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Assuming a conformal phase of the early universe, we discuss the
conformal backreaction, by studying the anomaly effective action around flat space and, in
parallel, the anomaly induced action in curved space. Gravity is treated classically.

Anomalies included take the form both of conformal (parity-even) and of chiral (parity-
odd) contributions. We show that both the anomaly induced actions in the

Riegert and the Fradkin-Vilkovisky gauge are inconsistent starting at the level of 4-point
functions. They agree with our CFT analysis only up to 3-point functions.

We show how correlators of the form TTJJ, predicted by the anomaly induced action,
can be corrected in order to provide the correct expressions derived in free field theory
realizations of the same correlators.

Crucial, in these derivations, is the possibility of solving the conformal Ward identities
(CWIs) using CFT methods in momentum space, that we have extended from 3- to 4-point
functions and define a powerful way to patch flat and curved spacetime derivations
e-Print: 2212.12779

In the case of parity odd anomalies of correlators such as TlJ, AVV, AAA and the
gravitational chiral anomaly J5TT, we show how the inclusion of a nonlocal exchange (an
anomaly pole) and the CWIs completely fix these correlation functions.

This shows the crucial role of such nonlocal interactions in the early universe.
2303.10710 [hep-th] and 2307.03038 [hep-th]
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Momentum space methods in CFT allow to describe quite efficiently the
correlators containing insertions of stress energy tensor (T) and/or axial vector
currents, and affected by conformal and chiral anomalies. (TTT, TTJ5, J5JJ,TTTT)

Analysis have been performed up to 4-point functions (4T).

The hierarchy of the conformal Ward identities (CWIs) constraining such
correlation functions have been investigated using both free field theory
realizations and, nonperturbatively, using their CWIs

By this approach it has also been shown the inconsistency of anomaly
induced actions in the Riegert and in the Fradkin-Vilkovisky beyond 3-point
functions. Corrections identified for a specific correlator (TTJJ)

We will overview the methodology and the main results in this area, and the central
role played by anomaly poles in determining the structure of these interactions.
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Conformal Backreaction

The conformal backreaction
is the description of how a conformal matter sector
modifies gravity. We can think of it as a
functional expansion of correlation functions

| of n-graviton vertices.

S(g) = Z . (n-point) We don’t quantize gravity, which is purely external
: and classical

2 2 "S(9)
VI VI 09u10 (£1)0Gu,0, (22) - - 89p 0, (T0) This functional expansion,
Is the expansion of a classical
effective action.
The “easiest” thing to do
Is to compute the first few
Contributions around flat space.
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We can think of the effective action as generated by integrating out a conformal matter sector

in a functional integral

Zp(g) = N/DXG_SO(Q’X), The bare partition function
1 d
So(g,9) = 9 / d*z+/— [ PV oVLd— xR ] Simplest case: a conformal scalar sector
2 85,
T = —
scalar \/gég,u.u
= VAXV'Xx — % 9" P Vax Vex + x [g"”D — VFVY + %9’“’ R—R™| X

X(d) — 411 EZ:?; ,  Conformally coupled scalar

e=%80) = Zp(g) & Sp(g) =

It is better to define the effective action as the log of the

—log Zg(g). bare partition function
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Dimensional counting can be performed in two ways: either by considering the canonical dimensions of the
fields

T, — AT, 9uv — Guv ¢ — A(l_d/Q)qb.

or by the response under a Weyl transformation
d 1—d/2
G — NG, z, =T, JI—=AGg ¢ ATV,

Notice that the coordinates are inhert, while we keep the same canonical dimensions
for the fields.

Anomalous dimensions start developing as we switch on a marginal interaction

For instance, a A\g¢*/4! potential -

d—2 A2
A — 0 3
¢ 2 +dmmﬂ+OQ0
S 3
B(o) = ——2€A04‘3(4W)2-+(9(A0%

The simplest case is to leave aside such corrections, and consider only a free field theory interacting with
External gravity. This is what we would call a “free field theory” realization.



We don’t need gravity in order to define the correlation functions of n-point functions, but it is convenient to do so.

In ordinary CFT’s there is no running, the structure is rigid and the scaling dimensions are fixed. In this case the
correlaton functions are fixed, modulo few general constants that are typical of a specific CFT

On he other hand, we have theories like QCD where, for instance around the light cone,
The field develop anomalous dimensions (DIS, parton distributions, factorization and perturbative evolution)

At a conformal fixed point the structure of the correlators is constrained. Away from these points,
We need a case by case computation to describe these theories.

There are theories that sit “in between”  Theories with a “generalized conformal structure”

(Oa(@)0a(0)) = 2

Two-point function of the energy-momentum tensor and
generalised conformal structure Delle Rose, Skenderis,CC



In general, in a gravitational theory, we require diffeomorphism invariance of the action,
i.e. conservation of the stress energy tensor.

However, we could consider a class of metrics that allow conformal Killing vectors.
Having CKV is a special property of the metric and we restrict ourselves to such class of metrics.

We consider a conformal sector, in our case a free field theory realization of a CFT made of
- conformally coupled scalars,

- a fermion sector

- a spin 1 sector at d=4

Coupled to an external metric that supports CKVs.
We keep the multiplicities of such fields arbitrary. So these combined realizations have 3 independent constants

If the metric is selected in such a way to allow conformal Killing vectors, then the diffeomorphisms
zt — 2" = z* + €K (z) induce a simple rescaling of the infinitesimal distance, under a local

rescaling with o(x)

(d8/)2 _ 620(:1:) (d8)2.

Under these special diffeomorphisms, the metric undergoes only a local dilatation



This require that o(x) and the same vectors are related

V,Le,(,K) + V,/ELK) = 200, o= iv el K,

K)\ — (K
(Jg( )> = 61(/ )<TW> We define the conformal currents using such CKV and perform

a quantum average

that differentiated give

V) = L (9, 4 V,60) (1) 4 OV, (7).
VIV Ty = 25y 4 v (0 sy
HAZc 5o ' ¢ v 60,

The conservation of the conformal currents

VIVu(JEE)) =0, . . o
plus the ordinary diffeomorphism invariance,
requires that

g )
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Z(Sa) = Va(TL)

where A is the anomaly functional. In general we need to consider the anomalous terms

glw<T“V> = by E4+bs C'uypo-Cp,ypo--i_bg V2R+b4 F¥Eu+h €“VpaRa,3uVRagg+f2 e FFos.

Parity even + Parity odd contributions.

We bring the example of a specific correlation function, TTJ5, discussed in

The Gravitational Chiral Anomaly from Parity-Violating CFT’s Stefano Lionetti, M. Maglio, CC
in Momentum Space

We illustrate how the Conformal Ward Identities (CWI) of Conformal Field theories (CFT’s)
in momentum space, and the anomaly, completely determine the structure of the (T'TJs)



(THYL (1) TH2V2 (z9) JE° (3)) Gravitational chiral anomaly
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09p1v1 (21)0Gps0, (T2)0 Ay (23) j =0
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Delbourgo-Salam

Aps
RAARAR, )

V. (JEY = a1 P F Fpy + a2 &TWPGRaﬂM,,Raﬂpa, We have a chiral current coupled to gravity

This current, in a field theory realization can be bilinear in the fermions (the usual axial vector current,
but could also be a Chern-Simons current

J2s = s

A A



exp {i S[g]} = / (d®] exp {i So[®, g]}
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22 5z

(Tt (1) T (22) J5° (23)) =

B \/_g(xl)\/_g(x2)\/_g(x3) 59#11/1 (xl)‘sguzl/z (332)5Ap3 (-’133) g=79; '
A =0;
e Diffeomorhism invariance l

We start from diffeomorhism invariance.
Under a diffeomorphism the fields transform with a Lie derivative

0gur = Vu&y + Vi,

0A,=¢"V, A, +V, E"A,.

obtaining
VE(T )
) v
09 0A,

_ / 4/ =gE" [~VH (Ty () + Vi Ay (JE@)) — YV, (Ay (JE(2)))]

— Fiop (JE) + AV, {3} =0,



e (Gauge invariance 69w =0, 0A, = 0,0

(87 Vpo Vpo (8 H
Vaolds) = a1 " F Fpe + a2e"?° Ropuy R 5pa, Assume that there is an anomaly

We now apply two functional derivatives with respect to the metric to such equation, and perform

the limit g, — 0, and A, — 0 as above. After going to the momentum space, we derive the
relation

H2 1
: Py'p
Pows (D74 QT 02) 4 95) = i () { [ 27277 (9212 = L) - 0| 4 s 0 ) |
1° /P2
e Weyl invariance
The action of a Weyl transformation with a dilaton o(x) on the fields, acting as a parameter is 59/,“/ — QQWU )

§A, =



§<Sd> - \/§<Tﬁ> Weyl invariance

g'ul,<T'uy> = by E4+bo C“Vpacﬂ,/pa-l—bg V2R+b4 F”VF#,/-i-fl €“VpaRa13w,Ra€w+f2 6“Vp0Fw,Fpg.

After applying the functional derivatives %% and performing the limit g,, — d,, and A, — 0,

the anomalous terms do not survive. Going to momentum space, we obtain the constraint

Gusvs (T (1) TH22 (p2) JE (p3)) = 0, i=1,2

For Weyl invariance, we need to go in a local frame, introduce the conforma CKVs JE = K, TH,
And the conformal currents. For the dilatations:

KI(LD)(:E)ELE,“ a.K(D):d, 0,K, + 0, K zgnw/(a._f(),

while for the special conformal transformation they are given by

K(S)lf(a:) = 22"z, — :1;25"“W o - K(S)H(m) = (2d) =", k=1,...,d.



This exercise allows us to derive the special and the dilatation CWIs
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The correlato is reconstructed by extending a methodology developed by Bzowski, McFadden and Skenderis to
The parity odd sector

Decomposition of the correlator Longitudinal terms due to the anomaly
+ transverse terms
. o o BiVi (. — TTHiYi (0. T%Bi (.
TH¥ (pi) = 4% (py) + thar* (o), H i) = Moy ) T2 (03),
ng (pZ) — .75z(p2) + ]g;oc(pz)7 ]gz (pz) — 71'(/3: (pz) ,]5az (pz),
Appearance of an anomaly pole in J5 wh = ob — o
Vi _ Vi iBi (. , 1 y y 1 y
tlluocy (pi) = Egi'éi (p) T¢ B (pi), Hgﬂ =35 (wgwﬁ + ﬂ'gﬂ'a) — = 17r“ TaBs
i |
Yo ) — M Jai . pwivi _ Pip; (v i) DPiay; i Vs pé%p;;/i i (pz)
J5 loc(Pi) p2 B (i), Yo = 2 [25% P T d—) (5 +(d—-2) P2 )] + W‘Sazﬂi-

(THvs e JU0) = (pavgpavagio) o (TIATHS 0 ) = (gravigrarejio) 4 (pavighavaji ) reconstruction
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Longitudinal terms coming from the anomaly deetermined

By the anomaly

M3
<t#11/1tu21/2jg?oc> — 4za2p
3

(pl p2) {[ viv2pip2 (9#1#2

162a2(p1 - p2 162a9
D3 D3

The pole, from the perturbative perspective, is fue to the exchange of a
Pseudoscalar mode ( a collinear fermion antifermion pair)

M2, 1

_1;1 p; >+(u1 <—>V1)] +(M2<—>V2)}-
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Transverse terms built only by the symmetries of the correlator
(t*17 (p1) 4272 (pa) §E° (p3)) = TIEX%. (p1) TIL2Z2 (p2) mhe (ps) X @1Prozfzes

(2 ()1 (o) 12 () = T3, () I225 (o) o) |
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+ A25P1a1a2a355152 _ A2(p1 PN p2)8p2a1a2a35ﬂ1,32

+A35P1p2a1anglp§2p61¥3 +A4€P1p2a1a2551ﬂ2p6113]

We derive a set of differential equations that can be solved in terms of 1 constant: the coefficient of the
gravitational anomaly



Equations are split into primary and secondary CWis

2 0
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2p3 0 (p§+p§) 3 ( 2p3 P%—p%—p?) 9
=———A “ -2 —A+|-=+ —A
p? Ops (P12 p2) i ) Pop, ™ 3 7 Prop
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Parametric integrals of Bessel functions (3K) (generalized hypergeometric functions)

3
I8, 8285) (P1,D2,P3) = /dma prjKﬂj (pjz)
j=1

_l(z) — L(x)

K,(z) 2 sm(m) v I(z) = (%)”;) T'(k + 1)I‘(11/-|- 1+k) (g)%

o0
o (1 AN

Ay = —4iayp; I5g2.1,1)
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(T THev2 JEe) = (E 22 5g2) 4 (1 8927 g, )

The anomalous longitudinal part is given by

M3 M2, 1
(trarighavghs S = 4ia2];i2 (p1 - p2) { [5”1”21’11"2 (g’““2 ~hP ) + (p1 1/1)] + (p2 1/2)}
3 ' 2o

(15V)

while the transverse-traceless part is
(5 (00) 7 (92) 5 () = U235, o) 225 (o) 22 0) |
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QP% p% p% 2 2 2
A = A1 + Axlo (—) + Aislo (—) + A14 Co(p7,032,D03) ¢
1= o420 )1 g p% g p% (p1, p2,p3)

9v3 Pi Pi 2.2 2
Az = A82\3 A1 + Aga log (Z,_%) + Agslog (p_g) + Ag4 Co(p1,p32,P3) ¢

A3:O7

As=0

In perfect
agreement with
The perturbative
analysis



Whats we learn: The entire gravitational anomaly interaction can be derived just from 2 requirements
1. The inclusion of an anomaly pole to solve the longitudinals ector

2. The conformal Ward identities

We can immediately write down the gravitational effective action that accounts for this interaction

o s M9 A1y T2 T )
g\,' LT Ay , (1 £z (! .‘.,‘ ( _.",V ) —| i a",‘ | 1 | 1",' ' T

Notice that in our derivation we have not identified a specific current, but just required that the current
has an anomaly of a certain form

What kind of currents are possible ?



Similar analysis (non perturbative like this)
Have been presented for the AVV/AAA correlator and the T5JJ
correlator, with similar results.

CFT Correlators and CP-Violating Trace Anomalies e-Print: EPJ-C, in press 2307.03038 [hep-th]

Parity-odd 3-point functions from CFT in momentum space and the chiral anomaly

Eur.Phys.J.C 83 (2023) 6, 502 e-Print: 2303.10710 [hep-th] Lionetti, Maglio, C C

Srg / d*zd*yR"M (z) O~ Y (, y) FaFaly) + . .. T)J parity even

SJ5JJ=/d4:1:d4y5‘-BD_I(x,y)FAIE’A(y)-I—... AVV
SJJT—f2/d4 z'\/g(z') /d4x\/g )R(z)0, : FF( )
5TTT—f1/d4 "V g( /d433\/9 )R(x)O, . R R(z").

TJJ parity odd

TTT parity odd
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The Maxwell equations in the absence of charges and currents satisfy the duality symmetry (£ — B DISCRETE DUALITY of
and B — —F). The symmetry can be viewed as a special case of a continuous symmetry EIeCtrOdynam|CS

the discrete case, then the action flips sign since (F2 — —F?).

In general, the infinitesimal variation of the action takes the form Jt=F"A, — FA,

5.5 8 / 2o ( v g ) whose conserved charge is gauge invariant
B — — o v -
Q5=/d3x(A-V><A—A-V><A>
The current corresponding to the infinitesimal symmetry
SFH = B

where 6 is an infinitesimal SO(2) rotation. Its finite form

E = —V x A, that coincides with the optical helicity
E\ [ cosB sinB\ (E
a B

Q5=/d3x(B.A—E-Z1)

B —sinfB cosp

It is affected by the same gravitational chiral anomaly H tluid = d3x7-V X T

Linking number of the velocity field
Pasti, Sorokin, Tonin

(Galaverni and Gionti) (see Del Rio, Navarro-Salas)



Chiral anomaly (See Frohlich and Boyarsky) Anomalous magnetohydrodynamic

d - 20 1
(nr nR) 2a BrE. B — o dH | 1
dt TV m dt H(t):V/d%A.B,
d 2 Magnetic helicity
—H:——/ &’z E-B.
dit V v

(from Kharzeev)

Ap = pur, — IR, BA@@#E%“
LA

nL,I“\?: — % fdgx ¢T(1 L 75)¢ 1 | 2 | 3H




AT A
. : L : : : J5f = Y57 Y
The conformal backreaction in the presence of gravity, for chiral interactions, is entirely
determined by an anomaly pole+ conformal symmetry.

But, the same is true for a Chern Simons current . Our analysis does not depend
Jog = eMPALD,A
on the current CS pOvp,

Gravitational anomalies induced by Chern-Simons currents. Do they have anomaly poles?

Yes, they do. This result is implicit already in an old analysis by Dolgov. Kriplovich, Vainshstein, Zakharov 80’s,
but somehow not noticed in the literature.

In our recent paper we show that the perturbative analysis of Dolgov et al is associated also with a sum rule
associated to such excitations.

00 p
,u _ 2\ 4 KA
/ ds Aavy(s,m) = 2dapy  Sumrie OFh) = Fl L EaF
A2 (Lionetti, Maglio, CC) g 3
00 2 017%1lgg) = f2(4%) =5 Rerps ™7
ds AJfTT(s, m) = 3 dj,TT gu
2 2 DREAPC
4m 9 (017Esl9g) = f3(a°) 5 Rurpo R,
dsAj,qrr(8,m) = —dj T : 2 2
ng osTT(8,m) 45 eSSt lim A(q*,m) x 6(q¢*)
m—0
Aavy(?,m) =Imfi(¢?) = 22V (1-v?)log
q 1—-v .
i e In Dolgov et al photons and gravitons are
Ajrr(a®,m) =Imfa(q®) = (;2 (1-v*)*log 7— on-shell
AJ TT q2, m) = Imf3 q2 = Mzﬂ 1— ’U2 2 10g 1+v with v = /1 —4m?2/¢? and dayv, dj,rr and dj, 1 being the corresponding anomaly coeffi-
CS 2 1 f

q —-v cients. Notice the different forms of A ;.77 and A 77 (¢%,m) away from the conformal limit.

~



In the conformal limit we exchange the pole. Away from the conformal limit we have a sum rule fixed by the
anomaly 1.0
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Implications for the cosmology of the very early universe.

| will consider only the case of the Chern Simons current for the J5TT (orrelator
chiral gravitational anomaly)
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4d Einstein Gauss-Bonnet Gravity without a Dilaton ! PoS Corfu 2022

(@) Claudio Coriand, (¥®) Mario Creti, (¥ Stefano Lionetti, (YMatteo Maria Maglio,
(@ Riccardo Tommasi

2 1 2
Ay=V, (V"V” + 2RM — gRg“”) V, =0°+2R"V,V, + g(V“R)V“ —ghU. Paneitz operator

, /—g Agxo = + /—g_] A4X0, Weyl invariant if acting on conformal scalars (ie fields of vanishing
scaling dimensions)

TTT in agreement with the free field theory realization and the general CFT derivation.
The general solution depends in 3 constants and can be matched by free feld theory (3 sectors)
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Figure 3 The Weyl-va contributions from S4 to the renormalized vertex for the 4T with the corresponding bilinear
mixings in d = 4
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But we realized that there is a new sector, Weyl invariant, appearing in the computaitons and necessary

in order to have consistent coservation Wis.
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Classification of the tensor structure is quite involved
Because of Lovelock identities
(tensor degeneracies for d=4)

arez 5B ﬂ2p

Classification of the orbits

Sector | # of tensor structures | # of orbits
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Some contributons

Well define predicitons which are not reproduced
by the Riegert action
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MISSING TERMS IN THE NONLOCAL ANOMALY-INDUCED ACTION
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Four-point functions of gravitons and conserved currents of CFT
in momentum space: testing the nonlocal action with the TTJJ
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Conclusions

The breaking of conformal symmetry is associated to the the propagation of massless effective states
in the effective action.

For chiral anomalies, the interactions can be reconstructed by a combination of the
Anomaly pole + CWIs. We have shown it in the case of the AVV, for the J5TT (work in preparation)

For parity breaking trace/conformal anomalies, we have also shown that
the reconstruction can also be based entirely on the selection of an anomaly pole to solve the CWis.

We have used the TTJJ correlator to show that the anomaly induced actions either in the Riegert form or in the
Fradkin-Vilkovisky form miss crucial Weyl invariant terms in order to be consistent with the CWiIs

and identified such terms

Applicatons

Condensed Matter theory: application of this class of nonlocal actions in the context of topological
Materials (via Luttinger formula)



