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Introduction
The QCD θ puzzle

Data show:
• large CP violation in quark mixing δCKM ∼ 1;
• no neutron electric dipole implying θ̄ = θQCD + arg detMq <∼ 10−10

LQCD =
∑
q

q̄(i /D −mq)q −
1

4
Tr G2 + θQCD

g2
3

32π2
Tr GG̃

but both originate from quark Yukawa couplings.

Solutions

• Axion. But: not observed so far; quality problem.
• Special models (Nelson-Barr, 0...). But: ad hoc?

Modular invariance

Allows a theory of CP and flavour that provides a neat solution.



The string motivation
Modular invariance can be done as math independently from its string motivation.

Super-strings in 4+6 dimensions are real. Chiral families of fermions can arise
from compactifications on spaces with a complex structure. So CP can be a
geometric symmetry spontaneously broken by the compactification.
Literature focused on N = 1 supersymmetry, that needs a Ricci-flat compactifica-
tion with complex structure. Simplest geometry: compactification on orbi-folded
6d flat tori T 3. We only need a 2d flat torus T , obtained writing a 2d space as
z = x+iy and imposing a PacMan lattice identification z = z+ω1 and z = z+ω2:

τ = ω2/ω1 tells the geometry: Im τ is the relative radius, Re τ is the twisting.



Modular invariance
Modular invariance is a sub-group of global reparametrizations:

ω2 → aω2 + bω1, ω1 → cω2 + dω1

gives an equivalent lattice if a, b, c, d are integers with ad− bc = 1.
So the low-energy EFT contains a modulus superfield τ invariant under SL(2, Z)

τ → aτ + b

cτ + d
.

Unusual: appears integrating out infinite states, because of how strings experience
the geometry (e.g. R = 1/R).

Matter fields Φ transform with weight kΦ

Φ→ (cτ + d)−kΦΦ

such that that the minimal global SUSY action with h� M̄Pl

K = −h2 ln(−iτ + iτ†) +
∑
Φ

Φ†e2V Φ

(−iτ + iτ†)kΦ
,

W = Y uij (τ)HuuRiQj + Y dij(τ)HddRiQj

is modular invariant if Yukawa couplings transform with definite weights

Y qij(τ)→ (cτ + d)k
q
ijY qij(τ) kqij = kqRi + kqLj + kHq .
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Modular invariance, flavour and CP
Modular invariance contains symmetries used in flavour models (S3, A4...) sponta-
neously broken in a specific way by τ . It gave predictive flavour models assuming
that Yukawas are modular functions with no singularity i.e. ‘forms’. Few exist:

Weight k 0 1, 2, 3 4 6 8 10 12 14 · · ·
Forms 1 − E4 E6 E8 = E2

4 E10 = E4E6 E3
4 , E

2
6 E14 = E2

4E6 · · ·

where the Eisenstein series transform nicely thanks to lattice summation

Ek(τ) =
1

2ζ(k)

∑
(m,n)6=(0,0)

1

(m+ nτ)k
.

Key: E3
4 6= E2

6 have different phases.
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This is CP, that acts as τ → −τ†, Φ→ Φ†.
1) We assume that Re τ is the source of CP violation and that

Y qij(τ) = cqij Fkqij
(τ) where c is real and Fk is a modular form with weight k.

2) We assume that the Higgs don’t break modular invariance, kHu + kHd = 0.

Motivated but not new, so far. End of the review. Now the talk begins.
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Solving the θQCD puzzle

We assume that modular invariance has no QCD anomaly i.e.

A =

3∑
i=1

(2kQi + kuRi
+ kdRi

) = 0.

As simple as that. End of the talk?

• detMq is a modular form with weight A = 0, which is a real constant so

arg detMuMd = 0 θQCD = 0.

• δCKM ∝ Im det[Y †uYu, Y
†
d Yd] has no special modular properties and E3

4 6= E2
6

introduces physical CP violation, δCKM ∼ 1.
• Quark kinetic matrices Zq can be made canonical via a quark linear
transformation that affects q masses and mixing but not θ̄. Minimal Kähler:

Y qij |can = cqij(2Im τ)k
q
ij/2Fkqij

(τ).

• Supersymmetry must be broken by modular-invariant dynamics such that
the gluino mass M3 is real. SUSY not needed at the weak scale.
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The Minimal MSSM Model
Simplest model: modular weights kQ = kuR = kdR = (−6, 0,+6) so detYq is real:

Yq|can =


qL1 qL2 qL3

qR1 0 0 cq13

qR2 0 cq22 cq23(2Im τ)3E6(τ)
qR3 cq31 cq32(2Im τ)3E6(τ) (2Im τ)6

[
cq33E

3
4(τ) + c′

q
33E

2
6(τ)

]
.

A numerical or approximate diagonalisation

y3 ' y33, y2 ' y22, y1 ' −
y13y31

y33
, θ23 '

y32

y33
, θ13 '

y31

y33
, θ12 '

y31y23

y22y33

shows that all quark masses and mixings can be reproduced with comparable c

cuij ≈ 10−3

 0 0 1.56
0 −1.86 0.87

1.29 4.14 3.51, 1.40

 cdij ≈ 10−3

 0 0 1.55
0 −2.59 4.59

0.378 0.710 0.734, 1.76


for tanβ = 10 and τ = 1/8 + i. No predictions.

Leptons with kL = keR = kQ:

ceij = 10−3

 0 0 1.29
0 5.95 0.35

−2.56 1.47 1.01, 1.32

 cνij =
1

1016 GeV

 0 0 3.4
0 7.1 1.2

3.4 1.2 0.19, 0.95

 .
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MSSM models

Less minimal modular weights such as (−6,±2, 6) give asymmetric matrices.

Yukawa matrices Modular weights Alternative bigger weights
Yu,d (uL, dL)1,2,3 uR1,2,3 dR1,2,3 (uL, dL)1,2,3 uR1,2,3 dR1,2,30 0 1

0 1 E6

1 E6 E3
4 + E2

6

 −6
0
6

 −6
0
6

 −6
0
6

 −4
2
8

 −8
−2
4

 −8
−2
4

0 0 1
0 1 E2

4

1 E4 E3
4 + E2

6

 −6
−2
6

 −6
2
6

 −6
2
6

 −4
−4
8

 −8
4
4

 −8
4
4


0 0 1

0 1 E2
4

1 E2
4 E4(E3

4 + E2
6)

 −8
0
8

 −8
0
8

 −8
0
8

0 0 1
0 1 E4E6

1 E6 E4(E3
4 + E2

6)

 −8
−2
8

 −8
2
8

 −8
2
8

0 0 1
0 1 E3

4 + E2
6

1 E4 E4(E3
4 + E2

6)

 −8
−4
8

 −8
4
8

 −8
4
8





Deconstruction to U(1)FN?

Quark hierarchies are reproduced somehow like in U(1)FN Froggatt-Nielsen.

• The hierarchy comes from the modular ‘6’ e.g. (2Im τ)6 = 64 for τ = i+ · · · .

Can U(1)FN also give θ̄ � δCKM? Weights become charges, one scalar η gives

powers Fk(τ)→ ηk instead of modular forms.

If positive powers of η∗ are avoided by SUSY, one gets θ̄ = 0 but δCKM = 0.
FN needs two scalars η, η′ with different charges and CP phases.

• Modular automatically provides E3
4 6= E2

6 .

Negative powers of η′ would screw up, model building of heavy states needed.
• Modular forms forbid E3

4/E
2
6 .

Conclusion: maybe not impossible, not nice. Back to modular forms



Non-minimal models with heavy quarks

Not needed. But let’s play the same game adding optional extra vector-like quarks,
with modular weights such that the full theory is non-anomalous

A = 0 ⇒ θ̄ = arg detMq + θQCD = 0 as
{

detMq is real
θQCD = 0.

A possible choice is ±6,±2, 0. Exercise: integrate out the heavy quarks. Inter-
esting because modular invariance seems to become anomalous in the low-energy
EFT (e.g. 0, 2, 6). The anomaly cancels with the gauge kinetic function.

• Yukawas become modular functions with poles at the values of τ where the
heavy quarks get massless; this screws predictivity;

• detM light
q is complex, because of functions and of modular weight Alight 6= 0;

• modular invariance has a QCD anomaly Alight 6= 0 generating θlight
QCD 6= 0;

• the gauge kinetic-function is complex and θ̄ = arg detM light
q + θlight

QCD = 0.

This optional complication is needed in supergravity and superstrings...



Supergravity
The worst θ̄ ∼ h2/M̄2

Pl would be acceptable, as h<∼ 10−5M̄Pl is allowed.
But strings etc motivate h = nM̄Pl. Supergravity gives new complicated effects:

• the Kähler potential K and the super-potential W unify in

G = K/M̄2
Pl + ln |W/M̄3

Pl|2;

• a modular transformation of τ implies a Kähler transformation:
W acquires modular weight kW = h2/M̄2

Pl > 0;
• a Kähler transformation implies an extra phase rotation of fermions (quarks
and the gluino), so the modular anomaly becomes

A = Aquark +Agluino =
3∑
i=1

(2kQi + kuRi + kdRi − 2kW ) + 3kW .

• A = 0 again implies θ̄ ∝ argM3
3 detMq = 0.

But...
the gluino gets involved, does not mix with quarks, has kW > 0. Some quark
remains massless within the MSSM. Non-minimal models are needed.
E.g. an extra λ′ ∈ 8 of SU(3) with modular charge opposite to the gluino resurrects
the previously discussed models. Integrating λ′ out gives EFT with anomalies and
modular functions, that solve θ̄ = 0 as discussed in the previous slide.
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Superstrings
This suggests more general sugra models: assume
1. Full theory with non-anomalous modular invariance, A = 0;
2. Integrating out heavy states only gives poles at τ = i∞.

3. No modular anomaly from quarks,
3∑
i=1

(2kQi + kuRi + kdRi − 2kW ) = 0.

The resulting effective sugra field theory:
• Allows negative powers of Dedekind η(τ) = [(E3

4(τ)− E2
6(τ))/123]1/24 only.

• Extra phases e.g. η → eiθ(cτ + d)1/2η mess math without affecting physics.
• Modular anomaly cancelled by gauge kinetic function, f 3 3kW ln η/(4π2).
• θ̄ = θQCD + argM3

3 detMq = 0 as both depend on η.

This remembers you something stringy? Maybe the proposed understanding of
the θQCD puzzle could be realized in toroidal string compactifications:
1.X Modular invariances of superstrings are non-anomalous; anomalies appears

in the effective QFT of massless states.
2.X Integrating out ∞ towers of states with mass ∝ n+mτ gives Dedekind η

with de-compactification poles.

3.X— Anomaly-free EFT? We don’t know if strings realise the MSSM... 〈τ〉?
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Deviations from θ̄ = 0

• Non-renormalizable operators controlled by SL(2,Z).
• Extra scalars must get CP-conserving vev.
• Extra moduli must get CP-conserving vev or have good modular charges.
• SM gives θ̄ ∼ 10−18 at 4 loops.
• SUSY breaking corrects Mq at 1 loop unsuppressed by v/mSUSY:

δθ̄ ≈ α3

4π

∑
q=u,d

ImTr [(Yq)
−1m2

q̃R
Aqm

2
Q̃

]

m5
SUSY

A problem if squarks violate flavour/CP differently from quarks.
Avoided assuming gauge or anomaly mediation below the τ modulus mass:

mSUSY < ΛSUSY < Λflavour ∼Mτ

Then loops respect the SM U(3)Q ⊗U(3)uR ⊗U(3)dR flavour structure:

θ̄ <∼ Im [(Y †uYu)2(Y †d Yd)
2(Y †uYu)(Y †d Yd)] ≈

M4
tM

4
bM

2
cM

2
s

v12
JCP tan6 β ∼ 10−28 tan6 β.



Conclusions

QCD θ puzzle understood

A non-anomalous modular invariance allows theory of CP and flavour where:

? θ̄ � δCKM ∼ 1;
? q and ` masses and mixings reproduced up to order one coefficients.

The simple general idea works in supersymmetry or supergravity, with mod-
ular forms or functions, with or without heavy colored states. Maybe strings?

Phenomenology: how can this be tested confirmed?

• V (τ) = V (−τ∗), CP walls can be inflated away.
• SUSY and τ could be heavy, Γ(τ → νRνR) ∼M3

τ /h
2 (leptogenesis?).

• The fermionic τ could be stable LSP DM.

Light new particles not needed, all can be Planck-heavy... no signals.


