How to measure the reactor neutrino flux below 2 MeV

Believe it or not!

- So far reactors neutrinos have only been detected via inverse beta decay with a 1.8 MeV threshold
- 16% of reactor neutrinos arise from neutron capture on ^{238}U and have energy < 1.3 MeV: $^{238}U+n \rightarrow ^{239}U \rightarrow ^{239}Np \rightarrow ^{239}Pu$
- 70% of reactor neutrinos have energy < 1.8 MeV and have not yet been detected

Improve theoretical modeling of neutrino spectrum

- Summation method suffers from Pandemonium effect which leads to an overestimate of beta branching fractions of lower energy states
- ... which leads to an underestimate of the flux below 2 MeV
- Conversion method assumes electron spectral shapes to convert the measured aggregate electron spectrum (from each actinide) to neutrino spectra
- Measuring the low energy flux will help constrain the assumed electron spectral shapes, thereby reducing systematic uncertainties when converting electron spectrum
- May shed light on 5 MeV bump (a 10% excess in 4-6 MeV)

Coherent elastic neutrino-nucleus scattering

$$\frac{d\sigma}{dE_R} = \frac{G_F^2 M_N}{4\pi} q_W^2 \left(1 - \frac{E_R M_N}{2E_\nu^2} \right) F^2(q^2)$$

- Huge cross section but tiny nuclear recoil energy
- No energy threshold

NUCLEUS-1kg

1 kg Ge cryogenic calorimeter located 72 m and 102 m from the two 4.25 GW cores at CHOOZ

Will detect phonons so essentially no quenching

Energy threshold: 5 eV

Energy resolution: 1 eV

Flat background: 100 counts/keV/kg/day

Flat bkg down to threshold is overly optimistic but ...

- Phased multi-target approach of NUCLEUS may help
- $\ ^{\circ}$ NUCLEUS-10g will deploy Al_2O_3 (4g) and $CaWO_4$ (6g) crystal arrays. Physics run to start at the beginning of 2024
- $^{\odot}$ Al_2O_3 has an order of magnitude smaller CEvNS signal than $CaWO_4$

- \bullet Al_2O_3 will effectively measure bkg for the signal in $CaWO_4$
- Bkg shape will be constrained before NUCLEUS-1kg is online

- scenario 1: $t=1~{\rm kg\cdot year},~{\rm bkg}=100~{\rm counts/(keV\cdot kg\cdot day)},~E_{R,{\rm thr}}=5~{\rm eV}$
- scenario 2: $t = 3 \text{ kg} \cdot \text{year}$, $\text{bkg} = 1 \text{ count}/(\text{keV} \cdot \text{kg} \cdot \text{day})$, $E_{R,\text{thr}} = 5 \text{ eV}$
- scenario 3: $t = 300 \text{ kg} \cdot \text{year}$, $\text{bkg} = 1 \text{ count}/(\text{keV} \cdot \text{kg} \cdot \text{day})$, $E_{R,\text{thr}} = 1 \text{ eV}$

Unrealistic, for illustration only

Unfolding

$$\mu_j = R_{ji}\nu_i + h_j + b_j \implies \nu = \mathbf{R}^{-1}(\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{b})$$

Highly oscillatory and takes negative values

Regularized unfolding (imposes smoothness/injects bias)

Introduce regularization parameter eta and regularization fn S

$$\varphi(\nu) = \chi^2(\nu) + \beta S(\nu)$$

$$\chi^{2}(\boldsymbol{\nu}) = \sum_{i=1}^{m} \frac{(\mu_{i}(\boldsymbol{\nu}) - n_{i})^{2}}{n_{i}}, \qquad S(\boldsymbol{\nu}) = \sum_{i=1}^{m-2} (-\nu_{i} + 2\nu_{i+1} - \nu_{i+2})^{2}$$

Unfolded flux $\hat{\nu}$ is obtained by minimizing φ for observed CEvNS spectrum n (Poisson distributed around expected spectrum μ , which includes signal+bkg)

Corresponding CEVNS event spectrum is

$$\hat{\boldsymbol{\mu}}(eta, \boldsymbol{n}) = \boldsymbol{R}\,\hat{oldsymbol{
u}}(eta, \boldsymbol{n}) + \boldsymbol{h} + \boldsymbol{b}$$

which will generally not minimize χ^2

- Generate 3000 observed CEvNS spectra \boldsymbol{n} by assuming a Poisson distribution in each bin with expectation value μ_i
- lacktriangledign Find the unfolded $\hat{
 u}$ for a fixed value of eta
- $^{ ilde{o}}$ Obtain the estimated CEvNS spectrum $\hat{\mu}$
- lacktriangle Calculate χ^2 and the CL with which $\hat{\mu}$ fits n
- $^{\odot}$ Select those $\hat{\mu}$ that are consistent with n within 2σ and retain the corresponding $\hat{\nu}$ to define the 2σ uncertainty in the neutrino flux

Bias

For suitable eta, expect $ar{B}\sim$ number of bins (= 29)

Select the smallest value of β that gives a positive flux

Summary

- Most reactor neutrinos have not been detected
- Measuring the flux below the IBD threshold (1.8 MeV) will help improve models of the reactor neutrino spectrum
- NUCLEUS-1kg can place a meaningful upper bound on the low energy flux
- Pinning down the neutron capture component is out of reach