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Theoretical introduction

Supergravity (SUGRA) is a quantum field theory in which global supersymmetry has been promoted to a /local

symmetry. Therefore, its gauging describes gravitation.

No-scale supergravity is a particular class of SUGRA which is characterized by the absence of any external

scales, hence its name [1] every relevant energy scale is a function of M, only. Its significant perks include:
It has been explicitly demonstrated that it naturally arises as the low energy limit of superstring theory [2]

It cures the cosmological constant problem by naturally providing vanishing cosmological constant at the tree

level 3]
Through its framework it can produce Starobinski-like inflation, compatible with the Planck data [4]

It can provide an efficient mechanism for reheating, the generation of neutrino masses and leptogenesis [5]



Theoretical introduction

 The most general (N=1) SUGRA is characterized by two functions: The Kahler potential K,
which is a Hermitian function of the matter scalar field and quantifies its geometry, and a
holomorphic function of the fields called superpotential W. V is the scalar potential :
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 The simplest globally supersymmetric model is the Wess-Zumino one, which is characterized

. TR A
by one single chiral superfield ¥ and the following superpotential: W %%’33 — 5':,-5-‘* )

with a mass term /4 and a trilinear coupling term A



No-scale Wess-Zumino (NSWZ) SUGRA

In order to facilitate early universe inflationary scenarios, we shall embed this model in the
context of SU(2,1)/SU(2) x U(1) no-scale supergravity by matching the £ field to
the modulus field and the = field to the inflaton. The corresponding Kahler potential for this

construction is

K = —3In (J_' + 1 — L"ﬁjﬁ)

Remarkably, by setting 7'=1" = ; , Imp = 0 and making a transformation of ¢ in order to
obtain a canonical kinetic term, one obtains Starob|nsk| inflation for A/’,u = 1/“'5 and /i = py/c/
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NSWZ SUGRA inflection point inflation

* A common mechanism to produce PBHs is via the use of inflationary potentials with inflection
points aka points where V()i aection) = V' Uinfiection) = 0 Which induce the so-called ultra slow
roll inflation (USR)

* To realize such set-ups, one can introduce the following non-perturbative deformations to
the Kahler potential [7]:
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* At the end, one obtains the following potential
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PBHS

Primordial Black Holes (PBHs) form in the early universe out of the collapse of enhanced
energy density perturbations upon horizon reentry of the typical size of the collapsing
overdensity region, mppy = YMy o H' where y ~ O(1) (a nice review [8])

/\

BBN €—— =15 - Mppy = 10°M, =——> SMBHs, LSS?

QCD Phase Transition = 10778 oot Mppy = M —p | |GO/VIRGO Progenitors

—, PBHsasDM?
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t =107 mpgy = 10°2 —— 4 PBHSs evaporate at BBN

End of Inflation ~ 4— = 10"% mpgy = 10°g Credit: T. Papanikolaou




Perks of ultra-light PBHs

We will consider ultra-light PBHs for whichmpgy < 1072 Some of their perks include:

v'They can induce an early matter dominated era (eMD) since Qppy = Ppri/Pror ala* xa
and evaporate before BBN. Their evaporation drives the reheating process (e.g. [9])

v'This eMD era enhances the magnitude of the curvature perturbation and consequently
gives rise to scalar induced gravitational waves (SIGWs) with very interesting
phenomenology. For instance, one can constrain the underlying gravity theory (e.g. [10])

v'Their Hawking evaporation can alleviate the Hubble tension by injecting to the
primordial plasma dark radiation degrees of freedom which can increase N_; (e.g. [11])



PBHs in no-scale SUGRA

Our modified potential gives rise to the following power spectrum given our choice of
fiducial parameters:
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eMD driven by PBHs

* Since Qppy = popy/Pi X ala™ xa an eMD era driven by them arises

2 — 0.95
. . . - Ty o dpp .
* To find their mass function #(M) = ;=5 we use peak theory and obtain: @, — 0.5 /

10-# \

11V

1o E i

1071° Taking into account their !

Hawking evaporation At

107124 o 1/3 ] i

M) = M {1 - gt b |
— ] I
= 1014 '
S . :
1

1 N

10-16 4 i

10 2—: : :

i 11

1018 K

| — Qpen i i

' 0, il

]0—2{! T T T T 10 5 . ; ; | . 11

108 108 100 102 0 10 20 a0 40 50
M N — Niug

Note: We treat mass function as monochromatic ——— eMD to IRD sudden



Essentials of the Scalar Induced GWs (SIGWSs)

* Working in the Newtonian gauge, the 2" order tensor perturbations are described as

follows
d?"“d';r”}

* Their equation of motion in fourier spaceis  h." + 2Hh," + k*hj, = 45,
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* At the end, the spectral abundance of GWs can be given by
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The kernel I(u,v,x)is complicated function containing the info for eMD — IRD eras (see
[13])



The relevant GW sources and their spectrum

A) Inflationary adiabatic perturbations —— GWSs with two peaks

i) GWs are produced by the enhancement of Pr (k) (peaked at 10¥Mpc~') at PBHs
scales peaked at the kHz range and detectable by electromagnetic GW detectors [12]
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Inflationary adiabatic perturbations

ii) GWs are induced by resonantly amplified large-scale inflationary curvature
perturbations of order 10* due to the intervention of an early MD era driven by PBHs,
during which the gravitational potential is constant and 6~ a . This GW signal peaks at the
nHz frequency range and is in strong agreement with NANOGrav/PTA GW data.
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SIGWSs from Poisson fluctuations of a gas of PBHs

 Random distribution of PBHs + same mass —— they follow Poisson statistics :
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* Since pppy is inhomogeneous and ps,; is homogenous ——— &gy is an isocurvature
perturbation

* gy generated in the eRD era will be converted in an eMD era to a curvature
perturbation {ppy associated with the scalar potential [14]
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SIGWSs from Poisson fluctuations of a gas of PBHs

Therefore, we get the following signal by the population of the PBHs themselves
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The complete three-peaked signal
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A simultaneous detection of all three peaks could constitute a clear indication in favour of no-scale SUGRA




Conclusions

* We worked within NSWZ, a framework which gives rise to Starobinski inflation compatible
with the Planck data, namely n, = 0.96 and r < 0.004.

* Through the deformed Kahler potential and our choice of fiducial parameters, we obtain
ultra-light PBHs which give rise to an eMD and evaporate before BBN.

* We derived the GWs power spectrum produced by i) adiabatic inflationary curvature
perturbations and ii) isocurvature perturbations due to fluctuations of the number density
of PBHs . Both processes are amplified by the eMD driven by the PBHs.

* The produced GW signal has a characteristic three-peak form: At nHz, Hz and kHz, in strong
agreement with the NANOgrav/PTA data and in principle detectable by other future
detectors. The simultaneous detection of all three peaks can constitute a clear indication of
no-scale SUGRA .
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Appendix: The full picture (SU(5) flipped)
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