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Introduction
The QCD 6 puzzle

Data show:
e large CP violation in quark mixing dckm ~ 1;

e 1o neutron electric dipole implying 6 = 6qop + arg det M, <107
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but both originate from quark Yukawa couplings.
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Solutions

e Axion. But: not observed so far; quality problem.
e Special models (Nelson-Barr, 0...). But: ad hoc?

.

Modular invariance

Allows a theory of CP and flavour that provides a neat solution.

.




The string motivation

Modular invariance can be done as math independently from its string motivation.

Super-strings in 446 dimensions are real. Chiral families of fermions can arise
from compactifications on spaces with a complex structure. So CP can be a
geometric symmetry spontaneously broken by the compactification.

Literature focused on N = 1 supersymmetry, that needs a Ricci-flat compactifica-
tion with complex structure. Simplest geometry: compactification on orbi-folded
6d flat tori T3. We only need a 2d flat torus T', obtained writing a 2d space as
z = r+1iy and imposing a PacMan lattice identification z = z4+w1 and z = z4wa:
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T = wa /w1 tells the geometry: Im 7 is the relative radius, Re 7 is the twisting.




Modular invariance
Modular invariance is a sub-group of global reparametrizations:
w2 — awsz + bwi, w1 — cws + dwi
gives an equivalent lattice if a, b, ¢, d are integers with ad — bc = 1.
So the low-energy EFT contains a modulus superfield 7 invariant under SL(2, Z)
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Unusual: appears integrating out infinite states, because of how strings experience
the geometry (e.g. R = 1/R).
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Unusual: appears integrating out infinite states, because of how strings experience
the geometry (e.g. R = 1/R). Matter fields @ transform with weight ke
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such that that the minimal global SUSY action with h < Mpy
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is modular invariant if Yukawa couplings transform with definite weights
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Modular invariance, flavour and CP

Modular invariance contains symmetries used in flavour models (S3, A4...) sponta-
neously broken in a specific way by 7. It gave predictive flavour models assuming
that Yukawas are modular functions with no singularity i.e. ‘forms’. Few exist:

Weight £ | 0 1,2,3 4 6 8 10 12 14

Forms 1 - E4 E(, ES = EZ E10 = E4E6 EZI’, Eg E14 = EZE@

where the Eisenstein series transform nicely thanks to lattice summation
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Modular invariance, flavour and CP

Modular invariance contains symmetries used in flavour models (S3, A4...) sponta-
neously broken in a specific way by 7. It gave predictive flavour models assuming
that Yukawas are modular functions with no singularity i.e. ‘forms’. Few exist:

Weight £ [ 0 1,2,3 4 6 8 10 12 14

Forms 1 — Eys FEs FEs=E; Fio=FEsEs FEji E; Fii=F;Es

where the Eisenstein series transform nicely thanks to lattice summation
1 1
Be(T) = 57n >,
20(k) (0,0 (M H1T)
Key: E} # E? have different phases. This is CP, that acts as 7 — —71, & — &,
1) We assume that Re 7 is the source of CP violation and that

Yi(r) = cl; Fya (1) where c is real and F}, is a modular form with weight k.
ij

2) We assume that the Higgs don’t break modular invariance, kg, + km, = 0.

Motivated but not new, so far. End of the review. Now the talk begins.



Solving the 0qgcp puzzle

We assume that modular invariance has no QCD anomaly i.e.

3
A= "(2kq, + kug, + kag,) =0

i=1

As simple as that. End of the talk?



Solving the 0qgcp puzzle

We assume that modular invariance has no QCD anomaly i.e.

3
A=Y "(2kq; + kup, + kap, ) =0.

i=1
e det M, is a modular form with weight A = 0, which is a real constant so

argdet M, My =0 Oqcp = 0.

dckMm o Im det[YJYu, YJYd] has no special modular properties and E # E2

introduces physical CP violation, dckm ~ 1.

Quark kinetic matrices Z4 can be made canonical via a quark linear
transformation that affects ¢ masses and mixing but not #. Minimal Kéahler:

Yz’?’ lcan = ng (2Im T)kgj /2Fk;'1j (7).

e Supersymmetry must be broken by modular-invariant dynamics such that
the gluino mass M3 is real. SUSY not needed at the weak scale.



The Minimal MSSM Model

Simplest model: modular weights kg = kuy = ka, = (—6,0,+6) so det Yy is real:

qri qr2 qL3
gr1 [ O 0 cly
Yglcan = qr2 0 c3a 023(21m7') Ee(7)

qR3 Cgl c§2(21m T)gEG(T) (2Im 7') [033E4( )+c 33E6( )]
A numerical or approximate diagonalisation

Y3 = Y33, Y2 = Y22, m:—w, 9232&, 9132&, 912NM

Y33 Y33 Y33 T y22ys3

shows that all quark masses and mixings can be reproduced with comparable ¢

0 0 1.56 0 0 1.55
ci~107% 0 —1.86  0.87 =107 0 259 4.59
129 414  3.51,1.40 0.378 0.710 0.734,1.76

for tan 8 = 10 and 7 = 1/8 + 4. No predictions.



The Minimal MSSM Model

Simplest model: modular weights kg = kuy = ka, = (—6,0,+6) so det Yy is real:

qri qr2 qL3
gr1 [ O 0 cly
Yglcan = qr2 0 c3a 023(21m7') Ee(7)

qr3 \ ¢ c§2(21m7)3E6(7') (2Im7‘) [033E4( )+033E6( )]

A numerical or approximate diagonalisation

- )

Y13Y31 Y32 Y31 Y31Y23
XY=, 023 ~ y 013 ~ 012 ~ =
Y33 Y33 Y33 Y2233

Ys = Y33, Y2 =Y22, Y1

shows that all quark masses and mixings can be reproduced with comparable ¢

0 0 1.56 0 0 1.55
ci~107% 0 —1.86  0.87 =107 0 259 4.59
129 414  3.51,1.40 0.378 0.710 0.734,1.76

for tan 8 = 10 and 7 = 1/8 + i. No predictions. Leptons with kr = ke, = ko:

0 0 1.29 . 0 0 3.4
;=107 o0 5.95 0.35 = | 0 71 1.2 )
—2.56 1.47 1.01,1.32 10GeVi\sy 12 019,095



MSSM models

Less minimal modular weights such as (—6,£2,6) give asymmetric matrices.

Yukawa matrices

Modular weights

Alternative bigger weights

Yu,a (ur,dr)1,2,3 ur123 dri23 | (up,do)i2s  uri2s  dri2s
0 0 1 —6 —6 —6 —4 -8 -8
0 1 Fs 0 0 0 2 -2 -2
1 Es E}+E2 6 6 6 8 4 4
0 0 1 —6 —6 —6 —4 -8 -8
0 1 E3? -2 2 2 —4 4 4
1 E, E}+E} 6 6 6 8 4 4
0 0 1 -8 -8 -8
0 1 E} 0 0 0
1 E} E.«E}+E3) 8 8 8
0 0 1 -8 -8 -8
0 1 E4Fs -2 2 2
1 Es E4E3+E3) 8 8 8
0 0 1 -8 -8 -8
0 1 Ei + E? —4 4 4
1 Es E4E}+E3) 8 8 8




Deconstruction to U(1)px?

Quark hierarchies are reproduced somehow like in U(1)rn Froggatt-Nielsen.

e The hierarchy comes from the modular ‘6’ e.g. (2Im7)® = 64 for 7 =i 4 ---.

Can U(1)rn also give § < dcxm? Weights become charges, one scalar 1 gives
powers Fi(r) = 0" instead of modular forms.

If positive powers of n* are avoided by SUSY, one gets § = 0 but dcxm = 0.
FN needs two scalars 1,7’ with different charges and CP phases.

e Modular automatically provides Ej # EZ.

Negative powers of 1" would screw up, model building of heavy states needed.
e Modular forms forbid E}/EZ.

Conclusion: maybe not impossible, not nice. Back to modular forms



Non-minimal models with heavy quarks

Not needed. But let’s play the same game adding optional extra vector-like quarks,
with modular weights such that the full theory is non-anomalous

det M, is real

A=0 = 0 = argdet My + qcp = 0 as { fqcp = 0.

A possible choice is +6, £2,0. Exercise: integrate out the heavy quarks. Inter-
esting because modular invariance seems to become anomalous in the low-energy
EFT (e.g. 0,2,6). The anomaly cancels with the gauge kinetic function.

¢ Yukawas become modular functions with poles at the values of 7 where the
heavy quarks get massless; this screws predictivity;

e det ]V[};ghf’ is complex, because of functions and of modular weight Ajignt # 0;
e modular invariance has a QCD anomaly Ajighe # 0 generating Ggg;cl']g #0;
e the gauge kinetic-function is complex and 6 = arg det Z\r"f},ight + 938’1") =0.

This optional complication is needed in supergravity and superstrings...



Supergravity
The worst § ~ h2/M1§1 would be acceptable, as h 107°Mp, is allowed.
But strings etc motivate h = nMp;. Supergravity gives new complicated effects:

e the Kéahler potential K and the super-potential W unify in
G = K/Mg, + In|[W/M|?;
e a modular transformation of 7 implies a Kahler transformation:

W acquires modular weight kw = h%/ M3, > 0;

e a Kéhler transformation implies an extra phase rotation of fermions (quarks
and the gluino), so the modular anomaly becomes

3
A= Aquark + Agluino = Z (2sz + kuRi + dei, - QkW) + 3kw.

i=1

e A =0 again implies § oc arg M3 det M, = 0.



Supergravity
The worst § ~ hQ/Mlgl would be acceptable, as h 107°Mp, is allowed.
But strings etc motivate h = nMp;. Supergravity gives new complicated effects:

e the Kéahler potential K and the super-potential W unify in
G = K/Mg, + In|[W/M|?;

e a modular transformation of 7 implies a Kéhler transformation:
W acquires modular weight kw = h%/ M3, > 0;

e a Kéhler transformation implies an extra phase rotation of fermions (quarks
and the gluino), so the modular anomaly becomes

3
A= Aquark + Agluino = Z (2sz + kuRi + dei - ZkW) + 3kw.

i=1
e A =0 again implies § oc arg M3 det M, = 0. But...

the gluino gets involved, does not mix with quarks, has kw > 0. Some quark

remains massless within the MSSM. Non-minimal models are needed.

E.g. an extra \’ € 8 of SU(3) with modular charge opposite to the gluino resurrects
the previously discussed models. Integrating X out gives EFT with anomalies and
modular functions, that solve § = 0 as discussed in the previous slide.



Superstrings
This suggests more general sugra models: assume
1. Full theory with non-anomalous modular invariance, A = 0;

2. Integrating out heavy states only gives poles at 7 = ic0.
3
3. No modular anomaly from quarks, 2(216@- + kug, + kag, —2kw) = 0.
i=1
The resulting effective sugra field theory:
Allows negative powers of Dedekind 7(7) = [(E3(7) — E2(7))/12%]'/?* only.
1/2

Extra phases e.g. n — e (er + d)*/“n mess math without affecting physics.
Modular anomaly cancelled by gauge kinetic function, f 3 3kw Inn/(47?).

e 0 = Oqcp + arg M3 det M, = 0 as both depend on 7.

This remembers you something stringy? Maybe the proposed understanding of
the qcp puzzle could be realized in toroidal string compactifications:

1.v" Modular invariances of superstrings are non-anomalous; anomalies appears
in the effective QFT of massless states.

2.v" Integrating out oco towers of states with mass oc n + m7 gives Dedekind 7
with de-compactification poles.



Superstrings
This suggests more general sugra models: assume
1. Full theory with non-anomalous modular invariance, A = 0;

2. Integrating out heavy states only gives poles at 7 = ic0.
3
3. No modular anomaly from quarks, 2(216@- + kug, + kag, —2kw) = 0.
i=1
The resulting effective sugra field theory:
Allows negative powers of Dedekind 7(7) = [(E3(7) — E2(7))/12%]'/?* only.
1/2

Extra phases e.g. n — e (er + d)*/“n mess math without affecting physics.
Modular anomaly cancelled by gauge kinetic function, f 3 3kw Inn/(47?).

e 0 = Oqcp + arg M3 det M, = 0 as both depend on 7.

This remembers you something stringy? Maybe the proposed understanding of
the qcp puzzle could be realized in toroidal string compactifications:

1.v" Modular invariances of superstrings are non-anomalous; anomalies appears
in the effective QFT of massless states.

2.v" Integrating out oco towers of states with mass oc n + m7 gives Dedekind 7
with de-compactification poles.

3+ Anomaly-free EFT? We don’t know if strings realise the MSSM... (7)?



Deviations from 6 = 0

Non-renormalizable operators controlled by SL(2,Z).

Extra scalars must get CP-conserving vev.

Extra moduli must get CP-conserving vev or have good modular charges.
SM gives  ~ 107'® at 4 loops.

SUSY breaking corrects M, at 1 loop unsuppressed by v/msusy:

s O3
69N47T Z

q=u,d

Im Tr [(Yq)_lngAqm%]

5
msysy

A problem if squarks violate flavour/CP differently from quarks.
Avoided assuming gauge or anomaly mediation below the 7 modulus mass:

msusy < ASUSY < Aﬂavour ~ M-
Then loops respect the SM U(3)q ® U(3)u, ® U(3)ay, flavour structure:

M My MEM?

0 < Im (YY) (V) Ya)* (YY) (Vi Ya)] ~ 12

Jep tan® 8 ~ 10728 tan® g.



Conclusions

QCD 6 puzzle understood

A non-anomalous modular invariance allows theory of CP and flavour where:

* 0 < Sorm ~ 1;
* ¢ and £ masses and mixings reproduced up to order one coefficients.

The simple general idea works in supersymmetry or supergravity, with mod-
ular forms or functions, with or without heavy colored states. Maybe strings?
. J

Phenomenology: how can this be tested confirmed?

o V(1) =V(—7"), CP walls can be inflated away.
e SUSY and 7 could be heavy, I'(T — vrvr) ~ M2 /h? (leptogenesis?).

e The fermionic 7 could be stable LSP DM.

Light new particles not needed, all can be Planck-heavy... no signals.




