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• Inflation: 


• The anisotropies leave their imprints on CMB 


• Precise measurements of  CMB’s anisotropies and spectral index provide a test-playground for inflation

INTRO

1) An elegant explanation for the homogeneity and isotropy of  the Universe


2) A causal mechanism to generate the inhomogeneities 


Planck Collaboration, Y. Akrami et 
al., Astron. Astrophys. 641 (2020)
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• Inflation works very well for a slowly rolling scalar field with


• Our proposal 


• The FLRW metric

INTRO
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action

S[φ] =

∫

d4x
√
−g

[(

1

2

)

(∂µφ ∂
µφ) − V (φ)

]

, (12)

with the associated stress-energy tensor being given by

T µ
ν = ∂µφ ∂νφ− δµ

ν

[(

1

2

)

(

∂λφ ∂
λφ
)

− V (φ)

]

. (13)

The symmetries of the Friedmann background—viz. ho-
mogeneity and isotropy—imply that the scalar field will
depend only on time and, hence, the resulting stress-
energy tensor will be diagonal. Therefore, the energy
density ρ and the pressure p associated with the scalar
field simplify to

T 0
0 = ρ =

[(

φ̇2

2

)

+ V (φ)

]

, (14a)

T i
j = −p δi

j = −

[(

φ̇2

2

)

− V (φ)

]

δi
j . (14b)

Moreover, from the action (12), one can arrive at the
following equation of motion for the scalar field φ in the
Friedmann universe:

φ̈+ 3 H φ̇+ Vφ = 0, (15)

where Vφ = (dV/dφ). From the above expressions for
ρ and p, one finds that the condition for inflation, viz.
(ρ+ 3 p) < 0, reduces to

φ̇2 < V (φ). (16)

In other words, inflation can be achieved if the potential
energy of the scalar field dominates its kinetic energy.

Given a V (φ) that is motivated by a high energy model,
the first Friedmann equation (11a) and the equation (15)
that governs the evolution of the scalar field have to be
consistently solved for the scale factor and the scalar field,
with suitable initial conditions. But, using the expres-
sions (14) for the energy density and the pressure associ-
ated with the scalar field, the Friedmann equations (11)
can be rewritten as

H2 =

(

1

3 M2
P

)

[(

φ̇2

2

)

+ V (φ)

]

, (17a)

Ḣ = −
(

1

2 M2
P

)

φ̇2, (17b)

where, for convenience, I have set (8 πG) = M−2
P

, as I
had defined earlier. These two equations can then be
combined to express the scalar field and the potential
parametrically in terms of the cosmic time t as follows [4]:

φ(t) =
√

2 MP

∫

dt

√

(

−Ḣ
)

, (18a)

V (t) = M2
P

(

3 H2 + Ḣ
)

. (18b)

If we know the scale factor a(t), these two equations allow
us to ‘reverse engineer’ the potential from which such a
scale factor can arise! Using this procedure, I shall now
‘reconstruct’ the potentials of two commonly considered
models of inflation.

Consider the power law expansion

a(t) = a1 tq (19)

with q > 1 corresponding to inflation, and a1 being an
arbitrary constant. On substituting this scale factor in
equation (18a) and, upon integration, one can immedi-
ately show that the scalar field evolves as

(

φ(t)

MP

)

=
√

(2 q) ln

[

√

(

V0

(3 q − 1) q

) (

t

MP

)

]

, (20)

where V0 is a constant of integration. The potential that
leads to such a behavior can then be obtained using equa-
tion (18b), and the above expressions for a(t) and φ(t).
It is found to be [32]

V (φ) = V0 exp −
[
√

2

q

(

φ

MP

)]

. (21)

In a similar fashion, it is straightforward to establish that
the potential

V (φ) =
(

3α2 β2 Γκ M2
P

)

[

1 −
(

κ2

6

)(

MP

φ

)2
]

(

φ

MP

)−κ

,

(22)
where Γ =

√

(2ακ) and κ = [4 (1 − β)/β], leads to the
following behavior for a(t):

a(t) = a1 exp
(

α tβ
)

(23)

with α > 0 and 0 < β < 1, and a1 is again some arbitrary
constant. Since this scale factor grows faster than power
law inflation, but slower than exponential expansion, it
is referred to as intermediate inflation [33, 34].

D. Slow roll inflation

The condition (16) that the potential energy of the
inflaton3 dominates the kinetic energy is necessary for
inflation to take place. However, inflation is guaranteed,
if the field rolls slowly down the potential such that

φ̇2 # V (φ). (24)

Moreover, it can be ensured that the field is slowly rolling
for a sufficiently long time (to achieve the required 60 or
so e-folds of inflation), provided

φ̈#
(

3 H φ̇
)

. (25)

3 It is common to refer to the scalar field that drives inflation as
the inflaton.

Free massive scalar field and its thermal evolution under the dS/
CFT correspondence 

1 Introduction

The rapidly expanding phase of the universe can be modelled by de Sitter (dS) space and the

simplest form of matter by a real scalar. It is believed that basic effects that left an imprint on

the Cosmic Microwave Background (CMB) were of thermal nature. Therefore a simple model

that could explain some of the observed features of the CMB is a real scalar field φ in fixed dS

background [1, 2, 3], formulated in the context of thermal quantum field theory [4]. The action

is

S =

∫
d4x

√
−g

[
1

2
gµν∂µφ∂νφ− (m2 + ξR)φ2

]
,

which we will quantize taking into account finite temperature effects. After fixing the parametric

freedom by an RG flow argument that has its origins in the d = 3 Ising model, we will extract

several simple cosmological observables.

2 Propagators and temperature

Consider a d+ 1 dimensional FRW spacetime with metric

ds2 = a2
(
dτ2 − dx2

)
(2.1)

with τ the conformal time and a(τ) the scale factor. de Sitter space corresponds to a = − 1
Hτ .

The expanding Poincare patch of dS space is parametrized by τ ∈ (−∞, 0]. The scalar field

mode in d-dimensional momentum space φ|k| =
χ|k|
a in this background yields the classical

Klein-Gordon equation of motion (k = (k0,k) is the four-momentum and the dot is derivative

with respect to τ)

χ̈k + ω2
|k|χk = 0 , (2.2)

with ω2
|k| = |k|2 + m2

dS and a time-dependent mass given by m2
dS = 1

τ2 (M
2 − d2−1

4 ). The dS

mass parameter is M2 = µ2
H + 12ξ with µ2

H = m2

H2 and H the inverse curvature parameter of dS

space, satisfying R = 12H2. The solutions to Eq. (2.2) are linear combinations of the Hankel

function Hνcl(τ, |k|) and its complex conjugate, of weight νcl, with

νcl =
d

2

√
1− 4M2

d2
. (2.3)

Quantization of this system results in the notion of a time-dependent vacuum state and a doubled

Hilbert space. Regarding the vacua, we will be concerned with the so called “in” vacuum defined

at τ = −∞ and the “out” vacuum defined at the boundary (i.e. the horizon) of the expanding

patch, at τ = 0. These are empty vacua from the perspective of corresponding local (in conformal

time) observers. The |in〉 will be chosen to be the maximally symmetric Bunch-Davies vacuum

[5, 6]. The two vacua are related via the Bogolyubov Transformation (BT) 〈J |ΦI = 〈I|ΦJ

where I, J = in, out and ΦI is the field operator with eigenvalue χI
|k|. Common notation is

χin
|k| = u|k| and χout

|k| = v|k|. A particularly useful point of view [7] is to recognize the system at

2

corresponds to de Sitter for α(τ) = −
1

Hτ
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Using these expressions for z and the HSR parameters,
the term (z′′/z) that appears in the Mukhanov-Sasaki
equation (83) can be written as [13, 64, 65]

(

z′′

z

)

= H2

[

2 − εH + (εH − δH) (3 − δH) +

(

ε′
H
− δ′

H

H

)]

.

(101)
From the definition of εH above, it can also be established
that

(

a′′

a

)

= H2 (2 − εH) . (102)

Let us now rewrite the expression (100) above for εH
as follows:

η = −
∫
(

1

1 − εH

)

d

(

1

H

)

. (103)

On integrating this expression by parts, and using the
above definition of δH , one obtains that

η = −
[

1

(1 − εH)H

]

−
∫
[

2 εH (εH − δH)

(1 − εH)3

]

d

(

1

H

)

.

(104)
At the leading order in the slow roll approximation [cf.
Eq. (34)], the second term can be ignored and, at the
same order, one can assume εH to be a constant. There-
fore, we have

H " −
[

1

(1 − εH) η

]

. (105)

If we now use this expression for H in the expres-
sions (101) and (102), then, at the leading order in the
slow roll approximation, one gets that

(

z′′

z

)

"
(

2 + 6 εH − 3 δH
η2

)

, (106a)

(

a′′

a

)

"
(

2 + 3 εH
η2

)

, (106b)

with the slow roll parameters treated as constants. It is
then clear from Eqs. (83) and (87) that the solutions to
the variables vk and uk will again be given in terms of
Hankel functions as in the power law case (93), with the
quantity ν now given by

νS "
[(

3

2

)

+ 2 εH − δH

]

and νT "
[(

3

2

)

+ εH

]

,

(107)
where the subscripts S and T refer to the scalar and
tensor cases.

It now remains to evaluate the two spectra in the
super-Hubble limit. In this limit [i.e. as (−k η) → 0],
upon expanding the Hankel function as a series about
the origin, the scalar and the tensor spectra can be ex-

pressed as [20, 64]

PS(k) =

(

1

32 π2 M2
P
εH

)[

|Γ(νS)|
Γ(3/2)

]2(k

a

)2(−k η

2

)(1−2 νS )

=

(

H2

2 π φ̇

)2 [ |Γ(νS)|
Γ(3/2)

]2

× 2(2 νS−3) (1 − εH)(2 ν
S
−1) , (108a)

PT(k) =

(

1

2 π2 M2
P

) [

|Γ(νT)|
Γ(3/2)

]2 (k

a

)2 (−k η

2

)(1−2 νT )

=

(

2 H2

π2 M2
P

) [

|Γ(νT)|
Γ(3/2)

]2

× 2(2 νT−3) (1 − εH)(2 ν
T
−1) , (108b)

where H is the Hubble parameter, and the second equal-
ities express the asymptotic values in terms of the val-
ues of the quantities at Hubble exit [i.e. at (−k η) =
(1− εH)−1]. (Also, I have multiplied the tensor spectrum
by the factor of (4/M2

P
), as I had mentioned earlier.) At

the leading order in the slow roll approximation, the am-
plitudes of the scalar and the tensor spectra can easily
be read off from the above expressions. They are given
by [20]

PS(k) "
(

H2

2 π φ̇

)2

k=(a H)

, (109a)

PT(k) "
(

8

M2
P

) (

H

2 π

)2

k=(a H)

, (109b)

with the sub-scripts on the right hand side indicating
that the quantities have to be evaluated when the modes
cross the Hubble radius. Given a quantity, say, y, we can
write [20]
(

dy

d ln k

)

k=(a H)

=

(

dy

dt

) (

dt

d ln a

) (

d ln a

d ln k

)

k=(a H)

=

(

ẏ

H

)

k=(a H)

, (110)

where, in arriving at final expression, the following con-
dition has been used:

(

d ln a

d ln k

)

k=(a H)

" 1, (111)

as H does not vary much during slow roll inflation. Using
the expressions (109) for the power spectra, the defini-
tions (89) of the spectral indices, and the relation (89),
one can easily show that

nS " (1 − 4 εH + 2 δH) and nT " − (2 εH) . (112)

These expressions unambiguously point to the fact the
scalar and the tensor spectra that arise in slow roll infla-
tion will be nearly scale invariant. The tensor-to-scalar
ratio in the slow roll limit is found to be

r " (16 εH) = − (8 nT) (113)
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A BIT OF TERMINOLOGY 
• QFT in dS space:


• The  surface is also called the Horizon of  the expanding Poincare patch of  dS space τ = 0

Conformally flat metric with a time-like coordinate τ ∈ (−∞,0]

|in⟩ vacuum (observer) defined at  τ = − ∞

|out⟩ vacuum (observer) defined at the horizon    τ = 0

and  α(τ) = −
1

Hτ

1 Introduction

The rapidly expanding phase of the universe can be modelled by de Sitter (dS) space and the

simplest form of matter by a real scalar. It is believed that basic effects that left an imprint on

the Cosmic Microwave Background (CMB) were of thermal nature. Therefore a simple model

that could explain some of the observed features of the CMB is a real scalar field φ in fixed dS

background [1, 2, 3], formulated in the context of thermal quantum field theory [4]. The action

is

S =

∫
d4x

√
−g

[
1

2
gµν∂µφ∂νφ− (m2 + ξR)φ2

]
,

which we will quantize taking into account finite temperature effects. After fixing the parametric

freedom by an RG flow argument that has its origins in the d = 3 Ising model, we will extract

several simple cosmological observables.

2 Propagators and temperature

Consider a d+ 1 dimensional FRW spacetime with metric

ds2 = a2
(
dτ2 − dx2

)
(2.1)

with τ the conformal time and a(τ) the scale factor. de Sitter space corresponds to a = − 1
Hτ .

The expanding Poincare patch of dS space is parametrized by τ ∈ (−∞, 0]. The scalar field

mode in d-dimensional momentum space φ|k| =
χ|k|
a in this background yields the classical

Klein-Gordon equation of motion (k = (k0,k) is the four-momentum and the dot is derivative

with respect to τ)

χ̈k + ω2
|k|χk = 0 , (2.2)

with ω2
|k| = |k|2 + m2

dS and a time-dependent mass given by m2
dS = 1

τ2 (M
2 − d2−1

4 ). The dS

mass parameter is M2 = µ2
H + 12ξ with µ2

H = m2

H2 and H the inverse curvature parameter of dS

space, satisfying R = 12H2. The solutions to Eq. (2.2) are linear combinations of the Hankel

function Hνcl(τ, |k|) and its complex conjugate, of weight νcl, with

νcl =
d

2

√
1− 4M2

d2
. (2.3)

Quantization of this system results in the notion of a time-dependent vacuum state and a doubled

Hilbert space. Regarding the vacua, we will be concerned with the so called “in” vacuum defined

at τ = −∞ and the “out” vacuum defined at the boundary (i.e. the horizon) of the expanding

patch, at τ = 0. These are empty vacua from the perspective of corresponding local (in conformal

time) observers. The |in〉 will be chosen to be the maximally symmetric Bunch-Davies vacuum

[5, 6]. The two vacua are related via the Bogolyubov Transformation (BT) 〈J |ΦI = 〈I|ΦJ

where I, J = in, out and ΦI is the field operator with eigenvalue χI
|k|. Common notation is

χin
|k| = u|k| and χout

|k| = v|k|. A particularly useful point of view [7] is to recognize the system at

2
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that could explain some of the observed features of the CMB is a real scalar field φ in fixed dS

background [1, 2, 3], formulated in the context of thermal quantum field theory [4]. The action

is

S =

∫
d4x

√
−g

[
1

2
gµν∂µφ∂νφ− 1

2
(m2 + ξR)φ2

]
, (1.1)

which we will quantize taking into account finite temperature effects. After fixing the parametric

freedom by an RG flow argument that has its origins in the d = 3 Ising model, we will extract

several simple cosmological observables.

2 Propagators and temperature

Consider a d+ 1 dimensional FRW spacetime with metric

ds2 = a2
(
dτ2 − dx2

)
(2.1)

with τ the conformal time and a(τ) the scale factor. de Sitter space corresponds to a = − 1
Hτ .

The expanding Poincare patch of dS space is parametrized by τ ∈ (−∞, 0]. The scalar field

mode in d-dimensional momentum space φ|k| =
χ|k|
a in this background yields the classical

Klein-Gordon equation of motion (k = (k0,k) is the four-momentum and the dot is derivative

with respect to τ)

χ̈k + ω2
|k|χk = 0 , (2.2)

with ω2
|k| = |k|2 + m2

dS and a time-dependent mass given by m2
dS = 1

τ2 (M
2 − d2−1

4 ). The dS

mass parameter is M2 = µ2
H + 12ξ with µ2

H = m2

H2 and H the inverse curvature parameter of dS

space, satisfying R = 12H2. The solutions to Eq. (2.2) are linear combinations of the Hankel

function Hνcl(τ, |k|) and its complex conjugate, of weight νcl, with

νcl =
d

2

√
1− 4M2

d2
. (2.3)

Quantization of this system results in the notion of a time-dependent vacuum state and a doubled

Hilbert space. Regarding the vacua, we will be concerned with the so called “in” vacuum defined

at τ = −∞ and the “out” vacuum defined at the boundary (i.e. the horizon) of the expanding

patch, at τ = 0. These are empty vacua from the perspective of corresponding local (in conformal

time) observers. The |in〉 will be chosen to be the maximally symmetric Bunch-Davies vacuum

[5, 6]. The two vacua are related via the Bogolyubov Transformation (BT) 〈J |ΦI = 〈I|ΦJ

where I, J = in, out is a label of the vacuum and ΦI is the field operator with mode function

χI
|k|. Note that the field is the same in both vacua, with the mode functions and the creation

and annihilation operators inside it being the vacuum dependent quantities. Common notation

2

Bogolyubov 
Transformation 

I, J = in, out
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THERMAL PROPAGATORS

• The action to be quantized under thermal effects


• Consider a  dimensional FLRW spacetime


• Klein-Gordon equation for the mode 

d + 1

ϕk =
χk

α
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  ω2
|k|(τ) = |k |2 + m2

dS(τ) , m2
dS(τ) =

1
τ (M2 −

d2 − 1
4 ) M2 =

m2

H2
+ 12ξ
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ds2 = a2
(
dτ2 − dx2

)
(2.1)

with τ the conformal time and a(τ) the scale factor. de Sitter space corresponds to a = − 1
Hτ .

The expanding Poincare patch of dS space is parametrized by τ ∈ (−∞, 0]. The scalar field

mode in d-dimensional momentum space φ|k| =
χ|k|
a in this background yields the classical

Klein-Gordon equation of motion (k = (k0,k) is the four-momentum and the dot is derivative

with respect to τ)

χ̈k + ω2
|k|χk = 0 , (2.2)

with ω2
|k| = |k|2 + m2

dS and a time-dependent mass given by m2
dS = 1

τ2 (M
2 − d2−1

4 ). The dS

mass parameter is M2 = µ2
H + 12ξ with µ2

H = m2

H2 and H the inverse curvature parameter of dS

space, satisfying R = 12H2. The solutions to Eq. (2.2) are linear combinations of the Hankel

function Hνcl(τ, |k|) and its complex conjugate, of weight νcl, with

νcl =
d

2

√
1− 4M2

d2
. (2.3)

Quantization of this system results in the notion of a time-dependent vacuum state and a doubled

Hilbert space. Regarding the vacua, we will be concerned with the so called “in” vacuum defined

at τ = −∞ and the “out” vacuum defined at the boundary (i.e. the horizon) of the expanding

patch, at τ = 0. These are empty vacua from the perspective of corresponding local (in conformal

time) observers. The |in〉 will be chosen to be the maximally symmetric Bunch-Davies vacuum

[5, 6]. The two vacua are related via the Bogolyubov Transformation (BT) 〈J |ΦI = 〈I|ΦJ

where I, J = in, out is a label of the vacuum and ΦI is the field operator with mode function

χI
|k|. Note that the field is the same in both vacua, with the mode functions and the creation

and annihilation operators inside it being the vacuum dependent quantities. Common notation

2
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• The solution is a combination of  the Hankel functions  with weight 


• Quantization includes time-dependent vacua and a doubled Hilbert space 


• Time-dependent vacua

H1,2
νcl

(τ, |k | )

1 Introduction

The rapidly expanding phase of the universe can be modelled by de Sitter (dS) space and the

simplest form of matter by a real scalar. It is believed that basic effects that left an imprint on

the Cosmic Microwave Background (CMB) were of thermal nature. Therefore a simple model

that could explain some of the observed features of the CMB is a real scalar field φ in fixed dS

background [1, 2, 3], formulated in the context of thermal quantum field theory [4]. The action

is

S =

∫
d4x

√
−g

[
1

2
gµν∂µφ∂νφ− (m2 + ξR)φ2

]
,

which we will quantize taking into account finite temperature effects. After fixing the parametric

freedom by an RG flow argument that has its origins in the d = 3 Ising model, we will extract

several simple cosmological observables.

2 Propagators and temperature

Consider a d+ 1 dimensional FRW spacetime with metric

ds2 = a2
(
dτ2 − dx2

)
(2.1)

with τ the conformal time and a(τ) the scale factor. de Sitter space corresponds to a = − 1
Hτ .

The expanding Poincare patch of dS space is parametrized by τ ∈ (−∞, 0]. The scalar field

mode in d-dimensional momentum space φ|k| =
χ|k|
a in this background yields the classical

Klein-Gordon equation of motion (k = (k0,k) is the four-momentum and the dot is derivative

with respect to τ)

χ̈k + ω2
|k|χk = 0 , (2.2)

with ω2
|k| = |k|2 + m2

dS and a time-dependent mass given by m2
dS = 1

τ2 (M
2 − d2−1

4 ). The dS

mass parameter is M2 = µ2
H + 12ξ with µ2

H = m2

H2 and H the inverse curvature parameter of dS

space, satisfying R = 12H2. The solutions to Eq. (2.2) are linear combinations of the Hankel

function Hνcl(τ, |k|) and its complex conjugate, of weight νcl, with

νcl =
d

2

√
1− 4M2

d2
. (2.3)

Quantization of this system results in the notion of a time-dependent vacuum state and a doubled

Hilbert space. Regarding the vacua, we will be concerned with the so called “in” vacuum defined

at τ = −∞ and the “out” vacuum defined at the boundary (i.e. the horizon) of the expanding

patch, at τ = 0. These are empty vacua from the perspective of corresponding local (in conformal

time) observers. The |in〉 will be chosen to be the maximally symmetric Bunch-Davies vacuum

[5, 6]. The two vacua are related via the Bogolyubov Transformation (BT) 〈J |ΦI = 〈I|ΦJ

where I, J = in, out and ΦI is the field operator with eigenvalue χI
|k|. Common notation is

χin
|k| = u|k| and χout

|k| = v|k|. A particularly useful point of view [7] is to recognize the system at

2

|in⟩ vacuum is empty for the “in” observer 
(Bunch-Davies vacuum)


|out⟩ vacuum is empty for the “out” observer

N. A. Chernikov and E. A. Tagirov, ’68

B. Allen, Phys. Rev. D32 (1985) 3136 
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THERMAL PROPAGATORS
• Doubled Hilbert space      

Schwinger-Keldysh path integral           
J. Schwinger, ’61, L. V. Keldysh, ’65  
G. Semenoff  and N. Weiss, ’85

and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:
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and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:
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and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:
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and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:
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β =
1
T
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THERMAL PROPAGATORS
• The  “in-in” field propagator      


• The flat space limit propagator 

T = 0 (C3 = 0)

τ = −∞ as the UV Conformal Field Theory (CFT) associated with the Gaussian fixed point of

the d = 3 real scalar that flows to an interacting IR CFTνcl at τ = 0, labelled by the weight νcl.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh path

integral as being related to a + (or forward) branch and a − (or backward) branch in conformal

time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure and is (T
(T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D<(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D>(τ1; τ2)

and

〈0| T ∗[Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T [Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2)

where D>(τ1; τ2) = D∗
<(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D<(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D<(τ1; τ2) + θ(τ2 − τ1)D>(τ1; τ2). Hidden in these expressions is the iε

shift, implementing the projection on the vacuum at τ = −∞. It can be chosen so that in the flat

limit the propagator becomes diagonal with D++ = i
k2−m2+iε . The advantage of this choice is

that the Scwinger-Keldysh structure can be read also as a Thermofield Dynamic (TD) structure,

in which case the passage to finite temperature is via the transformation Dβ = Uβ DUT
β , with

β = 1
T and

Uβ =

(
cosh θ|k| sinh θ|k|
sinh θ|k| cosh θ|k|

)
. (2.4)

That this is an allowed operation on dS propagators is supported by the fact that it is a BT

with coefficients

cosh θ|k| =
1√

1− e−βω|k|

and sinh θ|k| =
√

cosh2 θ|k| − 1. The result of all allowed thermal transformations of D are

correlators of the form

DI
J,α = 〈J ;α| T [ΦI(ΦI)T ] |J ;α〉 . (2.5)

The doublet field, now in the language of TD in the space of positive and negative momenta,

is (ΦI)T = (Φ+,I ,Φ−,I) and α is a thermal index, associated with any combination of thermal

transformations of the form Eq. (2.4). The two types of thermal transformations that are

relevant to us are the insertion of an explicit density matrix, resulting in |I;β〉 = Uβ |I〉 and

the Gibbons-Hawking (GH) effect [8] (for which we will momentarily use the parameter δ to

distinguish it from β) that is expressed as |I〉 = |J ; δ〉 with I &= J . Then, since Din
out,β = Din

in,α,

near the horizon the thermal parameters are related as

β < δ : α = β + δe−
|β−δ|

2 m2
dS + · · ·

β > δ : α = δ + βe−
|β−δ|

2 m2
dS + · · ·

3

is χin
|k| = u|k| and χout

|k| = v|k|. A particularly useful point of view [7] is to recognize the system

at τ = −∞ as related to a UV Conformal Field Theory (CFT) labelled by the weight νcl and

associated with the Gaussian fixed point of the d = 3 real scalar theory, that flows towards an

interacting IR fixed point and the corresponding CFT at τ = 0.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh path

integral as being related to a + (or forward) branch and a − (or backward) branch in conformal

time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure and is (T
(T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D<(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D>(τ1; τ2) (2.4)

and

〈0| T ∗[Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T [Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D>(τ1; τ2) = D∗
<(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D<(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D<(τ1; τ2) + θ(τ2 − τ1)D>(τ1; τ2). Hidden in these expressions is the iε

shift, implementing the projection on the vacuum at τ = −∞. It can be chosen so that in the flat

limit the propagator becomes diagonal with D++ = i
k2−m2+iε . The advantage of this choice is

that the Scwinger-Keldysh structure can be read also as a Thermofield Dynamic (TD) structure,

in which case the passage to finite temperature is via the transformation Dβ = Uβ DUT
β , with

β = 1
T and

Uβ =

(
cosh θ|k| sinh θ|k|
sinh θ|k| cosh θ|k|

)
. (2.6)

That this is an allowed operation on dS propagators is supported by the fact that it is a BT

with coefficients

cosh θ|k| =
1√

1− e−βω|k|
(2.7)

and sinh θ|k| =
√

cosh2 θ|k| − 1. The result of all allowed thermal transformations of D are

correlators of the form

DI
J,α = 〈J ;α| T [ΦI(ΦI)T ] |J ;α〉 . (2.8)

The doublet field, now in the language of TD in the space of positive and negative momenta,

is (ΦI)T = (Φ+,I ,Φ−,I) and α is a thermal index, associated with any combination of thermal

transformations of the form Eq. (2.6). The two types of thermal transformations that are

relevant to us are the insertion of an explicit density matrix, resulting in |I;β〉 = Uβ |I〉 and

the Gibbons-Hawking (GH) effect [8] (for which we will momentarily use the parameter δ to

distinguish it from β) that is expressed as |I〉 = |J ; δ〉 with I &= J . Then, since Din
out,β = Din

in,α,

near the horizon the thermal parameters are related as

β < δ : α = β + δe−
|β−δ|

2 m2
dS + · · ·

3

 is hiddeniε

and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:
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and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:
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and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:
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and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:
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• Concrete  “out-out” field propagator should respect the KMS condition


• Proof  that Schwinger-Keldysh  Thermofield dynamics for time-dependent Hamiltonian via “in-in” 

T ≠ 0 (C3 ≠ 0)

≡

THERMAL PROPAGATORS

τ = −∞ as the UV Conformal Field Theory (CFT) associated with the Gaussian fixed point of

the d = 3 real scalar that flows to an interacting IR CFTνcl at τ = 0, labelled by the weight νcl.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh path

integral as being related to a + (or forward) branch and a − (or backward) branch in conformal

time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure and is (T
(T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D<(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D>(τ1; τ2)

and

〈0| T ∗[Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T [Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2)

where D>(τ1; τ2) = D∗
<(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D<(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D<(τ1; τ2) + θ(τ2 − τ1)D>(τ1; τ2). Hidden in these expressions is the iε

shift, implementing the projection on the vacuum at τ = −∞. It can be chosen so that in the flat

limit the propagator becomes diagonal with D++ = i
k2−m2+iε . The advantage of this choice is

that the Scwinger-Keldysh structure can be read also as a Thermofield Dynamic (TD) structure,

in which case the passage to finite temperature is via the transformation Dβ = Uβ DUT
β , with

β = 1
T and

Uβ =

(
cosh θ|k| sinh θ|k|
sinh θ|k| cosh θ|k|

)
. (2.4)

That this is an allowed operation on dS propagators is supported by the fact that it is a BT

with coefficients

cosh θ|k| =
1√

1− e−βω|k|

and sinh θ|k| =
√

cosh2 θ|k| − 1. The result of all allowed thermal transformations of D are

correlators of the form

DI
J,α = 〈J ;α| T [ΦI(ΦI)T ] |J ;α〉 . (2.5)

The doublet field, now in the language of TD in the space of positive and negative momenta,

is (ΦI)T = (Φ+,I ,Φ−,I) and α is a thermal index, associated with any combination of thermal

transformations of the form Eq. (2.4). The two types of thermal transformations that are

relevant to us are the insertion of an explicit density matrix, resulting in |I;β〉 = Uβ |I〉 and

the Gibbons-Hawking (GH) effect [8] (for which we will momentarily use the parameter δ to

distinguish it from β) that is expressed as |I〉 = |J ; δ〉 with I &= J . Then, since Din
out,β = Din

in,α,

near the horizon the thermal parameters are related as

β < δ : α = β + δe−
|β−δ|

2 m2
dS + · · ·

β > δ : α = δ + βe−
|β−δ|

2 m2
dS + · · ·

3

β =
1
T

τ = −∞ as the UV Conformal Field Theory (CFT) associated with the Gaussian fixed point of

the d = 3 real scalar that flows to an interacting IR CFTνcl at τ = 0, labelled by the weight νcl.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh path

integral as being related to a + (or forward) branch and a − (or backward) branch in conformal

time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure and is (T
(T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D<(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D>(τ1; τ2)

and

〈0| T ∗[Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T [Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2)

where D>(τ1; τ2) = D∗
<(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D<(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D<(τ1; τ2) + θ(τ2 − τ1)D>(τ1; τ2). Hidden in these expressions is the iε

shift, implementing the projection on the vacuum at τ = −∞. It can be chosen so that in the flat

limit the propagator becomes diagonal with D++ = i
k2−m2+iε . The advantage of this choice is

that the Scwinger-Keldysh structure can be read also as a Thermofield Dynamic (TD) structure,

in which case the passage to finite temperature is via the transformation Dβ = Uβ DUT
β , with

β = 1
T and

Uβ =

(
cosh θ|k| sinh θ|k|
sinh θ|k| cosh θ|k|

)
. (2.4)

That this is an allowed operation on dS propagators is supported by the fact that it is a BT

with coefficients

cosh θ|k| =
1√

1− e−βω|k|

and sinh θ|k| =
√

cosh2 θ|k| − 1. The result of all allowed thermal transformations of D are

correlators of the form

DI
J,α = 〈J ;α| T [ΦI(ΦI)T ] |J ;α〉 . (2.5)

The doublet field, now in the language of TD in the space of positive and negative momenta,

is (ΦI)T = (Φ+,I ,Φ−,I) and α is a thermal index, associated with any combination of thermal

transformations of the form Eq. (2.4). The two types of thermal transformations that are

relevant to us are the insertion of an explicit density matrix, resulting in |I;β〉 = Uβ |I〉 and

the Gibbons-Hawking (GH) effect [8] (for which we will momentarily use the parameter δ to

distinguish it from β) that is expressed as |I〉 = |J ; δ〉 with I &= J . Then, since Din
out,β = Din

in,α,

near the horizon the thermal parameters are related as

β < δ : α = β + δe−
|β−δ|

2 m2
dS + · · ·

β > δ : α = δ + βe−
|β−δ|

2 m2
dS + · · ·

3

A Bogolyubov Transformation (BT) with coefficients 


  and  cosh θ|k| =
1

1 − e−βω|k|

sinh θ|k| = cosh2 θ|k| − 1
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THERMAL PROPAGATORS
• The  “out-out” field propagator


• the Bose-Einstein distribution parameter

T ≠ 0 (C3 ≠ 0)

and annihilation operators inside it being the vacuum dependent quantities. Common notation

is χin
|k| = u|k| and χout

|k| = v|k|.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh (SK)

path integral as being related to a + (or forward) branch and a − (or backward) branch in

conformal time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure

and is (T (T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D−+(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D+−(τ1; τ2) (2.4)

and

〈0| T [Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T ∗[Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2) (2.5)

where D+−(τ1; τ2) = D∗
−+(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D−+(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D−+(τ1; τ2) + θ(τ2 − τ1)D+−(τ1; τ2). The above matrix elements satisfy

the relation

D++ +D−− −D+− −D−+ = 0. (2.6)

Hidden in these expressions is the iε shift, implementing the projection on the vacuum at

τ = −∞. It can be chosen so that in the flat limit the propagator becomes diagonal with

D++ = −i
k2−m2+iε . The above construction of the propagator at zero temperature in dS spacetime

has been recently studied in [7].

The thermal generalization of the propagator components in Eq. (2.4) and Eq. (2.5) is our

next goal. If the Hamiltonian of the system was time-independent, one could just follow the

process described in Appendix A and show that the propagator satisfies the KMS condition

[8], which ensures that it is a good thermal propagator. Here however we are dealing with a

time-dependent Hamiltonian and this is not straightforward. Instead, we will use the method

introduced in [9] that takes advantage of the SK contour, by adding an extra,“thermal” leg to

it. In particular, if C+ is the forward branch where time evolution follows the path τin → τout,

C− is the backward branch where τout → τin, we attach an extra part to the contour C3, where
τin → τin − iβ2 and β = 1/T is the inverse temperature parameter:

<latexit sha1_base64="uJiHCVuzebSowpPXGQ28n7PDxnE=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68RjBPCC7hNnJJBkyO7vO9AbCku/w4kERr36MN//GSbIHTSxoKKq66e4KEykMuu63s7K6tr6xWdgqbu/s7u2XDg4bJk4143UWy1i3Qmq4FIrXUaDkrURzGoWSN8Ph3dRvjrg2IlaPOE54ENG+Ej3BKFop8JGmnczXERFq0imV3Yo7A1kmXk7KkKPWKX353ZilEVfIJDWm7bkJBhnVKJjkk6KfGp5QNqR93rZU0YibIJsdPSGnVumSXqxtKSQz9fdERiNjxlFoOyOKA7PoTcX/vHaKvZsgEypJkSs2X9RLJcGYTBMgXaE5Qzm2hDIt7K2EDaimDG1ORRuCt/jyMmmcV7yryuXDRbl6m8dRgGM4gTPw4BqqcA81qAODJ3iGV3hzRs6L8+58zFtXnHzmCP7A+fwB6c6SNQ==</latexit>⌧in
<latexit sha1_base64="9pzOss88GsbLmIWTjveWQhA+3Q4=">AAAB9XicbVDLSgMxFM34rPVVdekmWARXZUZ8LYtuXFawD+iMJZOmbWgmGZIbpQz9DzcuFHHrv7jzb0zbWWjrgQuHc+7l3nviVHADvv/tLS2vrK6tFzaKm1vbO7ulvf2GUVZTVqdKKN2KiWGCS1YHDoK1Us1IEgvWjIc3E7/5yLThSt7DKGVRQvqS9zgl4KSHEIjtZKFOsLIw7pTKfsWfAi+SICdllKPWKX2FXUVtwiRQQYxpB34KUUY0cCrYuBhaw1JCh6TP2o5KkjATZdOrx/jYKV3cU9qVBDxVf09kJDFmlMSuMyEwMPPeRPzPa1voXUUZl6kFJulsUc8KDApPIsBdrhkFMXKEUM3drZgOiCYUXFBFF0Iw//IiaZxWgovK+d1ZuXqdx1FAh+gInaAAXaIqukU1VEcUafSMXtGb9+S9eO/ex6x1yctnDtAfeJ8/16OSwA==</latexit>⌧out

<latexit sha1_base64="QPKDqmHVQl/6rMYiZg0yr312b4g=">AAACB3icbVDLSsNAFJ3UV62vqktBBovgxpIUX8uiG5cV7AOaECbTSTt0MgkzN0IJ2bnxV9y4UMStv+DOv3H6WGjrgQuHc+7l3nuCRHANtv1tFZaWV1bXiuuljc2t7Z3y7l5Lx6mirEljEatOQDQTXLImcBCskyhGokCwdjC8GfvtB6Y0j+U9jBLmRaQvecgpASP55UMXSOpnroowl/kpd0NFaOYGDEie1XK/XLGr9gR4kTgzUkEzNPzyl9uLaRoxCVQQrbuOnYCXEQWcCpaX3FSzhNAh6bOuoZJETHvZ5I8cHxulh8NYmZKAJ+rviYxEWo+iwHRGBAZ63huL/3ndFMIrL+MySYFJOl0UpgJDjMeh4B5XjIIYGUKo4uZWTAfEJAEmupIJwZl/eZG0alXnonp+d1apX8/iKKIDdIROkIMuUR3dogZqIooe0TN6RW/Wk/VivVsf09aCNZvZR39gff4Ae+WZuA==</latexit>

⌧in � i
�

2

<latexit sha1_base64="AE2osNITZ7N7EY0rwmVX0/KKqC4=">AAAB83icbVDJSgNBEO2JW4xb1KOXxiB4CjPidgx68RjFLJAZQk+nJmnS3TP0IoQhv+HFgyJe/Rlv/o2d5aCJDwoe71VRVS/OONPG97+9wsrq2vpGcbO0tb2zu1feP2jq1CoKDZryVLVjooEzCQ3DDId2poCImEMrHt5O/NYTKM1S+WhGGUSC9CVLGCXGSWEeKoEfYBwaYrvlil/1p8DLJJiTCpqj3i1/hb2UWgHSUE607gR+ZqKcKMMoh3EptBoyQoekDx1HJRGgo3x68xifOKWHk1S5kgZP1d8TORFaj0TsOgUxA73oTcT/vI41yXWUM5lZA5LOFiWWY5PiSQC4xxRQw0eOEKqYuxXTAVGEGhdTyYUQLL68TJpn1eCyenF/XqndzOMooiN0jE5RgK5QDd2hOmogijL0jF7Rm2e9F+/d+5i1Frz5zCH6A+/zB/5skaw=</latexit>

Re⌧

<latexit sha1_base64="OQy4m+T6gNYViuuFdsJFvDCAfR4=">AAAB83icbVDLSgMxFM3UV62vqks3wSK4KjPia1l0o7sK9gGdoWTStA1NMkNyI5Shv+HGhSJu/Rl3/o1pOwttPXDhcM693HtPnApuwPe/vcLK6tr6RnGztLW9s7tX3j9omsRqyho0EYlux8QwwRVrAAfB2qlmRMaCteLR7dRvPTFteKIeYZyySJKB4n1OCTgpzEIt8b2chEBst1zxq/4MeJkEOamgHPVu+SvsJdRKpoAKYkwn8FOIMqKBU8EmpdAalhI6IgPWcVQRyUyUzW6e4BOn9HA/0a4U4Jn6eyIj0pixjF2nJDA0i95U/M/rWOhfRxlXqQWm6HxR3woMCZ4GgHtcMwpi7AihmrtbMR0STSi4mEouhGDx5WXSPKsGl9WLh/NK7SaPo4iO0DE6RQG6QjV0h+qogShK0TN6RW+e9V68d+9j3lrw8plD9Afe5w/82pGr</latexit>

Im⌧

3

Furthermore, we introduce the propagators

〈0| T [Φ3(τ1)Φ
3(τ2)] |0〉 = D33(τ1; τ2)

〈0|Φ+(τ1)Φ
3(τ2) |0〉 = D3+(τ1; τ2)

〈0|Φ−(τ1)Φ
3(τ2) |0〉 = D3−(τ1; τ2) (2.7)

where τ1, τ2 ∈ C and we demand that the junction conditions for a ∈ {+,−, 3}:

Da+(τ1; τ2)

∣∣∣∣
τ2=τout

= Da−(τ1; τ2)

∣∣∣∣
τ2=τout

∂

∂τ2
Da+(τ1; τ2)

∣∣∣∣
τ2=τout

=
∂

∂τ2
Da−(τ1; τ2)

∣∣∣∣
τ2=τout

(2.8)

are satisfied at the time instance τ = τout where the C+ and C− contours meet, while the

conditions

Da−(τ1; τ2)

∣∣∣∣
τ2=τin

= Da3(τ1; τ2)

∣∣∣∣
τ2=τin

∂

∂τ2
Da−(τ1; τ2)

∣∣∣∣
τ2=τin

=
∂

∂τ2
Da3(τ1; τ2)

∣∣∣∣
τ2=τin

(2.9)

need to be satisfied at τ = τin where C− and C3 meet. Finally for the SK analogue of the KMS

condition to hold, we need to sew together C+ and C3 which results in the conditions

Da+(τ1; τ2)

∣∣∣∣
τ2=τin

= Da3(τ1; τ2)

∣∣∣∣
τ2=τin−iβ/2

∂

∂τ2
Da+(τ1; τ2)

∣∣∣∣
τ2=τin

=
∂

∂τ2
Da3(τ1; τ2)

∣∣∣∣
τ2=τin−iβ/2

(2.10)

that ensure the consistency of the deformed contour and yield a good thermal propagator.

The above conditions will introduce corrections of thermal nature into the propagators

Eq. (2.4) and (2.5), which we compute by making two assumptions. Since the chosen con-

tour allows for an imaginary time flow, we assume that there is no inflation in that direction.

This means that the mode functions living on the C3 leg of the contour can be taken to have a

plane wave form. In addition, at τ = τin we assume the BD vacuum so that the mode functions

are expressed in terms of the Hankel functions of ν = 3/2 order. According to these assumptions,

the solution to the conditions results in the in-in thermal propagator components [9]:

Dβ/2
++ = D++ + nB(β/2) (D++ +D−−)

Dβ/2
−− = D−− + nB(β/2) (D++ +D−−)

Dβ/2
+− = D+− + nB(β/2) (D++ +D−−)

Dβ/2
−+ = D−+ + nB(β/2) (D++ +D−−) (2.11)

with nB the Bose-Einstein distribution parameter

nB(β) =
e−βω|k|

1− e−βω|k|
. (2.12)

We can express conveniently this propagator collectively in a matrix notation as:

Dβ/2 = D + s2(β/2)
(
D++ +D∗

++

)
(
1 1

1 1

)
(2.13)
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• All the allowed thermal transformations of      are correlators of  the form  


• In Thermofield dynamics language  with .  is a thermal index


• The thermal dS-scalar propagator admits a compact form

(ΦI)T = (Φ+,I, Φ−,I) I, J = in, out α

THERMAL PROPAGATORS

τ = −∞ as the UV Conformal Field Theory (CFT) associated with the Gaussian fixed point of

the d = 3 real scalar that flows to an interacting IR CFTνcl at τ = 0, labelled by the weight νcl.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh path

integral as being related to a + (or forward) branch and a − (or backward) branch in conformal

time evolution. The field propagator D in such a basis has a 2 × 2 matrix structure and is (T
(T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D<(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D>(τ1; τ2)

and

〈0| T ∗[Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T [Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2)

where D>(τ1; τ2) = D∗
<(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D<(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D<(τ1; τ2) + θ(τ2 − τ1)D>(τ1; τ2). Hidden in these expressions is the iε

shift, implementing the projection on the vacuum at τ = −∞. It can be chosen so that in the flat

limit the propagator becomes diagonal with D++ = i
k2−m2+iε . The advantage of this choice is

that the Scwinger-Keldysh structure can be read also as a Thermofield Dynamic (TD) structure,

in which case the passage to finite temperature is via the transformation Dβ = Uβ DUT
β , with

β = 1
T and

Uβ =

(
cosh θ|k| sinh θ|k|
sinh θ|k| cosh θ|k|

)
. (2.4)

That this is an allowed operation on dS propagators is supported by the fact that it is a BT

with coefficients

cosh θ|k| =
1√

1− e−βω|k|

and sinh θ|k| =
√

cosh2 θ|k| − 1. The result of all allowed thermal transformations of D are

correlators of the form

DI
J,α = 〈J ;α| T [ΦI(ΦI)T ] |J ;α〉 . (2.5)

The doublet field, now in the language of TD in the space of positive and negative momenta,

is (ΦI)T = (Φ+,I ,Φ−,I) and α is a thermal index, associated with any combination of thermal

transformations of the form Eq. (2.4). The two types of thermal transformations that are

relevant to us are the insertion of an explicit density matrix, resulting in |I;β〉 = Uβ |I〉 and

the Gibbons-Hawking (GH) effect [8] (for which we will momentarily use the parameter δ to

distinguish it from β) that is expressed as |I〉 = |J ; δ〉 with I &= J . Then, since Din
out,β = Din

in,α,

near the horizon the thermal parameters are related as

β < δ : α = β + δe−
|β−δ|

2 m2
dS + · · ·

β > δ : α = δ + βe−
|β−δ|

2 m2
dS + · · ·

3

τ = −∞ as the UV Conformal Field Theory (CFT) associated with the Gaussian fixed point of

the d = 3 real scalar that flows to an interacting IR CFTνcl at τ = 0, labelled by the weight νcl.

The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh path

integral as being related to a + (or forward) branch and a − (or backward) branch in conformal
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(T ∗) denoting time (anti-time) ordering and 〈0| is a generic vacuum):

〈0|Φ+(τ2)Φ
−(τ1) |0〉 = D<(τ1; τ2)

〈0|Φ−(τ1)Φ
+(τ2) |0〉 = D>(τ1; τ2)

and

〈0| T ∗[Φ+(τ1)Φ
+(τ2)] |0〉 = D++(τ1; τ2)

〈0| T [Φ−(τ1)Φ
−(τ2)] |0〉 = D−−(τ1; τ2)

where D>(τ1; τ2) = D∗
<(τ1; τ2), D−−(τ1; τ2) = D∗

++(τ1; τ2) and D<(τ1; τ2) = χ|k|(τ1)χ
∗
|k|(τ2),

D++(τ1; τ2) = θ(τ1 − τ2)D<(τ1; τ2) + θ(τ2 − τ1)D>(τ1; τ2). Hidden in these expressions is the iε

shift, implementing the projection on the vacuum at τ = −∞. It can be chosen so that in the flat

limit the propagator becomes diagonal with D++ = i
k2−m2+iε . The advantage of this choice is

that the Scwinger-Keldysh structure can be read also as a Thermofield Dynamic (TD) structure,

in which case the passage to finite temperature is via the transformation Dβ = Uβ DUT
β , with

β = 1
T and

Uβ =

(
cosh θ|k| sinh θ|k|
sinh θ|k| cosh θ|k|

)
. (2.4)

That this is an allowed operation on dS propagators is supported by the fact that it is a BT

with coefficients

cosh θ|k| =
1√

1− e−βω|k|

and sinh θ|k| =
√

cosh2 θ|k| − 1. The result of all allowed thermal transformations of D are

correlators of the form

DI
J,α = 〈J ;α| T [ΦI(ΦI)T ] |J ;α〉 . (2.5)

The doublet field, now in the language of TD in the space of positive and negative momenta,

is (ΦI)T = (Φ+,I ,Φ−,I) and α is a thermal index, associated with any combination of thermal

transformations of the form Eq. (2.4). The two types of thermal transformations that are

relevant to us are the insertion of an explicit density matrix, resulting in |I;β〉 = Uβ |I〉 and

the Gibbons-Hawking (GH) effect [8] (for which we will momentarily use the parameter δ to

distinguish it from β) that is expressed as |I〉 = |J ; δ〉 with I &= J . Then, since Din
out,β = Din

in,α,

near the horizon the thermal parameters are related as

β < δ : α = β + δe−
|β−δ|

2 m2
dS + · · ·

β > δ : α = δ + βe−
|β−δ|

2 m2
dS + · · ·

3

Exact dS space can only sustain the G-H temperature 
1
β

= T = TdS =
H
2π

=
1
δ

Inspection of these relations shows that since the scalar is not allowed to backreact on the

geometry, the only temperature that dS space can sustain is the GH temperature. In fact, in

order that the in and out observers agree on the physical thermal effects they observe, it must

be that 1/β = T = TdS = H/2π = 1/δ. It is then sufficient to know the form of the thermal

dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.6)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | = 1, it determines various cosmological indices derived from the scalar

power spectrum (1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.7)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
∣∣∣
|kτ |=1

=

√
5− d2

4
+M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 . It

is our main goal here to propose a way to parametrize the deviation from this scale invariant

spectrum. It is clear that in the present context, exact scale invariance is realized in the |in〉
vacuum at zero temperature, with the deviations generated by either a change of the vacuum

or finite temperature effects, or both.

The deviations due to a vacuum change can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq .

There is a corresponding shadow partner solution to this with ∆+ = d
2 +ν. In this letter, we will

be concerned with (∆−,∆+)cl = (0, 3). In order to understand νq we first observe that the |out〉,
thermal state is a time-dependent BT of the Bunch-Davies vacuum. Upon a time-dependent

BT, the frequency that the out observer sees is [9]:

Ω|k| = ω|k|(|c|2 + |s|2)

which implies the transformation on the horizon exit parameter κ → Λ, with

Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) ,

4


s ≡ sinh θ|k|
c ≡ cosh θ|k|
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Inspection of these relations shows that since the scalar is not allowed to backreact on the

geometry, the only temperature that dS space can sustain is the GH temperature. In fact, in

order that the in and out observers agree on the physical thermal effects they observe, it must

be that 1/β = T = TdS = H/2π = 1/δ. It is then sufficient to know the form of the thermal

dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.6)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | = 1, it determines various cosmological indices derived from the scalar

power spectrum (1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.7)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
∣∣∣
|kτ |=1

=

√
5− d2

4
+M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 . It

is our main goal here to propose a way to parametrize the deviation from this scale invariant

spectrum. It is clear that in the present context, exact scale invariance is realized in the |in〉
vacuum at zero temperature, with the deviations generated by either a change of the vacuum

or finite temperature effects, or both.

The deviations due to a vacuum change can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq .

There is a corresponding shadow partner solution to this with ∆+ = d
2 +ν. In this letter, we will

be concerned with (∆−,∆+)cl = (0, 3). In order to understand νq we first observe that the |out〉,
thermal state is a time-dependent BT of the Bunch-Davies vacuum. Upon a time-dependent

BT, the frequency that the out observer sees is [9]:

Ω|k| = ω|k|(|c|2 + |s|2)

which implies the transformation on the horizon exit parameter κ → Λ, with

Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) ,

4

Inspection of these relations shows that since the scalar is not allowed to backreact on the

geometry, the only temperature that dS space can sustain is the GH temperature. In fact, in

order that the in and out observers agree on the physical thermal effects they observe, it must

be that 1/β = T = TdS = H/2π = 1/δ. It is then sufficient to know the form of the thermal

dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.6)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | = 1, it determines various cosmological indices derived from the scalar

power spectrum (1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.7)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
∣∣∣
|kτ |=1

=

√
5− d2

4
+M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 . It

is our main goal here to propose a way to parametrize the deviation from this scale invariant

spectrum. It is clear that in the present context, exact scale invariance is realized in the |in〉
vacuum at zero temperature, with the deviations generated by either a change of the vacuum

or finite temperature effects, or both.

The deviations due to a vacuum change can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq .

There is a corresponding shadow partner solution to this with ∆+ = d
2 +ν. In this letter, we will

be concerned with (∆−,∆+)cl = (0, 3). In order to understand νq we first observe that the |out〉,
thermal state is a time-dependent BT of the Bunch-Davies vacuum. Upon a time-dependent

BT, the frequency that the out observer sees is [9]:

Ω|k| = ω|k|(|c|2 + |s|2)

which implies the transformation on the horizon exit parameter κ → Λ, with

Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) ,

4

| in >

β > δ : α = δ + βe−
|β−δ|

2 m2
dS + · · · (2.9)

Inspection of these relations shows that the only temperature that dS space can sustain is the

GH temperature. In fact, in order that the in and out observers agree on the physical thermal

effects they observe, it must be that 1/βdS = TdS = H/2π = 1/δ. It is then sufficient to know

the form of the thermal dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.10)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.10) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | ! 1, it determines various cosmological indices derived from the scalar

power spectrum (here 1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.11)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
∣∣∣
|kτ |=1

=

√
5− d2

4
+M2 . (2.12)

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 and

decaying modes at the time of exit.

It is clear that in the present context, exact scale invariance is realized in the |in〉 vacuum,

with the deviations generated by a spontaneous shift in M that, according to Eq. (2.10), should

have a finite temperature origin. Deviations can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq . (2.13)

There is a corresponding shadow partner solution to this with ∆+ = d
2 + ν. In this letter, we

will be concerned with (∆−,∆+)cl = (0, 3).

In order to understand νq (which will turn out to be a non-trivial zero) we first point out

that the |out;β〉 (β > βdS) state is a BT of the Bunch-Davies vacuum. The mode functions

before and after the transformation solve the same Bessel equation with frequency ω|k|. Upon a

time-dependent BT however, the frequency that an observer sees for a time other than his own,

is [9]:

Ω|k| = ω|k|(|c|2 + |s|2) . (2.14)

4

β > δ : α = δ + βe−
|β−δ|

2 m2
dS + · · · (2.9)

Inspection of these relations shows that the only temperature that dS space can sustain is the

GH temperature. In fact, in order that the in and out observers agree on the physical thermal

effects they observe, it must be that 1/βdS = TdS = H/2π = 1/δ. It is then sufficient to know

the form of the thermal dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.10)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.10) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | ! 1, it determines various cosmological indices derived from the scalar

power spectrum (here 1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.11)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
∣∣∣
|kτ |=1

=

√
5− d2

4
+M2 . (2.12)

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 and

decaying modes at the time of exit.

It is clear that in the present context, exact scale invariance is realized in the |in〉 vacuum,

with the deviations generated by a spontaneous shift in M that, according to Eq. (2.10), should

have a finite temperature origin. Deviations can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq . (2.13)

There is a corresponding shadow partner solution to this with ∆+ = d
2 + ν. In this letter, we

will be concerned with (∆−,∆+)cl = (0, 3).

In order to understand νq (which will turn out to be a non-trivial zero) we first point out

that the |out;β〉 (β > βdS) state is a BT of the Bunch-Davies vacuum. The mode functions

before and after the transformation solve the same Bessel equation with frequency ω|k|. Upon a

time-dependent BT however, the frequency that an observer sees for a time other than his own,

is [9]:

Ω|k| = ω|k|(|c|2 + |s|2) . (2.14)

4

|out, β >

Inspection of these relations shows that since the scalar is not allowed to backreact on the

geometry, the only temperature that dS space can sustain is the GH temperature. In fact, in

order that the in and out observers agree on the physical thermal effects they observe, it must

be that 1/β = T = TdS = H/2π = 1/δ. It is then sufficient to know the form of the thermal

dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.6)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | = 1, it determines various cosmological indices derived from the scalar

power spectrum (1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.7)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
∣∣∣
|kτ |=1

=

√
5− d2

4
+M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 . It

is our main goal here to propose a way to parametrize the deviation from this scale invariant

spectrum. It is clear that in the present context, exact scale invariance is realized in the |in〉
vacuum at zero temperature, with the deviations generated by either a change of the vacuum

or finite temperature effects, or both.

The deviations due to a vacuum change can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq .

There is a corresponding shadow partner solution to this with ∆+ = d
2 +ν. In this letter, we will

be concerned with (∆−,∆+)cl = (0, 3). In order to understand νq we first observe that the |out〉,
thermal state is a time-dependent BT of the Bunch-Davies vacuum. Upon a time-dependent

BT, the frequency that the out observer sees is [9]:

Ω|k| = ω|k|(|c|2 + |s|2)

which implies the transformation on the horizon exit parameter κ → Λ, with

Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) ,

4
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Inspection of these relations shows that since the scalar is not allowed to backreact on the

geometry, the only temperature that dS space can sustain is the GH temperature. In fact, in

order that the in and out observers agree on the physical thermal effects they observe, it must

be that 1/β = T = TdS = H/2π = 1/δ. It is then sufficient to know the form of the thermal

dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.6)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | = 1, it determines various cosmological indices derived from the scalar

power spectrum (1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.7)

in terms of a single parameter (when the temperature takes its natural value T = TdS):
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|kτ |=1
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4
+M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 . It

is our main goal here to propose a way to parametrize the deviation from this scale invariant

spectrum. It is clear that in the present context, exact scale invariance is realized in the |in〉
vacuum at zero temperature, with the deviations generated by either a change of the vacuum

or finite temperature effects, or both.

The deviations due to a vacuum change can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq .

There is a corresponding shadow partner solution to this with ∆+ = d
2 +ν. In this letter, we will

be concerned with (∆−,∆+)cl = (0, 3). In order to understand νq we first observe that the |out〉,
thermal state is a time-dependent BT of the Bunch-Davies vacuum. Upon a time-dependent

BT, the frequency that the out observer sees is [9]:

Ω|k| = ω|k|(|c|2 + |s|2)

which implies the transformation on the horizon exit parameter κ → Λ, with

Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) ,

4

Inspection of these relations shows that since the scalar is not allowed to backreact on the

geometry, the only temperature that dS space can sustain is the GH temperature. In fact, in

order that the in and out observers agree on the physical thermal effects they observe, it must

be that 1/β = T = TdS = H/2π = 1/δ. It is then sufficient to know the form of the thermal

dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.6)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | = 1, it determines various cosmological indices derived from the scalar

power spectrum (1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.7)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
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|kτ |=1

=

√
5− d2

4
+M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 . It

is our main goal here to propose a way to parametrize the deviation from this scale invariant

spectrum. It is clear that in the present context, exact scale invariance is realized in the |in〉
vacuum at zero temperature, with the deviations generated by either a change of the vacuum

or finite temperature effects, or both.

The deviations due to a vacuum change can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq .

There is a corresponding shadow partner solution to this with ∆+ = d
2 +ν. In this letter, we will

be concerned with (∆−,∆+)cl = (0, 3). In order to understand νq we first observe that the |out〉,
thermal state is a time-dependent BT of the Bunch-Davies vacuum. Upon a time-dependent

BT, the frequency that the out observer sees is [9]:

Ω|k| = ω|k|(|c|2 + |s|2)

which implies the transformation on the horizon exit parameter κ → Λ, with

Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) ,

4
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• , for . When , admits its natural dS value where 


• The transformed state has reduced isometry than Bunch-Davies


• The limiting cases

x =
πH
2πT

x ∈ [π, ∞) x = π T = TdS

THE COSMOLOGICAL OBSERVABLES

x = π

Scale invariance 
(like symmetry 

restoration)

, , T = TdS Λ → ∞ κ → i

x ≳ π

Scale invariance is 
slightly broken

,  T < TdS Λ → finite
κ → finite

x → ∞

Scale invariance 
(like symmetry 

restoration)

, , T → 0 Λ → 0 κ → 0

As a result, the horizon exit parameter is transformed as

κ → Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) , (2.15)

where we have defined the dimensionless temperature parameter x = πH
2πT , that takes values in

[π,∞]. The transformed state in general has a reduced isometry with respect to the Bunch-

Davies state. This can be seen by the fact that the BT introduces a non-zero mass term

(µ2
H + ξ R

H2 )a2H2φ2 in the Lagrangian with exit parameter Λ2 = |kτ |2 + a2
[
µ2
H + (ξ − 1

6)
R
H2 )
]

and that the late time equations of motion

φ̈+ 2Hφ̇+

(
µ2
H + ξ

R
H2

)
a2H2φ = 0 , Ḣ = − 1

2a
φ̇2 (2.16)

have no non-trivial solution with H = const. and a non-zero, finite mass term.

The two limiting values of x are interesting. Its natural value x = π where T = TdS gives

Λ = ∞ for κ = i. This is a special case where we recover a dS solution of maximal isometry

that corresponds to |out;βdS〉. As in the BD vacuum, no modes are seen to exit the horizon,

this time due to their ultra-short wavelength. In the limit x → ∞ on the other hand, the out

observer sees modes of any wavelength as exiting modes, since in this limit the time of exit

approaches the horizon. This means that if he calls his frequencies Ω|k|, then his horizon exit

parameter will be forced to Λ0 ≡ limτ→0(Ω|k|τ) → 0.4 This suggests to construct a trajectory

from (Λ, x) ∼ (∞,π) to (0,∞) along which the value of some yet to be defined thermal effect is

kept non-zero and constant, starting from a position a bit shifted away from the scale invariant

limit (∞,π).

Deviations from exact dS isometry due to finite temperature effects can be encoded in the

shift of the spectral index of scalar curvature fluctuations

nS,β = 1 +
d ln

(
|k|3PS,β

)

d ln |k| (2.17)

with PS,β = PS [1 + 2(s2 + sc)] from Eq. (2.11), that determines the thermal correction

δnS ≡ nS,β − 1 = −2x

Λ

[
e−xΛ

1− e−2xΛ

]
. (2.18)

In |out;βdS〉 where x = π and Λ = ∞ it vanishes and we see a scale invariant spectrum. Moving

a bit away from it, x ! π, 5 the state is |out;β〉 and δnS becomes a one-parameter expression of

Λ. We can fix this freedom by determining the value nS,β by interpreting its deviation from unity

as an anomalous dimension in the dual field theory in the spirit of the dS/CFT correspondence.

Then we can reach x = ∞ along a trajectory which keeps this value constant for all temperatures.

4In this limit x becomes an odd multiple of π/2.
5It is implicitly assumed here that moving away from TdS is a result of spontaneous breaking of scale invariance,

which is expected to lower the temperature.

5

H = const .
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• The spectral index of  scalar curvature fluctuations, , is shifted due to finite 
temperature effects


• All the freedom is included in  which admits its natural value when 

nS

Λ x ≈ π

THE COSMOLOGICAL OBSERVABLES

where we have defined the dimensionless temperature parameter x = πH
2πT , that takes values

in [π,∞]. Eventually it will be fixed to x = π, its natural dS value where T = TdS, but for

now we are interested in the zero temperature limit. Next, observe that the out observer, on

the horizon, sees modes of any wavelength as exiting modes. This means that if he calls his

frequencies Ω|k|, then his horizon exiting parameter, at nearly zero temperature, will be forced to

Λ ≡ limτ→0(Ω|k|η) → 0. For κ = i this gives Λ = i coth(ix) = cotx and then the regularization

x = π
2 (2l + 1), l ∈ N as x → ∞, drives Λ → 0.

Deviations due to finite temperature effects can be encoded into the shift of the spectral

index of scalar curvature fluctuations

nS,β = 1 +
d ln

(
|k|3PS,β

)

d ln |k|

with PS,β = PS [1 + 2(s2 + sc)] from Eq. (2.7), that determines the thermal correction

δnS ≡ nS,β − 1 = −2x

Λ

[
e−xΛ

1− e−2xΛ

]
. (2.8)

In the physical state x = π so this is really a 1-parameter expression. In the next section we

will fix this freedom by determining the value nS,∞ ≡ nS and then interpret its deviation from

unity as the regularized (nearly) zero temperature limit of Eq. (2.8). Then we can reach x = π

along a trajectory which keeps this value constant for all temperatures: nS,β = nS . In order to

fix δnS though, we have to characterize the ∆+ solution, which is what we do next.

3 Observables

The IR CFT can be recognized within perturbation theory as the Wilson-Fisher fixed point of

the d = 3 scalar theory with classical Lagrangian L = −1
2σ!σ + λ

4!σ
4.5 The Ising field σ can

be thought of as the horizon value of the bulk scalar. In the dS/CFT correspondence [10], a

bulk field ζ with dimension ∆− is dual to an operator O of the boundary CFT of dimension

∆+. Then bulk and boundary propagators are related by [11, 12] (the subscripts remind of the

momentum conservation δ-function which we omit):

〈ζ|k|ζ−|k|〉 ∼
1

〈O|k|O−|k|〉
.

There is a gauge where we can identify the scalar curvature perturbations ζ|k| with our dS scalar

φ|k|, of dimension ∆cl,− = 0. Recall then the definition of the spectral index

nS − 1 =
d

d ln |k|

[
ln
(
|k|3PS,β

)]
=

d

d ln |k| ln
(
|k|3〈ζ|k|ζ−|k|〉

)

= 3− 1

〈O|k|O−|k|〉

(
d

d ln |k|〈O|k|O−|k|〉
)

5A mass term could be added but it could also appear as an insertion. The final result does not depend on it.
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• The shift is extended to other observables 

THE COSMOLOGICAL OBSERVABLES
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Figure 1: Left: A few points of the nearly conformal LCP defined by ΓΘ = 0. Right: The LCP

with respect to the vacua, on the complex κ plane.

LCP can be found in Fig. 1. We stress that for a given x the corresponding value of Λ is fixed

by the label of the LCP. Thus at the endpoint of the LCP where x = π, the value Λ = 1.5117

is a fixed output.7 The LCP also suggests that the system never really reaches the interacting

fixed point, even though it can be brought arbitrarily close to it, meaning that (Λ, x) never take

the exact values (0,∞). This is to be contrasted with a zero temperature, time-independent BT

connecting α-vacua, which triggers an RG flow between the Gaussian and WF fixed points, in

which case nS = 1 at the endpoints.

Since there are no free parameters, any other computable observable is also fixed. Define for

example the moments

n(1)
S,β =

dnS,β

d ln |k| , n(2)
S,β =

dn(1)
S,β

d ln |k|

and compute them using that n(1)
S = 0. The result, evaluated under the same conditions as nS,β,

is

n(1)
S,β = δnS

[
2− 1

Λ2
− x

Λ

(
1 +

2e−2xΛ

1− e−2xΛ

)]

which, substituting x = π and Λ = 1.5117, gives

n(1)
S,β = 0.0186 (3.7)

for the running of the index and

n(2)
S,β =

(
n(1)
S,β

)2

δnS
+ δnS

[
− 2

Λ2
+

2

Λ4
− x

Λ

(
2− 1

Λ2

)(
1 +

2e−2xΛ

1− e−2xΛ

)
+

4x2

Λ2

e−2xΛ

(1− e−2xΛ)2

]

6The general argument is due to Wilson [13]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [14, 15, 16], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. In fact, the relative normalization of γΘ and γσ in ΓΘ can be fixed by

this cancellation. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is typically taken ΓO ∼ γO

to leading order.
7It corresponds to a mass parameter M " 1.8125.
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Figure 1: Left: A few points of the nearly conformal LCP defined by ΓΘ = 0. Right: The LCP

with respect to the vacua, on the complex κ plane.

LCP can be found in Fig. 1. We stress that for a given x the corresponding value of Λ is fixed

by the label of the LCP. Thus at the endpoint of the LCP where x = π, the value Λ = 1.5117

is a fixed output.7 The LCP also suggests that the system never really reaches the interacting

fixed point, even though it can be brought arbitrarily close to it, meaning that (Λ, x) never take

the exact values (0,∞). This is to be contrasted with a zero temperature, time-independent BT

connecting α-vacua, which triggers an RG flow between the Gaussian and WF fixed points, in

which case nS = 1 at the endpoints.

Since there are no free parameters, any other computable observable is also fixed. Define for

example the moments

n(1)
S,β =

dnS,β

d ln |k| , n(2)
S,β =

dn(1)
S,β

d ln |k|

and compute them using that n(1)
S = 0. The result, evaluated under the same conditions as nS,β,

is

n(1)
S,β = δnS

[
2− 1

Λ2
− x

Λ

(
1 +

2e−2xΛ

1− e−2xΛ

)]

which, substituting x = π and Λ = 1.5117, gives

n(1)
S,β = 0.0186 (3.7)

for the running of the index and

n(2)
S,β =

(
n(1)
S,β

)2

δnS
+ δnS

[
− 2

Λ2
+

2

Λ4
− x

Λ

(
2− 1

Λ2

)(
1 +

2e−2xΛ

1− e−2xΛ

)
+

4x2

Λ2

e−2xΛ

(1− e−2xΛ)2

]

6The general argument is due to Wilson [13]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [14, 15, 16], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. In fact, the relative normalization of γΘ and γσ in ΓΘ can be fixed by

this cancellation. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is typically taken ΓO ∼ γO

to leading order.
7It corresponds to a mass parameter M " 1.8125.
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Figure 1: Left: A few points of the nearly conformal LCP defined by ΓΘ = 0. Right: The LCP

with respect to the vacua, on the complex κ plane.
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that gives

n(2)
S,β = 0.1250 (3.8)

for the running of its running.

Finally, the universal contribution to the non-Gaussianity parameter fNL [20], can be ex-

pressed in terms of N =
∫ tf
ti

dtH and its derivatives in the in-vacuum, as [21]

fNL =
5

6

Nρρ

N2
ρ

with Nρ = ∂N
∂ρ , Nρρ = ∂2N

∂ρ2 and ρ ≡ PS,β. It is computed to be

fNL = −
5
[
x(−1 + Λ2)2

(
1 + xΛ cot(xΛ2 )

)
+ 2Λ3 sinh(xΛ)

]

6Λ2
[
x(−1 + Λ2) + Λ sinh(xΛ)

] .

For x = π and Λ = 1.5117 this gives

fNL = −1.7138. (3.9)

4 Conclusion

We considered a thermal scalar in de Sitter background. Starting from the Bunch-Davies |in〉
vacuum, a Bogolyubov Transformation placed us somewhere in the interior of the finite tem-

perature phase diagram. Then we took the low temperature limit in such a way that instead of

returning to the BD vacuum, we landed on the nearly zero temperature |out〉 vacuum, which is

connected to an interacting IR CFT, in the universality class of the 3d Ising model. This inter-

acting CFT is rather special, in the sense that the boundary operator that couples to the scalar

curvature perturbations in the bulk has a classical scaling dimension. The critical exponent η is

the order parameter of the breaking of the scale invariant spectrum of curvature fluctuations and

fixes the parametric freedom in the dS scalar theory, yielding the prediction nS = 0.964, up to

errors associated with its lattice Monte Carlo measurements. Then we heated up the system up

to T = TdS numerically in a controlled way and evaluated additional cosmological observables

such as the first two moments of the scalar spectral index and the non-Gaussianity bispectrum

parameter fNL. We finally note that our predicted values of nS , n
(1)
S,β and fNL are well within

current experimental bounds while n(2)
S,β exceeds them [22, 23].
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• The physical case  Λ → 1.5117, x → π

THE COSMOLOGICAL OBSERVABLES



(0.9649 ± 0.0042)

nS,β ≡ nS ≈ 1 − 0.036 = 0.964



(0.013 ± 0.012)
n(1)

S,β ≈ 0.0186



(-0.9 ± 5.1)

fNL ≈ − 1.7138 

(0.022 ± 0.012)

n(2)
S,β ≈ 0.1250?

Planck Collaboration, Y. Akrami et 
al., Astron. Astrophys. 641 (2020)
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Figure 1: Left: A few points of the nearly conformal LCP defined by δnS = −η. Right:

The Bogolyubov Transformation |in〉 → |out;β〉 and the LCP, on the complex plane where

κ = Λ+ i Imκ.

In [10] it is proposed that within the dual field theory that lives on the horizon, which is

just the d = 3 Ising model, the anomalous dimension that shifts the spectral index is the critical

exponent η, whose non-perturbative value is around 0.036. Thus, near the horizon

nS % 1− η = 0.964 . (2.19)

This is a constraining statement that leaves no free parameters. In [10] it is also shown that

the quantity by which ∆+,cl shifts is the operator anomalous dimension of the trace of the Ising

stress energy tensor Θ, which is an exact zero. This is however realized on the fixed point as

the cancellation ΓΘ = η − η and it is the term η that ends up shifting the spectral index. We

therefore see that it is in this sense that νq is a non-trivial zero. Outside the fixed point, when for

example the Ising field is massive, M deviates from zero in the bulk, the solution to Eq. (2.16)

is not dS and νq becomes non-zero. It is important to understand that the main effect comes

from the critical value η and the breaking effects that a non-zero νq represents are small as long

as the system sits near the fixed point. For this reason the leading order results are independent

of the source of the breaking. In a sense the only assumption here is that there is a mechanism

of spontaneous breaking of scale invariance. From the point of view of the boundary this could

be for example justified as some sort of a Coleman-Weinberg mechanism.

3 Line of constant physics and other observables

What we will demonstrate now is that in the bulk, there is a line of constant physics (LCP),

labelled by the value δnS = −η, along which the system is heated up from zero temperature

where Λ0 = 0 and x = ∞, up to the dS temperature. A few points on this line and a picture

of the LCP can be found in Fig. 1. We stress that for a given x the corresponding value of Λ

is fixed by the label of the LCP. Thus near the endpoint of the LCP where x % π, the value

Λπ % 1.5117 is a fixed output. It is important to emphasize that the LCP is really meaningful

up to just outside its two limiting points. Up to around x % π it is characterized by a non-zero
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The Bogolyubov Transformation |in〉 → |out;β〉 and the LCP, on the complex plane where

κ = Λ+ i Imκ.

In [10] it is proposed that within the dual field theory that lives on the horizon, which is

just the d = 3 Ising model, the anomalous dimension that shifts the spectral index is the critical

exponent η, whose non-perturbative value is around 0.036. Thus, near the horizon

nS % 1− η = 0.964 . (2.19)

This is a constraining statement that leaves no free parameters. In [10] it is also shown that

the quantity by which ∆+,cl shifts is the operator anomalous dimension of the trace of the Ising

stress energy tensor Θ, which is an exact zero. This is however realized on the fixed point as

the cancellation ΓΘ = η − η and it is the term η that ends up shifting the spectral index. We

therefore see that it is in this sense that νq is a non-trivial zero. Outside the fixed point, when for

example the Ising field is massive, M deviates from zero in the bulk, the solution to Eq. (2.16)

is not dS and νq becomes non-zero. It is important to understand that the main effect comes

from the critical value η and the breaking effects that a non-zero νq represents are small as long

as the system sits near the fixed point. For this reason the leading order results are independent

of the source of the breaking. In a sense the only assumption here is that there is a mechanism

of spontaneous breaking of scale invariance. From the point of view of the boundary this could

be for example justified as some sort of a Coleman-Weinberg mechanism.

3 Line of constant physics and other observables

What we will demonstrate now is that in the bulk, there is a line of constant physics (LCP),

labelled by the value δnS = −η, along which the system is heated up from zero temperature

where Λ0 = 0 and x = ∞, up to the dS temperature. A few points on this line and a picture

of the LCP can be found in Fig. 1. We stress that for a given x the corresponding value of Λ

is fixed by the label of the LCP. Thus near the endpoint of the LCP where x % π, the value

Λπ % 1.5117 is a fixed output. It is important to emphasize that the LCP is really meaningful

up to just outside its two limiting points. Up to around x % π it is characterized by a non-zero

6

Inspection of these relations shows that since the scalar is not allowed to backreact on the

geometry, the only temperature that dS space can sustain is the GH temperature. In fact, in

order that the in and out observers agree on the physical thermal effects they observe, it must

be that 1/β = T = TdS = H/2π = 1/δ. It is then sufficient to know the form of the thermal

dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.6)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | = 1, it determines various cosmological indices derived from the scalar

power spectrum (1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.7)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
∣∣∣
|kτ |=1

=

√
5− d2

4
+M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 . It

is our main goal here to propose a way to parametrize the deviation from this scale invariant

spectrum. It is clear that in the present context, exact scale invariance is realized in the |in〉
vacuum at zero temperature, with the deviations generated by either a change of the vacuum

or finite temperature effects, or both.

The deviations due to a vacuum change can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq .

There is a corresponding shadow partner solution to this with ∆+ = d
2 +ν. In this letter, we will

be concerned with (∆−,∆+)cl = (0, 3). In order to understand νq we first observe that the |out〉,
thermal state is a time-dependent BT of the Bunch-Davies vacuum. Upon a time-dependent

BT, the frequency that the out observer sees is [9]:

Ω|k| = ω|k|(|c|2 + |s|2)

which implies the transformation on the horizon exit parameter κ → Λ, with

Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) ,

4



19

SPECTRAL INDEX AND dS/CFT
• The dS/CFT correspondence 

M. Bianchi, D.Z. Freedman and K. Skenderis Nucl. Phys. 
B 631 (2002) 159


I. Antoniadis, P. O. Mazur and E. Mottola, JCAP 09 
(2012) 024  

<latexit sha1_base64="da3BUy2Uz9OQHk3r7UPCw8iRPm4=">AAAB73icbVBNTwIxEJ3FL8Qv1KOXRmLiiewaoh6JHvSIxgUS2JBu6UJD213brgnZ8Ce8eNAYr/4db/4bC+xBwZdM8vLeTGbmhQln2rjut1NYWV1b3yhulra2d3b3yvsHTR2nilCfxDxW7RBrypmkvmGG03aiKBYhp61wdD31W09UaRbLBzNOaCDwQLKIEWys1M66SqD7m0mvXHGr7gxomXg5qUCORq/81e3HJBVUGsKx1h3PTUyQYWUY4XRS6qaaJpiM8IB2LJVYUB1ks3sn6MQqfRTFypY0aKb+nsiw0HosQtspsBnqRW8q/ud1UhNdBhmTSWqoJPNFUcqRidH0edRnihLDx5Zgopi9FZEhVpgYG1HJhuAtvrxMmmdV77xau6tV6ld5HEU4gmM4BQ8uoA630AAfCHB4hld4cx6dF+fd+Zi3Fpx85hD+wPn8Aa5mj78=</latexit>

RG
<latexit sha1_base64="IMAsj21pFIuYGfw+8E9pfg4khow=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh5LvXis0C9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8x3e5BWx8MPN6bYWZeEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3i387hNVmkWyZWYx9QUeSxYygo2VeulACdRozYflilt1M6B14uWkAjmaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ9m987RhVVGKIyULWlQpv6eSLHQeiYC2ymwmehVbyH+5/UTE976KZNxYqgky0VhwpGJ0OJ5NGKKEsNnlmCimL0VkQlWmBgbUcmG4K2+vE46V1Xvulp7qFXqjTyOIpzBOVyCBzdQh3toQhsIcHiGV3hzHp0X5935WLYWnHzmFP7A+fwBqcePvA==</latexit>

BT

<latexit sha1_base64="Q2+trhOCE53AASunPk3CI+6iyK0=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI9BLx4jmIckS5idzCZD5rHM9AphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFieAWfP/bK6ytb2xuFbdLO7t7+wflw6OW1amhrEm10KYTEcsEV6wJHATrJIYRGQnWjsa3M7/9xIzlWj3AJGGhJEPFY04JOOkx6xmJdQrTfrniV/058CoJclJBORr98ldvoGkqmQIqiLXdwE8gzIgBTgWblnqpZQmhYzJkXUcVkcyG2fzgKT5zygDH2rhSgOfq74mMSGsnMnKdksDILnsz8T+vm0J8HWZcJSkwRReL4lRg0Hj2PR5wwyiIiSOEGu5uxXREDKHgMiq5EILll1dJ66IaXFZr97VK/SaPo4hO0Ck6RwG6QnV0hxqoiSiS6Bm9ojfPeC/eu/exaC14+cwx+gPv8wf4eZCI</latexit>

out

<latexit sha1_base64="e6febGE3u9j/7b73Y1rm5layweI=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnaynJeZq2i9XvKo3B14lfk4qkKPRL3/1BjFNJVOWCmJM1/cSG2REW04Fm5Z6qWEJoWMyZF1HFZHMBNn83ik+c8oAR7F2pSyeq78nMiKNmcjQdUpiR2bZm4n/ed3URtdBxlWSWqboYlGUCmxjPHseD7hm1IqJI4Rq7m7FdEQ0odZFVHIh+Msvr5LWRdW/rNbua5X6TR5HEU7gFM7Bhyuowx00oAkUBDzDK7yhR/SC3tHHorWA8plj+AP0+QMMwo/9</latexit>

in

<latexit sha1_base64="xEc6ls7ovgRtW/ZVcBPmy70N5fk=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVUj0WvXisaD+wXUo2m21Dk+ySZIWy9F948aCIV/+NN/+NabsHbX0w8Hhvhpl5QcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8epIrRFYh6rboA15UzSlmGG026iKBYBp51gfDPzO09UaRbLBzNJqC/wULKIEWys9Jj1lUDh/XRQG5QrbtWdA60SLycVyNEclL/6YUxSQaUhHGvd89zE+BlWhhFOp6V+qmmCyRgPac9SiQXVfja/eIrOrBKiKFa2pEFz9fdEhoXWExHYToHNSC97M/E/r5ea6MrPmExSQyVZLIpSjkyMZu+jkClKDJ9Ygoli9lZERlhhYmxIJRuCt/zyKmlfVL16tXZXqzSu8ziKcAKncA4eXEIDbqEJLSAg4Rle4c3Rzovz7nwsWgtOPnMMf+B8/gALUZCE</latexit>

dS4

<latexit sha1_base64="paFNQ5t2hyZcwNDaEc01YD4Rdr8=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGUwjYXFCeZDkiPsbfaSJbt7x+6eEI78ChsLRWz9OXb+GzfJFZr4YODx3gwz88KEM21c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4bgx89tPVGkWywczSWgg8FCyiBFsrPSY9ZRAdw1/2i9X3Ko7B1olXk4qkMPvl796g5ikgkpDONa667mJCTKsDCOcTku9VNMEkzEe0q6lEguqg2x+8BSdWWWAoljZkgbN1d8TGRZaT0RoOwU2I73szcT/vG5qousgYzJJDZVksShKOTIxmn2PBkxRYvjEEkwUs7ciMsIKE2MzKtkQvOWXV0nroupdVmv3tUr9Jo+jCCdwCufgwRXU4RZ8aAIBAc/wCm+Ocl6cd+dj0Vpw8plj+APn8wdAJJAP</latexit>

LCP
<latexit sha1_base64="2FZEl1g5FPOLegCqoyR++8ihmiE=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBg5REinoselBvVewHNKFstpt26WYTdjeFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCDhTGnH+bYKK6tr6xvFzdLW9s7unr1/0FRxKgltkJjHsh1gRTkTtKGZ5rSdSIqjgNNWMLyZ+q0RlYrF4kmPE+pHuC9YyAjWRuradubJCN0rJvreGXq8nXTtslNxZkDLxM1JGXLUu/aX14tJGlGhCcdKdVwn0X6GpWaE00nJSxVNMBniPu0YKnBElZ/NLp+gE6P0UBhLU0Kjmfp7IsORUuMoMJ0R1gO16E3F/7xOqsMrP2MiSTUVZL4oTDnSMZrGgHpMUqL52BBMJDO3IjLAEhNtwiqZENzFl5dJ87ziXlSqD9Vy7TqPowhHcAyn4MIl1OAO6tAAAiN4hld4szLrxXq3PuatBSufOYQ/sD5/AG0JkuI=</latexit>

Ising RG
<latexit sha1_base64="vVNmszcf7PJCvwekGzIqnR97tWA=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZREirosutBlFfuAJpbJdNIOnUnCzEQpsZ/ixoUibv0Sd/6N08dCWw9cOJxzL/feEyScKe0431ZuaXlldS2/XtjY3NresYu7DRWnktA6iXksWwFWlLOI1jXTnLYSSbEIOG0Gg8ux33ygUrE4utPDhPoC9yIWMoK1kTp20Uv67L7iHaPMkwLdXo06dskpOxOgReLOSAlmqHXsL68bk1TQSBOOlWq7TqL9DEvNCKejgpcqmmAywD3aNjTCgio/m5w+QodG6aIwlqYijSbq74kMC6WGIjCdAuu+mvfG4n9eO9XhuZ+xKEk1jch0UZhypGM0zgF1maRE86EhmEhmbkWkjyUm2qRVMCG48y8vksZJ2T0tV24qperFLI487MMBHIELZ1CFa6hBHQg8wjO8wpv1ZL1Y79bHtDVnzWb24A+szx/ldpMh</latexit>

�4 RG

<latexit sha1_base64="L8QSpZm1ulS1VKK04k1mp3d/wRc=">AAAB+HicbZDLSsNAFIZPvNZ6adSlm8EiuLEmtagboejGZQV7gTaEyXTaDp1M4sxEqKFP4saFIm59FHe+jdM2C239YeDjP+dwzvxBzJnSjvNtLS2vrK6t5zbym1vbOwV7d6+hokQSWicRj2QrwIpyJmhdM81pK5YUhwGnzWB4M6k3H6lULBL3ehRTL8R9wXqMYG0s3y50RIKu0Nlp+cSQ/+DbRafkTIUWwc2gCJlqvv3V6UYkCanQhGOl2q4Tay/FUjPC6TjfSRSNMRniPm0bFDikykunh4/RkXG6qBdJ84RGU/f3RIpDpUZhYDpDrAdqvjYx/6u1E9279FIm4kRTQWaLeglHOkKTFFCXSUo0HxnARDJzKyIDLDHRJqu8CcGd//IiNMol97xUuasUq9dZHDk4gEM4BhcuoAq3UIM6EEjgGV7hzXqyXqx362PWumRlM/vwR9bnD7LOkdY=</latexit>

⌫ = 3/2� ⌫q
<latexit sha1_base64="EWd39Yr+BCsIRQzfSZQVc6h8x3c=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgxjIjRd0IRTcuK9gHTIeSSTNtaCYZk4xQhn6GGxeKuPVr3Pk3pu0stPVAwuGce7n3njDhTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKVlqghtEsml6oRYU84EbRpmOO0kiuI45LQdjm6nfvuJKs2keDDjhAYxHggWMYKNlfyuSK+9M/v3Hnvlilt1Z0DLxMtJBXI0euWvbl+SNKbCEI619j03MUGGlWGE00mpm2qaYDLCA+pbKnBMdZDNVp6gE6v0USSVfcKgmfq7I8Ox1uM4tJUxNkO96E3F/zw/NdFVkDGRpIYKMh8UpRwZiab3oz5TlBg+tgQTxeyuiAyxwsTYlEo2BG/x5GXSOq96F9Xafa1Sv8njKMIRHMMpeHAJdbiDBjSBgIRneIU3xzgvzrvzMS8tOHnPIfyB8/kDpOmQ2g==</latexit>

⌫ = 1� ⌫q

<latexit sha1_base64="J+62pzK6UZ4y/+BqQoOYZ32dVnU=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVRIp6rJYEJcV+oImhMl00g6dmYSZiVBD8FfcuFDErf/hzr9x2mahrQcuHM65l3vvCRNGlXacb2tldW19Y7O0Vd7e2d3btw8OOypOJSZtHLNY9kKkCKOCtDXVjPQSSRAPGemG48bU7z4QqWgsWnqSEJ+joaARxUgbKbCPM09y2LhtBZkn0iDDLM/zwK44VWcGuEzcglRAgWZgf3mDGKecCI0ZUqrvOon2MyQ1xYzkZS9VJEF4jIakb6hAnCg/m12fwzOjDGAUS1NCw5n6eyJDXKkJD00nR3qkFr2p+J/XT3V07WdUJKkmAs8XRSmDOobTKOCASoI1mxiCsKTmVohHSCKsTWBlE4K7+PIy6VxU3ctq7b5Wqd8UcZTACTgF58AFV6AO7kATtAEGj+AZvII368l6sd6tj3nrilXMHIE/sD5/ALMXlWg=</latexit>

CFT⌫cl

4d Bulk: | in > |out, βTdS
> 3d Boundary: UV to IR RG flow
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SPECTRAL INDEX AND dS/CFT

• The d = 3 scalar theory of  the Ising field σ

1 Introduction

In this note we demonstrate that the observed deviation from scale invariance of the Cosmic

Microwave Background as encoded in the spectral index nS of scalar fluctuations, can be ex-

plained by dS/CFT arguments. The set up is a real scalar φ in de Sitter (dS) space with an

’out’ observer sitting at its horizon and looking at the time where modes are exiting. This can

be any time except from the time that defines the horizon for thermal effects to be observable.

The observer sees a scale invariant thermal state |out;βdS〉 where βdS = 1/TdS and with TdS the

Gibbons-Hawking temperature of dS space. The thermal state is connected to the Bunch-Davies

vacuum |in〉 by a Bogolyubov Transformation. The breaking of scale invariance is realized when

T < TdS. The effect of the breaking on nS can be quantified if a certain eigenvalue equation

is satisfied. The associated eigenvalue appears then via standard dS/CFT rules in the Callan-

Symnazik equation for the boundary operator that couples to the bulk scalar, as the critical

exponent η of the d = 3 Ising model. The result is independent of any details of the breaking

mechanism, as long as it is non-zero and small. Here, we concentrate only on the boundary

where the Ising model lives. More details of the (bulk) construction of the thermal scalar in dS

space can be found in [1].

2 The spectral index nS from dS/CFT

The crucial observation for our purpose here is that the (|in〉) |out;βdS〉 vacuum is expected

to correspond to a fixed point in the (UV) IR of the dual field theory. Just outside the IR

fixed point the bulk state is |out;β〉 with β > βdS. On the boundary, the IR conformal point

can be recognized as the interacting fixed point of the d = 3 Euclidean scalar theory with a

renormalized Lagrangian

L =
1

2
∂iσ∂iσ − λσ4 . (2.1)

In principle, a mass term should be added too because it corresponds to a massive field in the

bulk but since the final result depends very weakly on it, for simplicity we will keep the field

massless.4 In the dS/CFT correspondence [2], a bulk field with dimension ∆− is dual to an

operator O of the boundary CFT of dimension ∆+. Then bulk and boundary propagators are

related by [3] (the subscripts remind of the momentum conservation δ-function which we omit):

〈ζ|k|ζ−|k|〉 ∼
1

〈O|k|O−|k|〉
. (2.2)

There is a gauge where we can connect the scalar curvature perturbations ζ|k| and the dS scalar

φ|k|, of dimension ∆cl,− = 0. As a result, there is a relation between the correlators

〈ζ|k|ζ−|k|〉 ∼ 〈φ|k|φ−|k|〉 , (2.3)

4 There is a small price for this. Since there is no massive RG trajectory (in dimensional regularization)

that connects the Gaussian with the Wilson-Fisher fixed point, with a non-zero mass term in the Lagrangian it

would be easier to argue that the system never reaches exact scale invariance. A small mass could develop in the

classicaly massless theory for example through a generalized version of the Coleman-Weinberg mechanism.
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CFT⌫cl

The IR limit is a exact 3d CFT as long as the BT preserves the 
 isometry.SO(4)

Scale invariance is broken via the Coleman-Weinberg mechanism.

RG brings us in the vicinity of  the IR fixed point

1 Introduction

In this note we demonstrate that the observed deviation from scale invariance of the Cosmic

Microwave Background as encoded in the spectral index nS of scalar fluctuations, can be ex-

plained by dS/CFT arguments. The set up is a real scalar � in de Sitter (dS) space with an

“out” observer sitting at its horizon and looking at the time where modes are exiting. This can

be any time except from the time that defines the horizon for thermal e↵ects to be observable.

The observer sees a scale invariant thermal state |out;�dSi where �dS = 1/TdS and with TdS the

Gibbons-Hawking temperature of dS space. The thermal state is connected to the Bunch-Davies

vacuum |ini by a Bogolyubov Transformation. The breaking of scale invariance is realized when

T < TdS. The e↵ect of the breaking on nS can be quantified if a certain eigenvalue equation

is satisfied. The associated eigenvalue appears then via standard dS/CFT rules in the Callan-

Symnazik equation for the boundary operator that couples to the bulk scalar, as the critical

exponent ⌘ of the d = 3 Ising model. The result is independent of the precise form of the bulk

action and of the details of the breaking mechanism, as long as the breaking is non-zero and

small. Here, we concentrate only on the boundary where the field theory lives. More details of

the (bulk) construction of the thermal scalar in dS space can be found in [1].

2 The spectral index nS from dS/CFT

The crucial observation for this note is that the (|ini) |out;�dSi vacuum is expected to correspond

to a fixed point in the (UV) IR of the dual field theory. Just outside the IR fixed point the bulk

state is |out;�i with � > �dS. On the boundary, the IR conformal point can be recognized as

the interacting fixed point in the universality class of the d = 3 Euclidean scalar theory with a

renormalized Lagrangian

L =
1

2
@i�@i� � ��4 . (2.1)

In principle, a mass term should be added too because it corresponds to a massive field in the

bulk but since the final result depends very weakly on it, for simplicity we will keep the field

massless.4 In the dS/CFT correspondence [2], a real scalar bulk field � (with fluactuation modes

�|k|) of dimension �� in dS space is dual to an operator O of the boundary CFT of dimension

�+. Then bulk and boundary propagators are related by [3, 4] (the subscripts remind of the

momentum conservation �-function which we omit):

h�|k|��|k|i ⇠
1

hO|k|O�|k|i
. (2.2)

The scalar curvature perturbations ⇣|k| and the dS scalar field (of dimension �cl,� = 0) per-

turbation can be in fact connected as ⇣|k| = z(⌧)�|k| [5, 6, 7], with the z(⌧) factor determined

4 There is a small price for this. Since there is no massive RG trajectory (in dimensional regularization)

that connects the Gaussian with the Wilson-Fisher fixed point, with a non-zero mass term in the Lagrangian it

would be easier to argue that the system never reaches exact scale invariance. A small mass could develop in the

classicaly massless theory for example through a generalized version of the Coleman-Weinberg mechanism.
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• In the dS/CFT correspondence: bulk field  ( ) dual to a boundary operator  ( ) 


• Bulk and boundary propagators are related by  

ϕ Δ− 𝒪 Δ+

Inspection of these relations shows that since the scalar is not allowed to backreact on the

geometry, the only temperature that dS space can sustain is the GH temperature. In fact, in

order that the in and out observers agree on the physical thermal effects they observe, it must

be that 1/β = T = TdS = H/2π = 1/δ. It is then sufficient to know the form of the thermal

dS-scalar propagator

Dβ = D +
(
D++ +D∗

++

)
(s2 + sc)

(
1 1

1 1

)
, (2.6)

where s ≡ sinh θ|k| and c ≡ cosh θ|k|, for some generic β. The flat limit of the above propagator

is diagonal and its ++ component is such that the iε shift of the zero temperature propagator

denominator becomes iE = iε coth(βω|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |τ |H = 1 and concentrating on horizon exiting

modes specified by |kτ | = 1, it determines various cosmological indices derived from the scalar

power spectrum (1 is the 2× 2 matrix with unit elements)

PS,β1 = Dβ1|τ1=τ2 , (2.7)

in terms of a single parameter (when the temperature takes its natural value T = TdS):

κ ≡ ω|k||τ |
∣∣∣
|kτ |=1

=

√
5− d2

4
+M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or κ = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to νcl =
3
2 . It

is our main goal here to propose a way to parametrize the deviation from this scale invariant

spectrum. It is clear that in the present context, exact scale invariance is realized in the |in〉
vacuum at zero temperature, with the deviations generated by either a change of the vacuum

or finite temperature effects, or both.

The deviations due to a vacuum change can be encoded in general in a shift of the weight

νcl → ν = νcl + νq that can be interpreted as a shift in the scaling dimension of a dS scalar field

∆− =
d

2
− ν =

d

2
− νcl − νq = ∆cl,− − νq .

There is a corresponding shadow partner solution to this with ∆+ = d
2 +ν. In this letter, we will

be concerned with (∆−,∆+)cl = (0, 3). In order to understand νq we first observe that the |out〉,
thermal state is a time-dependent BT of the Bunch-Davies vacuum. Upon a time-dependent

BT, the frequency that the out observer sees is [9]:

Ω|k| = ω|k|(|c|2 + |s|2)

which implies the transformation on the horizon exit parameter κ → Λ, with

Λ = κ

(
1 + 2

e−2xκ

1− e−2xκ

)
= κ coth(xκ) ,
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is diagonal and its ++ component is such that the i" shift of the zero temperature propagator

denominator becomes iE = i" coth(�!|k|/2) in the thermal state.

The propagator in Eq. (2.6) determines several important observables. At equal space-time

points and at the time of horizon exit, defined as |⌧ |H = 1 and concentrating on horizon exiting

modes specified by |k⌧ | . 1, it determines various cosmological indices derived from the scalar

power spectrum (here 1 is the 2 ⇥ 2 matrix with unit elements)
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in terms of a single parameter (when the temperature takes its natural value T = TdS):
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���
|k⌧ |=1

=

r
5 � d2

4
+ M2 .

This parameter can be traded for the weight of the Hankel function, as determined by the Klein-

Gordon equation, in Eq. (2.3). Of special importance in d = 3 is the choice M = 0, or  = i,

which is known to generate a scale invariant CMB spectrum. This corresponds to ⌫cl = 3
2 and

decaying modes at the time of exit.

It is clear that in the present context, exact scale invariance is realized in the |ini vacuum,

with the deviations generated by a spontaneous shift in M that, according to Eq. (2.6), should

have a finite temperature origin. Deviations can be encoded in general in a shift of the weight

⌫cl ! ⌫ = ⌫cl + ⌫q that can be interpreted as a shift in the scaling dimension of a dS scalar field

�� =
d

2
� ⌫ =

d

2
� ⌫cl � ⌫q = �cl,� � ⌫q .

There is a corresponding shadow partner solution to this with �+ = d

2 + ⌫. In this letter, we

will be concerned with (��, �+)cl = (0, 3).

In order to understand ⌫q (which will turn out to be a non-trivial zero) we first point out

that the |out; �i (� > �dS) state is a BT of the Bunch-Davies vacuum. The mode functions

before and after the transformation solve the same Bessel equation with frequency !|k|. Upon a

time-dependent BT however, the frequency that an observer sees for a time other than his own,

is [9]:

⌦|k| = !|k|(|c|2 + |s|2) . (2.8)

As a result, the horizon exit parameter is transformed as

 ! ⇤ = 

✓
1 + 2

e
�2x

1 � e�2x

◆
=  coth(x) , (2.9)
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1 Introduction

In this note we demonstrate that the observed deviation from scale invariance of the Cosmic

Microwave Background as encoded in the spectral index nS of scalar fluctuations, can be ex-

plained by dS/CFT arguments. The set up is a real scalar φ in de Sitter (dS) space with an

“out” observer sitting at its horizon and looking at the time where modes are exiting. This can

be any time except from the time that defines the horizon for thermal effects to be observable.

The observer sees a scale invariant thermal state |out;βdS〉 where βdS = 1/TdS and with TdS the

Gibbons-Hawking temperature of dS space. The thermal state is connected to the Bunch-Davies

vacuum |in〉 by a Bogolyubov Transformation. The breaking of scale invariance is realized when

T < TdS. The effect of the breaking on nS can be quantified if a certain eigenvalue equation

is satisfied. The associated eigenvalue appears then via standard dS/CFT rules in the Callan-

Symnazik equation for the boundary operator that couples to the bulk scalar, as the critical

exponent η of the d = 3 Ising model. The result is independent of the precise form of the bulk

action and of the details of the breaking mechanism, as long as the breaking is non-zero and

small. Here, we concentrate only on the boundary where the Ising model lives. More details of

the (bulk) construction of the thermal scalar in dS space can be found in [1].

2 The spectral index nS from dS/CFT

The crucial observation for this note is that the (|in〉) |out;βdS〉 vacuum is expected to correspond

to a fixed point in the (UV) IR of the dual field theory. Just outside the IR fixed point the bulk

state is |out;β〉 with β > βdS. On the boundary, the IR conformal point can be recognized as

the interacting fixed point of the d = 3 Euclidean scalar theory with a renormalized Lagrangian

L =
1

2
∂iσ∂iσ − λσ4 . (2.1)

In principle, a mass term should be added too because it corresponds to a massive field in the

bulk but since the final result depends very weakly on it, for simplicity we will keep the field

massless.4 In the dS/CFT correspondence [2], a real scalar bulk field φ (with fluactuation modes

φ|k|) of dimension ∆− in dS space is dual to an operator O of the boundary CFT of dimension

∆+. Then bulk and boundary propagators are related by [3, 4] (the subscripts remind of the

momentum conservation δ-function which we omit):

〈φ|k|φ−|k|〉 ∼
1

〈O|k|O−|k|〉
. (2.2)

The scalar curvature perturbations ζ|k| and the dS scalar field (of dimension ∆cl,− = 0) per-

turbation can be in fact connected as ζ|k| = z(τ)φ|k| [5, 6, 7], with the z(τ) factor determined

4There is a small price for this. Since there is no massive RG trajectory (in dimensional regularization) that

connects the Gaussian with the Wilson-Fisher fixed point, with a non-zero mass term in the Lagrangian it would

be easier to argue that the system never reaches exact scale invariance. A small mass could develop in the

classicaly massless theory for example through a generalized version of the Coleman-Weinberg mechanism.
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where we have defined the dimensionless temperature parameter x = πH
2πT , that takes values

in [π,∞]. Eventually it will be fixed to x = π, its natural dS value where T = TdS, but for

now we are interested in the zero temperature limit. Next, observe that the out observer, on

the horizon, sees modes of any wavelength as exiting modes. This means that if he calls his

frequencies Ω|k|, then his horizon exiting parameter, at nearly zero temperature, will be forced to

Λ ≡ limτ→0(Ω|k|η) → 0. For κ = i this gives Λ = i coth(ix) = cotx and then the regularization

x = π
2 (2l + 1), l ∈ N as x → ∞, drives Λ → 0.

Deviations due to finite temperature effects can be encoded into the shift of the spectral

index of scalar curvature fluctuations

nS,β = 1 +
d ln

(
|k|3PS,β

)

d ln |k|

with PS,β = PS [1 + 2(s2 + sc)] from Eq. (2.7), that determines the thermal correction

δnS ≡ nS,β − 1 = −2x

Λ

[
e−xΛ

1− e−2xΛ

]
. (2.8)

In the physical state x = π so this is really a 1-parameter expression. In the next section we

will fix this freedom by determining the value nS,∞ ≡ nS and then interpret its deviation from

unity as the regularized (nearly) zero temperature limit of Eq. (2.8). Then we can reach x = π

along a trajectory which keeps this value constant for all temperatures: nS,β = nS . In order to

fix δnS though, we have to characterize the ∆+ solution, which is what we do next.

3 Observables

The IR CFT can be recognized within perturbation theory as the interacting fixed point of

the d = 3 scalar theory with classical Lagrangian L = −1
2σ!σ − λσ4.5 The Ising field σ can

be thought of as the horizon value of the bulk scalar. In the dS/CFT correspondence [10], a

bulk field ζ with dimension ∆− is dual to an operator O of the boundary CFT of dimension

∆+. Then bulk and boundary propagators are related by [11, 12] (the subscripts remind of the

momentum conservation δ-function which we omit):

〈ζ|k|ζ−|k|〉 ∼
1

〈O|k|O−|k|〉
.

There is a gauge where we can identify the scalar curvature perturbations ζ|k| with our dS scalar

φ|k|, of dimension ∆cl,− = 0. Recall then the definition of the spectral index

nS − 1 =
d

d ln |k|

[
ln
(
|k|3PS,β

)]
=

d

d ln |k| ln
(
|k|3〈ζ|k|ζ−|k|〉

)

= 3− 1

〈O|k|O−|k|〉

(
d

d ln |k|〈O|k|O−|k|〉
)

5A mass term could be added but it could also appear as an insertion. The final result does not depend on it.
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and write the Callan-Symanzik equation for a general 2-point function in momentum space as

(
∂

∂ ln |k| − βλ
∂

∂λ
+ (3− 2∆O)

)
〈O|k|O−|k|〉 = 0 , (3.1)

where ∆O = ∆+ = [∆O] + ΓO and βλ = µ∂λ/∂µ. These combine into

nS = 1− 2ΓO − βλ
∂

∂λ
ln〈O|k|O−|k|〉 , (3.2)

where we have used that [∆O] = ∆cl,+ = 3. We then define the ”total anomalous dimension”

γO ≡ µ ∂
∂µ lnZO and we also have γσ ≡ 1

2µ
∂
∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator anomalous dimension” that shifts ∆cl,+ is ΓO ≡
µ ∂
∂µ ln

(
Z−1/2
σ ZO

)
. These definitions imply the relation ΓO = γO − γσ.

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising stress-energy tensor Θ = δijTij , which being associated with a conserved current, has an

exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = γσ (and in

fact that νq = 0). In coordinate space we can also write Eq. (3.2) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (3.3)

The holographic interpretation of the running of λ imposes the eigenvalue equation [17]

βλ
∂

∂λ
〈ΘΘ〉 =

(
β2
λ + 2

∂βλ
∂λ

)
〈ΘΘ〉 , (3.4)

where the renormalized relation Θ = βλσ4 has been used. Since renormalization turns in the

classical equation Θ0 = λ0σ4
0 the bare into renormalized quantities, we obtain the relation ZΘ =

ZλZσ4 between counterterms and the relation γΘ = γσ4 + βλ
λ between anomalous dimensions.

This implies that near the interacting fixed point, we will have γσ4 % γσ and by virtue of the

relation γσ4 = ∂βλ
∂λ we conclude that just outside the conformal point where 2γσ % η with η the

standard critical exponent, the deviation from scale invariance can be parametrized by an RG

flow, with the two parentheses in the Callan-Symanzik equation

[(
∂

∂ lnµ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (3.5)

vanishing separately.7 Applying the above eigenvalue to Eq. (3.3) in the vicinity of the fixed

point, finally gives:

nS % 1− η . (3.6)

6The general argument is due to Wilson [13]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [14, 15, 16], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. In fact, the relative normalization of γΘ and γσ in ΓΘ can be fixed by

this cancellation. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is typically taken ΓO ∼ γO

to leading order.
7The scaling equation that the cΘ-coupling satisfies is βλ∂λcΘ = ηcΘ, where 〈ΘΘ〉 = cΘ/|x|2d. The leading

order solution is cΘ ∼
(

16π2−3λ
λ

)η
and vanishes only on the fixed point.
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which is however gauge-invariant [3]. Recall then the definition of the spectral index [8]

nS − 1 =
∂

∂ ln |k|

[
ln

(
|k|3 〈φ|k|φ−|k|〉

)]
=

∂

∂ ln |k| ln
(
|k|3〈ζ|k|ζ−|k|〉

)

= 3− 1

〈O|k|O−|k|〉

(
∂

∂ ln |k|〈O|k|O−|k|〉
)

(2.4)

and write the Callan-Symanzik equation for a general 2-point function in momentum space as
(

∂

∂ ln |k| − βλ
∂

∂λ
+ (3− 2∆O)

)
〈O|k|O−|k|〉 = 0 , (2.5)

where ∆O = ∆+ = [∆O] + ΓO and βλ ≡ µ∂λ
∂µ . These combine into [8]5

nS = 1− 2ΓO − βλ
∂

∂λ
ln〈O|k|O−|k|〉 , (2.6)

where we have used that [∆O] ≡ ∆cl,+ = 3. We define the ”total” anomalous dimension

γO ≡ µ ∂
∂µ ln zO and we also have γσ ≡ 1

2µ
∂
∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator” anomalous dimension that shifts [∆O] is ΓO ≡
−µ ∂

∂µ ln
(
Z−1
σ zO

)
≡ −µ ∂

∂µ ln (ZO), for an operator that contains two σ’s. These definitions

imply the relation ΓO = −γO + 2γσ.

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising energy-momentum tensor Θ = δijTij , which being associated with a conserved current, has

an exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = 2γσ. In

coordinate space we can also write Eq. (2.4) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (2.7)

Near the IR fixed point the anomalous dimension 2γσ is known as the critical exponent η

and it has a value that has been computed analytically, among others, in the ε-expansion and

numerically on the lattice. It has the value η % 0.036 approximately. Now write the Callan-

Symanzik equation in a form where the cancellation of the two contributions to ΓΘ = 0 is

inserted explicitly and with the two cancelling terms shared between the two derivatives:
[(

∂

∂ lnµ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (2.8)

It is tempting to assume that just outside the IR conformal point the deviation from scale

invariance can be parametrized by an RG flow, with the two parentheses in the Callan-Symanzik

5The analysis of [8] recognizes the scalar tilt in the CMB spectrum as the anomalous dimension of the boundary

operator σ4. As far as we can tell, there are two versions of their interpretation. In our notation they can be

expressed to leading order in βλ as either nS = 1 − 2Γσ4 = 1 − 2βλ
λ or as nS = 1 − 2Γσ4 = 1 − 2 ∂βλ

∂λ . The first

implies a vanishing anomalous dimension and tilt at the fixed point and the second sees it basically related to the

critical exponent ω.
6The general argument is due to Wilson [4]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [5, 6, 7], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is

typically taken ΓO ∼ −γO to leading order.
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• The anomalous dimension 


• For   no shift to the spectral index 


• For us   and the spectral index 

𝒪 = σ4 (Δσ4 = 3)

𝒪 = Θ ≡ δij Tij (ΔΘ = 3)

and write the Callan-Symanzik equation for a general 2-point function in momentum space as

(
∂

∂ ln |k| − βλ
∂

∂λ
+ (3− 2∆O)

)
〈O|k|O−|k|〉 = 0 , (3.1)

where ∆O = ∆+ = [∆O] + ΓO and βλ = µ∂λ/∂µ. These combine into

nS = 1− 2ΓO − βλ
∂

∂λ
ln〈O|k|O−|k|〉 , (3.2)

where we have used that [∆O] = ∆cl,+ = 3. We then define the ”total anomalous dimension”

γO ≡ µ ∂
∂µ lnZO and we also have γσ ≡ 1

2µ
∂
∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator anomalous dimension” that shifts ∆cl,+ is ΓO ≡
µ ∂
∂µ ln

(
Z−1/2
σ ZO

)
. These definitions imply the relation ΓO = γO − γσ.

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising stress-energy tensor Θ = δijTij , which being associated with a conserved current, has an

exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = γσ (and in

fact that νq = 0). In coordinate space we can also write Eq. (3.2) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (3.3)

The holographic interpretation of the running of λ imposes the eigenvalue equation [17]

βλ
∂

∂λ
〈ΘΘ〉 =

(
β2
λ + 2

∂βλ
∂λ

)
〈ΘΘ〉 , (3.4)

where the renormalized relation Θ = βλσ4 has been used. Since renormalization turns in the

classical equation Θ0 = λ0σ4
0 the bare into renormalized quantities, we obtain the relation ZΘ =

ZλZσ4 between counterterms and the relation γΘ = γσ4 + βλ
λ between anomalous dimensions.

This implies that near the interacting fixed point, we will have γσ4 % γσ and by virtue of the

relation γσ4 = ∂βλ
∂λ we conclude that just outside the conformal point where 2γσ % η with η the

standard critical exponent, the deviation from scale invariance can be parametrized by an RG

flow, with the two parentheses in the Callan-Symanzik equation

[(
∂

∂ lnµ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (3.5)

vanishing separately.7 Applying the above eigenvalue to Eq. (3.3) in the vicinity of the fixed

point, finally gives:

nS % 1− η . (3.6)

6The general argument is due to Wilson [13]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [14, 15, 16], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. In fact, the relative normalization of γΘ and γσ in ΓΘ can be fixed by

this cancellation. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is typically taken ΓO ∼ γO

to leading order.
7The scaling equation that the cΘ-coupling satisfies is βλ∂λcΘ = ηcΘ, where 〈ΘΘ〉 = cΘ/|x|2d. The leading

order solution is cΘ ∼
(

16π2−3λ
λ

)η
and vanishes only on the fixed point.
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which is however gauge-invariant [3]. Recall then the definition of the spectral index [8]

nS − 1 =
∂

∂ ln |k|

[
ln

(
|k|3 〈φ|k|φ−|k|〉

)]
=

∂

∂ ln |k| ln
(
|k|3〈ζ|k|ζ−|k|〉

)

= 3− 1

〈O|k|O−|k|〉

(
∂

∂ ln |k|〈O|k|O−|k|〉
)

(2.4)

and write the Callan-Symanzik equation for a general 2-point function in momentum space as
(

∂

∂ ln |k| − βλ
∂

∂λ
+ (3− 2∆O)

)
〈O|k|O−|k|〉 = 0 , (2.5)

where ∆O = ∆+ = [∆O] + ΓO and βλ ≡ µ∂λ
∂µ . These combine into [8]5

nS = 1− 2ΓO − βλ
∂

∂λ
ln〈O|k|O−|k|〉 , (2.6)

where we have used that [∆O] ≡ ∆cl,+ = 3. We define the ”total” anomalous dimension

γO ≡ µ ∂
∂µ ln zO and we also have γσ ≡ 1

2µ
∂
∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator” anomalous dimension that shifts [∆O] is ΓO ≡
−µ ∂

∂µ ln
(
Z−1
σ zO

)
≡ −µ ∂

∂µ ln (ZO), for an operator that contains two σ’s. These definitions

imply the relation ΓO = −γO + 2γσ.

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising energy-momentum tensor Θ = δijTij , which being associated with a conserved current, has

an exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = 2γσ. In

coordinate space we can also write Eq. (2.4) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (2.7)

Near the IR fixed point the anomalous dimension 2γσ is known as the critical exponent η

and it has a value that has been computed analytically, among others, in the ε-expansion and

numerically on the lattice. It has the value η % 0.036 approximately. Now write the Callan-

Symanzik equation in a form where the cancellation of the two contributions to ΓΘ = 0 is

inserted explicitly and with the two cancelling terms shared between the two derivatives:
[(

∂

∂ lnµ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (2.8)

It is tempting to assume that just outside the IR conformal point the deviation from scale

invariance can be parametrized by an RG flow, with the two parentheses in the Callan-Symanzik

5The analysis of [8] recognizes the scalar tilt in the CMB spectrum as the anomalous dimension of the boundary

operator σ4. As far as we can tell, there are two versions of their interpretation. In our notation they can be

expressed to leading order in βλ as either nS = 1 − 2Γσ4 = 1 − 2βλ
λ or as nS = 1 − 2Γσ4 = 1 − 2 ∂βλ

∂λ . The first

implies a vanishing anomalous dimension and tilt at the fixed point and the second sees it basically related to the

critical exponent ω.
6The general argument is due to Wilson [4]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [5, 6, 7], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is

typically taken ΓO ∼ −γO to leading order.
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expressed to leading order in βλ as either nS = 1 − 2Γσ4 = 1 − 2βλ
λ or as nS = 1 − 2Γσ4 = 1 − 2 ∂βλ

∂λ . The first

implies a vanishing anomalous dimension and tilt at the fixed point and the second sees it basically related to the

critical exponent ω.
6The general argument is due to Wilson [4]. To leading order (or beyond) in the ε-expansion this cancellation
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Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising energy-momentum tensor Θ = δijTij , which being associated with a conserved current, has

an exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = 2γσ. In

coordinate space we can also write Eq. (2.4) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (2.7)

Near the IR fixed point the anomalous dimension 2γσ is known as the critical exponent η

and it has a value that has been computed analytically, among others, in the ε-expansion and

numerically on the lattice. It has the value η % 0.036 approximately. Now write the Callan-

Symanzik equation in a form where the cancellation of the two contributions to ΓΘ = 0 is

inserted explicitly and with the two cancelling terms shared between the two derivatives:
[(

∂

∂ lnµ
+ η

)
+

(
βλ
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∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (2.8)

It is tempting to assume that just outside the IR conformal point the deviation from scale

invariance can be parametrized by an RG flow, with the two parentheses in the Callan-Symanzik

5The analysis of [8] recognizes the scalar tilt in the CMB spectrum as the anomalous dimension of the boundary

operator σ4. As far as we can tell, there are two versions of their interpretation. In our notation they can be

expressed to leading order in βλ as either nS = 1 − 2Γσ4 = 1 − 2βλ
λ or as nS = 1 − 2Γσ4 = 1 − 2 ∂βλ

∂λ . The first

implies a vanishing anomalous dimension and tilt at the fixed point and the second sees it basically related to the

critical exponent ω.
6The general argument is due to Wilson [4]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [5, 6, 7], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is

typically taken ΓO ∼ −γO to leading order.
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by the (conformal time τ) time-dependent classical background. As a result, there is a relation

between the correlators

〈ζ|k|ζ−|k|〉 ∼ 〈φ|k|φ−|k|〉 , (2.3)

which is gauge-invariant [3]. Recall then the definition of the spectral index using the above

identifications:

nS − 1 =
∂

∂ ln |k|
ln

(

|k|3〈ζ|k|ζ−|k|〉
)

=
∂

∂ ln |k|
ln

(

|k|3〈φ|k|φ−|k|〉
)

= 3−
1

〈O|k|O−|k|〉

(

∂

∂ ln |k|
〈O|k|O−|k|〉

)

(2.4)

and write the Callan-Symanzik equation for a general 2-point function in momentum space as
(

∂

∂ ln |k|
− βλ

∂

∂λ
+ (3− 2∆O)

)

〈O|k|O−|k|〉 = 0 , (2.5)

where ∆O = ∆+ = [∆O] + ΓO and βλ ≡ µ ∂λ
∂µ . These combine into [12, 13, 14]5

nS = 1− 2ΓO − βλ
∂

∂λ
ln〈O|k|O−|k|〉 , (2.6)

where we have used that [∆O] ≡ ∆cl,+ = 3. We define the “total” anomalous dimension

γO ≡ µ ∂
∂µ ln zO and we also have γσ ≡ 1

2
µ ∂
∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator” anomalous dimension that shifts [∆O] is ΓO ≡

−µ ∂
∂µ ln

(

Z−1
σ zO

)

≡ −µ ∂
∂µ ln (ZO), for an operator that contains two σ’s. These definitions

imply the relation ΓO = −γO + 2γσ .

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising energy-momentum tensor Θ = δijTij, which being associated with a conserved current, has

an exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = 2γσ . In

coordinate space we can also write Eq. (2.6) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (2.7)

Near the IR fixed point the anomalous dimension 2γσ is known as the critical exponent η

and it has a value that has been computed analytically, among others, in the ε-expansion and

numerically on the lattice. It has the value η & 0.036 approximately. Now write the Callan-

Symanzik equation in a form where the cancellation of the two contributions to ΓΘ = 0 is

inserted explicitly and with the two cancelling terms shared between the two derivatives:
[(

∂

∂ lnµ
+ η

)

+

(

βλ
∂

∂λ
− η

)]

〈Θ(x1)Θ(x2)〉 & 0 . (2.8)

5The analysis of [12, 13, 14] recognizes the scalar tilt in the CMB spectrum as the anomalous dimension of the

boundary operator σ4. As far as we can tell, there are two versions of their interpretation. In our notation they

can be expressed to leading order in βλ as either nS = 1− 2Γσ4 = 1− 2βλ

λ
or as nS = 1− 2Γσ4 = 1− 2∂βλ

∂λ
. The

first implies a vanishing anomalous dimension and tilt at the fixed point and the second sees it basically related

to the critical exponent ω.
6The general argument is due to Wilson [8]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [9, 10, 11], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is

typically taken ΓO ∼ −γO to leading order.
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• Vanishing of  the anomalous dimension of   


• Non-trivial vanishing for 


• Near the IR Wilson-Fisher fixed point  the Ising field critical exponent

Θ

ΓΘ = 0 → γΘ = 2γσ

2γσ = η
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• Rewrite the Callan- Symanzik equation for  and 


• Very close to the IR Wilson-Fisher fixed point 


• The -coupling satisfies the scaling equation

Θ ≡ − βλμεσ4 ΓΘ = η − η

β2
λ < <

∂βλ

∂λ

cΘ

SPECTRAL INDEX AND dS/CFT

which is however gauge-invariant [3]. Recall then the definition of the spectral index [8]

nS − 1 =
∂

∂ ln |k|

[
ln

(
|k|3 〈φ|k|φ−|k|〉

)]
=

∂

∂ ln |k| ln
(
|k|3〈ζ|k|ζ−|k|〉

)

= 3− 1

〈O|k|O−|k|〉

(
∂

∂ ln |k|〈O|k|O−|k|〉
)

(2.4)

and write the Callan-Symanzik equation for a general 2-point function in momentum space as
(

∂

∂ ln |k| − βλ
∂

∂λ
+ (3− 2∆O)

)
〈O|k|O−|k|〉 = 0 , (2.5)

where ∆O = ∆+ = [∆O] + ΓO and βλ ≡ µ∂λ
∂µ . These combine into [8]5

nS = 1− 2ΓO − βλ
∂

∂λ
ln〈O|k|O−|k|〉 , (2.6)

where we have used that [∆O] ≡ ∆cl,+ = 3. We define the ”total” anomalous dimension

γO ≡ µ ∂
∂µ ln zO and we also have γσ ≡ 1

2µ
∂
∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator” anomalous dimension that shifts [∆O] is ΓO ≡
−µ ∂

∂µ ln
(
Z−1
σ zO

)
≡ −µ ∂

∂µ ln (ZO), for an operator that contains two σ’s. These definitions

imply the relation ΓO = −γO + 2γσ.

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising energy-momentum tensor Θ = δijTij , which being associated with a conserved current, has

an exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = 2γσ. In

coordinate space we can also write Eq. (2.4) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (2.7)

Near the IR fixed point the anomalous dimension 2γσ is known as the critical exponent η

and it has a value that has been computed analytically, among others, in the ε-expansion and

numerically on the lattice. It has the value η % 0.036 approximately. Now write the Callan-

Symanzik equation in a form where the cancellation of the two contributions to ΓΘ = 0 is

inserted explicitly and with the two cancelling terms shared between the two derivatives:
[(

∂

∂ lnµ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (2.8)

It is tempting to assume that just outside the IR conformal point the deviation from scale

invariance can be parametrized by an RG flow, with the two parentheses in the Callan-Symanzik

5The analysis of [8] recognizes the scalar tilt in the CMB spectrum as the anomalous dimension of the boundary

operator σ4. As far as we can tell, there are two versions of their interpretation. In our notation they can be

expressed to leading order in βλ as either nS = 1 − 2Γσ4 = 1 − 2βλ
λ or as nS = 1 − 2Γσ4 = 1 − 2 ∂βλ

∂λ . The first

implies a vanishing anomalous dimension and tilt at the fixed point and the second sees it basically related to the

critical exponent ω.
6The general argument is due to Wilson [4]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [5, 6, 7], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is

typically taken ΓO ∼ −γO to leading order.
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and write the Callan-Symanzik equation for a general 2-point function in momentum space as

(
∂

∂ ln |k| − βλ
∂

∂λ
+ (3− 2∆O)

)
〈O|k|O−|k|〉 = 0 , (3.1)

where ∆O = ∆+ = [∆O] + ΓO and βλ = µ∂λ/∂µ. These combine into

nS = 1− 2ΓO − βλ
∂

∂λ
ln〈O|k|O−|k|〉 , (3.2)

where we have used that [∆O] = ∆cl,+ = 3. We then define the ”total anomalous dimension”

γO ≡ µ ∂
∂µ lnZO and we also have γσ ≡ 1

2µ
∂
∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator anomalous dimension” that shifts ∆cl,+ is ΓO ≡
µ ∂
∂µ ln

(
Z−1/2
σ ZO

)
. These definitions imply the relation ΓO = γO − γσ.

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising stress-energy tensor Θ = δijTij , which being associated with a conserved current, has an

exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = γσ (and in

fact that νq = 0). In coordinate space we can also write Eq. (3.2) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (3.3)

The holographic interpretation of the running of λ imposes the eigenvalue equation [17]

βλ
∂

∂λ
〈ΘΘ〉 =

(
β2
λ + 2

∂βλ
∂λ

)
〈ΘΘ〉 , (3.4)

where the renormalized relation Θ = βλσ4 has been used. Since renormalization turns in the

classical equation Θ0 = λ0σ4
0 the bare into renormalized quantities, we obtain the relation ZΘ =

ZλZσ4 between counterterms and the relation γΘ = γσ4 + βλ
λ between anomalous dimensions.

This implies that near the interacting fixed point, we will have γσ4 % γσ and by virtue of the

relation γσ4 = ∂βλ
∂λ we conclude that just outside the conformal point where 2γσ % η with η the

standard critical exponent, the deviation from scale invariance can be parametrized by an RG

flow, with the two parentheses in the Callan-Symanzik equation

[(
∂

∂ lnµ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (3.5)

vanishing separately.7 Applying the above eigenvalue to Eq. (3.3) in the vicinity of the fixed

point, finally gives:

nS % 1− η . (3.6)

6The general argument is due to Wilson [13]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [14, 15, 16], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. In fact, the relative normalization of γΘ and γσ in ΓΘ can be fixed by

this cancellation. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is typically taken ΓO ∼ γO

to leading order.
7The scaling equation that the cΘ-coupling satisfies is βλ∂λcΘ = ηcΘ, where 〈ΘΘ〉 = cΘ/|x|2d. The leading

order solution is cΘ ∼
(

16π2−3λ
λ

)η
and vanishes only on the fixed point.
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∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator anomalous dimension” that shifts ∆cl,+ is ΓO ≡
µ ∂
∂µ ln
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σ ZO

)
. These definitions imply the relation ΓO = γO − γσ.

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising stress-energy tensor Θ = δijTij , which being associated with a conserved current, has an

exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = γσ (and in

fact that νq = 0). In coordinate space we can also write Eq. (3.2) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (3.3)

The holographic interpretation of the running of λ imposes the eigenvalue equation [17]

βλ
∂

∂λ
〈ΘΘ〉 =

(
β2
λ + 2

∂βλ
∂λ

)
〈ΘΘ〉 , (3.4)

where the renormalized relation Θ = βλσ4 has been used. Since renormalization turns in the

classical equation Θ0 = λ0σ4
0 the bare into renormalized quantities, we obtain the relation ZΘ =

ZλZσ4 between counterterms and the relation γΘ = γσ4 + βλ
λ between anomalous dimensions.

This implies that near the interacting fixed point, we will have γσ4 % γσ and by virtue of the

relation γσ4 = ∂βλ
∂λ we conclude that just outside the conformal point where 2γσ % η with η the

standard critical exponent, the deviation from scale invariance can be parametrized by an RG

flow, with the two parentheses in the Callan-Symanzik equation

[(
∂

∂ lnµ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (3.5)

vanishing separately.7 Applying the above eigenvalue to Eq. (3.3) in the vicinity of the fixed

point, finally gives:

nS % 1− η . (3.6)

6The general argument is due to Wilson [13]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [14, 15, 16], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. In fact, the relative normalization of γΘ and γσ in ΓΘ can be fixed by

this cancellation. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is typically taken ΓO ∼ γO

to leading order.
7The scaling equation that the cΘ-coupling satisfies is βλ∂λcΘ = ηcΘ, where 〈ΘΘ〉 = cΘ/|x|2d. The leading

order solution is cΘ ∼
(

16π2−3λ
λ

)η
and vanishes only on the fixed point.
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It is tempting to assume that just outside the IR conformal point the deviation from scale

invariance can be parametrized by an RG flow, with the two parentheses in the Callan-Symanzik

equation vanishing separately. Then, the scaling equation that the cΘ-coupling approximately

satisfies is βλ∂λcΘ = ηcΘ, where 〈ΘΘ〉 = cΘ/|x|2d. The leading order solution is

cΘ ∼

(

16π2 − 3λ

λ

)η

(2.9)

and vanishes on the interacting fixed point, as it should. For this reason the eigenvalue equation

is non-empty only outside the fixed point.

Applying the above eigenvalue to Eq. (2.7) in the vicinity of this fixed point and using the

non-perturbative value of η, we are lead to an interesting statement:

nS % 1− η = 0.964 . (2.10)

The two main sources of errors in this number are the small corrections due to the non-zero βλ
just outside the fixed point and any errors in the lattice Monte Carlo measurement of η.

In the remaining we give possible justification for the separate vanishing of the two terms

in the parentheses in Eq. (2.8). One can give arguments from both the boundary and the bulk

perspectives. On the boundary the argument starts by noticing that the renormalized Θ is

not constructed from the bare quantity in the traditional way, since ZΘ = 1. Instead, first

σ4
0 is renormalized and βλ is computed and then the renormalized operator is constructed via

Θ = −βλµεσ4. This leaves the window to construct an RG flow by Θ = Θ0z
−1/2
Θ . Hitting

both sides with µ∂/∂µ and using the definitions above, gives (µ∂/∂µ + γΘ)〈ΘΘ〉 = 0. In the

bulk, following [12] one considers the late time equation of motion dH
dt = −1

2

(

dφ
dt

)2
in Mpl = 1

units (H = ȧ
a and a = eHt is the scale factor) and the exact form of the 2-point function

〈Θ|k|Θ−|k|〉 ∼
|k|3

H2 and relates the time-dependence of H away from the conformal limits with

an RG flow on the boundary, by the identifications µ = aH and λ = φ. The latter identification

is not sufficient however to reproduce our RG flow because it is not able to see wave function

renormalization. By construction it is sensitive only to ΓO, therefore it must be generalized. A

possible identification for that purpose is (τ is the conformal time with dt = adτ)

λ = φ−
2γσ
βλ

Ht % φ+ ln(H|τ |)
2γσ
βλ , (2.11)

that indeed gives
(

βλ∂/∂λ− 2γσ +O(β2
λ)
)

〈ΘΘ〉 = 0 and which near the fixed point reduces to

the eigenvalue equation we need. These considerations should not be considered of course as a

proof but as plausibility arguments. A rigorous analysis looks substantially more complicated

from both sides [10, 15]. In both cases the main obstruction seems to be the disentanglement of

the role of wave function renormalization from the renormalization process.

The index in Eq. (2.10) is just one of many that can be completely fixed by such arguments.

In principle every critical exponent etc of the Ising model will be mapped to some cosmological

parameter. Moreover, the value of η fixes more than one observables. A few such examples are

given in [1].

4

Meaningful only outside 
the IR fixed point
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• The approximate conformal 2-point function


• The critical exponent  non-perturbative admits the numerical value  (MC simulation)


• So  is indeed fixed independently (without connection to the inflationary 
characteristics)

η η ≈ 0.036

Λ ≈ 1.5117

and write the Callan-Symanzik equation for a general 2-point function in momentum space as

(
∂

∂ ln |k| − βλ
∂

∂λ
+ (3− 2∆O)

)
〈O|k|O−|k|〉 = 0 , (3.1)

where ∆O = ∆+ = [∆O] + ΓO and βλ = µ∂λ/∂µ. These combine into

nS = 1− 2ΓO − βλ
∂

∂λ
ln〈O|k|O−|k|〉 , (3.2)

where we have used that [∆O] = ∆cl,+ = 3. We then define the ”total anomalous dimension”

γO ≡ µ ∂
∂µ lnZO and we also have γσ ≡ 1

2µ
∂
∂µ lnZσ, the wave function renormalization of σ.

In terms of these counterterms, the ”operator anomalous dimension” that shifts ∆cl,+ is ΓO ≡
µ ∂
∂µ ln

(
Z−1/2
σ ZO

)
. These definitions imply the relation ΓO = γO − γσ.

Now the boundary operator that couples to a ζ|k| of ∆cl,− = 0 is O = Θ, the trace of the

Ising stress-energy tensor Θ = δijTij , which being associated with a conserved current, has an

exactly vanishing anomalous dimension: ΓΘ ≡ 0.6 This gives the constraint γΘ = γσ (and in

fact that νq = 0). In coordinate space we can also write Eq. (3.2) for Θ, as

nS = 1 +
∂

∂ lnµ
ln〈Θ(x1)Θ(x2)〉 = 1− βλ

∂

∂λ
ln〈Θ(x1)Θ(x2)〉 . (3.3)

The holographic interpretation of the running of λ imposes the eigenvalue equation [17]

βλ
∂

∂λ
〈ΘΘ〉 =

(
β2
λ + 2

∂βλ
∂λ

)
〈ΘΘ〉 , (3.4)

where the renormalized relation Θ = βλσ4 has been used. Since renormalization turns in the

classical equation Θ0 = λ0σ4
0 the bare into renormalized quantities, we obtain the relation ZΘ =

ZλZσ4 between counterterms and the relation γΘ = γσ4 + βλ
λ between anomalous dimensions.

This implies that near the interacting fixed point, we will have γσ4 % γσ and by virtue of the

relation γσ4 = ∂βλ
∂λ we conclude that just outside the conformal point where 2γσ % η with η the

standard critical exponent, the deviation from scale invariance can be parametrized by an RG

flow, with the two parentheses in the Callan-Symanzik equation

[(
∂

∂ lnµ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈Θ(x1)Θ(x2)〉 % 0 (3.5)

vanishing separately.7 Applying the above eigenvalue to Eq. (3.3) in the vicinity of the fixed

point, finally gives:

nS % 1− η . (3.6)

6The general argument is due to Wilson [13]. To leading order (or beyond) in the ε-expansion this cancellation

can be seen explicitly for example in [14, 15, 16], for Tij itself. For Θ, it is realized as a sunset diagram with a

σ!σ insertion cancelling a usual sunset. In fact, the relative normalization of γΘ and γσ in ΓΘ can be fixed by

this cancellation. For all other spin zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is typically taken ΓO ∼ γO

to leading order.
7The scaling equation that the cΘ-coupling satisfies is βλ∂λcΘ = ηcΘ, where 〈ΘΘ〉 = cΘ/|x|2d. The leading

order solution is cΘ ∼
(

16π2−3λ
λ

)η
and vanishes only on the fixed point.
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Figure 1: Left: A few points of the nearly conformal LCP defined by ΓΘ = 0. Right: The LCP

with respect to the vacua, on the complex κ plane.

Using the non-perturbative value of η, we are lead to a prediction:

nS # 1− 0.036 = 0.964 . (3.7)

This is the shifted value of the spectral index we were after.

All we need to demonstrate now is that in the bulk, there is a line of constant physics (LCP),

labelled by the value δnS = −η, along which the relation ΓΘ ≡ 0 is maintained and the system is

heated up in the |out〉 vacuum, at the time of horizon exit, from nearly zero temperature where

Λ # 0 and x # ∞, up to the dS temperature. A few points on this line and a picture of the

LCP can be found in Fig. 1. We stress that for a given x the corresponding value of Λ is fixed

by the label of the LCP. Thus at the endpoint of the LCP where x = π, the value Λ = 1.5117

is a fixed output.8 The LCP also suggests that the system never really reaches the interacting

fixed point, even though it can be brought arbitrarily close to it, meaning that (Λ, x) never take

the exact values (0,∞). This is to be contrasted with a zero temperature, time-independent BT

connecting α-vacua, which triggers an RG flow between the Gaussian and WF fixed points, in

which case nS = 1 at the endpoints.

Since there are no free parameters, any other computable observable is also fixed. Define for

example the moments

n(1)
S,β =

dnS,β

d ln |k| , n(2)
S,β =

dn(1)
S,β

d ln |k|

and compute them using that n(1)
S = 0. The result, evaluated under the same conditions as nS,β,

is

n(1)
S,β = δnS

[
2− 1

Λ2
− x

Λ

(
1 +

2e−2xΛ

1− e−2xΛ

)]

which, substituting x = π and Λ = 1.5117, gives

n(1)
S,β = 0.0186 (3.8)

8It corresponds to a mass parameter M ! 1.8125.
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invariance can be parametrized by an RG flow, with the two parentheses in the Callan-Symanzik

equation vanishing separately. Then, the scaling equation that the cΘ-coupling approximately

satisfies is βλ∂λcΘ = ηcΘ, where 〈ΘΘ〉 = cΘ/|x|2d. The leading order solution is

cΘ ∼

(

16π2 − 3λ

λ

)η

(2.9)

and vanishes on the interacting fixed point, as it should. For this reason the eigenvalue equation

is non-empty only outside the fixed point.

Applying the above eigenvalue to Eq. (2.7) in the vicinity of this fixed point and using the

non-perturbative value of η, we are lead to an interesting statement:

nS % 1− η = 0.964 . (2.10)

The two main sources of errors in this number are the small corrections due to the non-zero βλ
just outside the fixed point and any errors in the lattice Monte Carlo measurement of η.

In the remaining we give possible justification for the separate vanishing of the two terms

in the parentheses in Eq. (2.8). One can give arguments from both the boundary and the bulk

perspectives. On the boundary the argument starts by noticing that the renormalized Θ is

not constructed from the bare quantity in the traditional way, since ZΘ = 1. Instead, first

σ4
0 is renormalized and βλ is computed and then the renormalized operator is constructed via

Θ = −βλµεσ4. This leaves the window to construct an RG flow by Θ = Θ0z
−1/2
Θ . Hitting

both sides with µ∂/∂µ and using the definitions above, gives (µ∂/∂µ + γΘ)〈ΘΘ〉 = 0. In the

bulk, following [12] one considers the late time equation of motion dH
dt = −1

2

(

dφ
dt

)2
in Mpl = 1

units (H = ȧ
a and a = eHt is the scale factor) and the exact form of the 2-point function

〈Θ|k|Θ−|k|〉 ∼
|k|3

H2 and relates the time-dependence of H away from the conformal limits with

an RG flow on the boundary, by the identifications µ = aH and λ = φ. The latter identification

is not sufficient however to reproduce our RG flow because it is not able to see wave function

renormalization. By construction it is sensitive only to ΓO, therefore it must be generalized. A

possible identification for that purpose is (τ is the conformal time with dt = adτ)

λ = φ−
2γσ
βλ

Ht % φ+ ln(H|τ |)
2γσ
βλ , (2.11)

that indeed gives
(

βλ∂/∂λ− 2γσ +O(β2
λ)
)

〈ΘΘ〉 = 0 and which near the fixed point reduces to

the eigenvalue equation we need. These considerations should not be considered of course as a

proof but as plausibility arguments. A rigorous analysis looks substantially more complicated

from both sides [10, 15]. In both cases the main obstruction seems to be the disentanglement of

the role of wave function renormalization from the renormalization process.

The index in Eq. (2.10) is just one of many that can be completely fixed by such arguments.

In principle every critical exponent etc of the Ising model will be mapped to some cosmological

parameter. Moreover, the value of η fixes more than one observables. A few such examples are

given in [1].
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CONCLUSIONS
• We considered a thermal scalar in de Sitter background. Starting from the Bunch-Davies  vacuum, a 

Bogolyubov Transformation placed us somewhere in the interior of  the finite temperature phase diagram. 


• The low temperature limit is considered in such a way that instead of  returning to the BD vacuum, we landed 
on the nearly zero temperature  vacuum, which is connected to an interacting IR CFT, in the 
universality class of  the 3d Ising model. 


• This interacting CFT is rather special, in the sense that the boundary operator that couples to the scalar 
curvature perturbations in the bulk has a classical scaling dimension. The critical exponent  is the order 
parameter of  the breaking of  the scale invariant spectrum of  curvature fluctuations 


•  fixes the parametric freedom in the dS scalar theory, yielding the prediction , up to errors 
associated with its lattice Monte Carlo measurements. 


• Heating up the system  numerically in a controlled way we evaluated additional cosmological 
observables ,  and . We finally note that our predicted values of  ,  and  are well within 
current experimental bounds while  exceeds them 

| in >

|out >

η

η nS,β ≈ 0.964

T = TdS
n(1)

S,β fNL n(2)
S,β nS,β n(1)

S,β fNL

n(2)
S,β
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