

106

107

108

# of generations

# 
of

 m
od

el
s

Light shaded bars: (a)-(c) 2.4× 108 models, Medium shaded bars
(a)-(g) 5.6× 105 models, Dark shading bars: 1.4× 104 models 17



One-loop potentials
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Figure 1: The rescaled effective potential Ṽ(T2) = 2(2π)4V(T2) for each
of the 26 distinct subclasses of models. The number of models in
each class is also displayed.
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Three-generation models

Three generation models in the context of Z2 × Z2 orbifolds can
be obtained only utilising real fermions. To this end, we
introduce additional vectors that separate internal fermions
v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄1,...,8} ,
v2 = S = {ψµ, χ1,...,6} , v2+i = ei = {yi, ωi|ȳi, ω̄i} , i = 1, . . . , 6 ,
v9 = b1 = {χ34, χ56, y3, y4, y5, y6|ȳ3, ȳ4, ȳ5, ȳ6, ψ̄1,...,5, η̄1} ,
v10 = b2 = {χ12, χ56, y1, y2, y5, y6|ȳ1, ȳ2, ȳ5, ȳ6, ψ̄1,...,5, η̄2} ,
v11 = z1 = {ϕ̄1,...,4} , v12 = z2 = {ϕ̄5,...,8} , v13 = α = {ψ̄4,5, ϕ̄1,2} ,

For generic choices of the GGSO projections this class
comprises a huge number of 2

13(13−1)
2 +1 ∼ 6× 1023 heterotic

string models that exhibit

G = SU(4)× SU(2)L × SU(2)R × U(1)3 × SU(2)4 × SO(8)

gauge symmetry. 19



Large volume formula - Super-no-scale constraints

Depending on the implementation of the Scherk–Schwarz
mechanism new constraints arise. In the simplest case, the large
volume limit of the effective potential can be expressed as follows

Veff = − 63
2(2π)4 T22

 1
2

∑
H2,G2∈Z2

(−1)H2C
[ 0 ,H2
1 , G2

]
E⋆∞(3;U)

+
1
8

∑
G2∈Z2

C
[ 0 , 1
1 , G2

]
E⋆∞(3; 2U)

]
+ . . .

where E⋆∞(s; z) is the zero weight, completed, non-holomorphic
Eisenstein series and the ellipses denote exponentially suppressed
terms.

A careful examination of this formula, shows that in order to obtain
an exponentially suppressed contribution at large T2, the coefficients
of both Eisenstein series vanish independently.
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Super-no-scale conditions

The last constraint can be expressed as

Σ(H2) ≡
1
4

∑
G1,G2=0,1

C
[ 0 ,H2
G1 ,G2

]
, H2 = 0, 1

The first condition
Σ(0) = nB − nF = 0

is associated with the full massless spectrum of the theory
accompanied with a tower of states that tend to become
massless at the limit T2 → ∞, M2(Γ(1)2,2) = |m2 − Um1|2/T2U2.
This is the “super no-scale” condition known in the string
literature. The second condition

Σ(1) = 0
is non-trivial. It refers to a subset of massive states, arising
from shifted lattice, that also become massless at the T2 → ∞
limit, M2(Γ(1)2,2) = |m2 +

1
2 − Um1|2/T2U2. 21



Three generation models

We have performed a detailed investigation of the model parameter
space utilising a computer assisted two-stage scan procedure: we
first perform a (random) scan and identify SO(10) configurations
compatible with our search criteria. Next, we consider all possible
offspring Pati–Salam models generated by each (fertile) SO(10)
configuration and the related GGSO projection phases and check
their compatibility with the aforementioned criteria.

In practice, this method allows us to effectively scan a big sample of
8.1× 1012 models (almost one model in 104) of the full parameter
space in about 10 days on a DELL PowerEdge R630 workstation with
32 GB of memory. It turns out that 8.8× 106 models fulfil our
phenomenological criteria. Out of these, about 0.1% meet the first
super no-scale constraint Σ(0) = 0, while around 21% meet the
second super no-scale constraint Σ(1) = 0.

Altogether, we have identified 174 three generation Pati–Salam
models that comply with all requirements (one in 50 billions). 22



One-loop potential (3 generation models)

Based on the analysis of their partition functions the one-loop effective potentials of
the 3-generation models fall into 17 distinct classes

The rescaled one-loop effective potential Ṽ(T2) = 2(2π)4V(T2) for each of the 17
classes of 3-generation models satisfying all requirements.
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Conclusions

We have shown the existence of non-supersymmetric heterotic string
models with Pati-Salam gauge symmetry exhibiting interesting
phenomenological characteristics:
• Chiral spectra with 3 generations, Pati–Salam and Standard Model
breaking Higgs scalars.
• SUSY breaking via the Scherk–Schwarz mechanism at scales
Msusy ∼ 1

R that could be much smaller than Mstring.
• Fulfil the nB = nF (“super-no-scale”) requirement that leads to
exponentially small (and possibly positive) vacuum energy at the
large volume limit.
• That has to be supplemented in the case of real fermions
(necessary to obtain 3 generations) by some additional model
dependent constraint.

These developments bring us a few steps closer to the construction
of a non-supersymmetric Standard Model from string theory.
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Non-holomorphic Eisenstein series

E∗∞(s; z) = 1
2ζ

∗(2s)
∑
c,d∈Z

(2c,d)=1

(Imz)s

|2cz+ d|2s
, ζ∗(s) = π−s/2Γ(s/2)ζ(s).

where (2c,d) = 1 restricts the summation to coprime pairs.
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One-loop potential (3 generation models)
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Comparison between the rescaled one-loop effective potentials Ṽ(T2) = 2(2π)4V(T2) of

Models A and B in linear (a) and detail in semi-logarithmic (b) scale, showing the

exponential suppression present in Model A as opposed to Model B.
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