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Models of interest

« Radiatively generated minima (eg SM at large field
strength)
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Models of interest

Monodromy axion models, relaxion

Vmonodromy(¢) — m2¢2 + A* [1 o8 (?)]
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SM Metastability

Aeff < 0 = Metastability
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SM + dilaton

with D. Ghilencea, P. Olszewski, P. Michalak



Quantum scale symmetric effective lagrangian

No scale anomaly in ,dynamical”
regulator
(0) Lo Lo o g gt
LO(¢,0) = 5 (09)" + 5(00)* — p*(0) | V($,0) + D A,
R — n=0
renormalizable,

classicaly scale-invariant
go to broken phase

LO(po+ ¢’ 00+ ¢)

compute loop corrections (in momentum expansion) & RGE functions S, y

,Ceff(¢,0) = — eﬁ'(qb,a) 4+ ...
*

« Homogenous function (no mass-parameters, only vev’s)
« 77 x Z* sym.

» Satisfies Callan-Symanzik eq.

72 x 72
Q= —¢
g — —0




Quantum scale symmetric effective lagrangian

RG-improvement:

, . 5 Choose
A(t
647 eto
to avoid large logs.
S W(6)
Spontanous scale-symmetry breaking: € —
(Cb) _ M(sm@) V= MAW(6), E
o cos 6 N

-~ » flat direction in V.g =
J9—g, W (o) = W’(@O) =0

0
. . . >
renormalization condition, &
similar to choosing C.C.

b0

 Hierarchy of scales via aligning the flat direction J_ o > Oy~ — < 1
00

* New perspective on naturalness: is this alignement stable wrt. embedding in a UV completion?




Quantum scale symmetric SM + O

0
H=| 4
V2 (electroweak vacuum — » electroweak flat direction)
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FIG. 2. Contour plots of the effective potentials —Vsaro (¢, o) for various choices of (o). Lower green dashed line marks the
electroweak vacuum-direction, higher green dashed line marks the direction of greatest instability. Red continuous line is a plot
of the bounce configuration (¢5,0p). (Note that, mainly due to varying contribution of the nonrenormalizable interaction
from one plot to another, the plots present differing potentials and it would be misleading to plot the bounce configurations in
a single frame.)
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Summary SM + dilaton

1) You may use a field as the scale uy
In Dim-Reg to preserve scale symmetry at the quantum level.

2) The price to pay: infinitely many nonpolynomial ¢/c operators
and corresponding couplings: nhonrenormalizability.

3) Minimal subtraction scheme involves evanescent interactions.
4) Presence of a flat direction — tuning.
5) Naturalness: aligning the flat direction perpendicular to Higgs

6) Instability = unboundedness below



Summary cd

« Scale symmetry as the underlying symmetry offers a way
to understand the origin of scales as expected

« Scale symmetry is broken at finite T with thermal dilaton
vev proportional to T

« Cosmologicl evolution can easily lead to large dilaton
vev needed to model hierarchy



Domain walls

T. Krajewski, M. LewicKi
Phys. Rev. D 104, 123522



Network of walls prefers the true vacuum!
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Models of interest

« Radiatively generated minima (eg SM at large field
strength)
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Generic potential

Vas(¢) = X—ggb (15¢° (e* (2d(a + b+ c) + ab+ ac+ bc + d°) + 1) — 60abc (d*e® + 1)

—20¢? (€ (d*(a + b+ ¢) + 2d(a(b + ¢) + bc) + abe) +a+b+c) — 12¢*¢*(a + b + ¢ + 2d)
+30¢ (de*(ad(b + c) + 2abc + bed) + ab + ac + be) + 10e°¢°) . (3.6)

03V s
O3

(¢) = 2Vo (¢°(a — @) (¢ — b)(c + 2d — 39)
+(—a—b+2¢) (e2(d—¢)(2c+d—3¢) +1) + (¢ —c) (e*(d— #)* + 1)) (3.

a, b - positions of minima, c - position of maximum

OV = Vas(b) — Vas(a),
o3V
d3V = ?&(C),

5 =w,
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Quanties of interest: energy density and peak frequency

1 dpew
Qaw(n) = n, k).
() pc(n)dloglkl( )
0 - Eew Aoy’
GW(ndec)‘peak o 247THd 2Mpl47
ecC

) = () )" (Bl )
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Quanties of interest: energy density and peak frequency

eaw efficiency parameter between 0.7 and 1

Owalls> Ndec - taken from simulations

A a(t)Swau _ a(l)
V H-3 t
A _1
V — ATI )

stable DW: A in the range 0.8 0.1
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Quanties of interest: energy density and peak frequency

more generally

log (é) = —vlogn +log A

scaling regime: obtained v ranges from 0.81 to 1.0

meta-stable DW: A in the range 0.08 — 0.34
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Scaling regime
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Figure 9: The evolution of conformal surface area of domain walls per unit volume é in
function of conformal time n (blue) and the fitted scaling behavior defined by eq. (5.8)
(orange) for the best (left panel) and the worst (right panel) fits obtained by procedure
described in the main text. Vertical dashed lines correspond to the estimated beginning and
end of the scaling regime.
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Quanties of interest: energy density and peak frequency

1
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Quanties of interest: energy density and peak frequency

We have estimated overall factors present in eqs. (6.7) and (6.7) basing on values of
A, Ngec obtained in simulations in which networks entered scaling regime and previously
computed 0y4y. The maximal value of the prefactor in eq. (6.7) obtained in this way is

equal to:

w w

4 1
_ 1£ max 1% ’
TGn%(nO)'peak =0.1 x 10 66 (M> ) fO |peak =0.7 ( & V) HZ7 (69)

where the frequency of the peak for this network is denoted as fj***. On the other hand, the
minimal prefactor computed from data from simulations is equal to:

4 1
min( ) — 0.6 X 10—68 1% min —1.3 1% : H (6 10)
GW T’O |peak - Y w ) 0 |peak — 4. T Z. .
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Figure 10: Hypothetical peak amplitudes of GWs emitted from cosmological domain walls
as a function of the peak frequency f compared to predicted sensitivities of current and
planned detectors LIGO [59-62|, LISA [63, 64|, AEDGE [65], AION-1km [66], ET [67, 68] as
well as upper bound induced by the CMB/BBN [69, 70].
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Partial Summary

For a strong signal and a low frequency peak a period of
stable evolution is needed

Bias of the initial distribution easily destabilises the
network

Asymmetry of the potential destabilises the network for
symmetric distributions

Short living networks may give a strong signal if the
energy scale is very large - but this produces a high
frequency peak, beyond current sensitivity

Decaying networks of domain walls produce a signal in
the form of gravitational waves - too weak to be detected
anytime soon - if a signal is detected then either fine-
tuning or non-standard cosmology have occurred

U NATIONAL SCIENCE CENTRE UMO-2017/27/B/ST2/02531 24
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Bumpy axion inflation

With Ogan Ozsoy
JCAP 01 (2021) 040
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Figure 1: Potential V(¢) (left) in (1.1) and its derivative V'(¢) (right) for parameters 8 =
A*/m?f? = 0.996 and My /f = 3.3. For comparison we also plot the potential in the 5 — 0
limit, i.e. for smooth quadratic potential V (¢) «x ¢? (black, dotted).



Note the vector modes

2§(x)

i

Al (z) + (1 + ) Ayi(z) =0, (2.5)
where we defined dimensionless variable —k7 = z. Realize that with our conventions (¢ < 0 or
¢ > 0), time dependent mass term in (2.5) can trigger tachyonic instability only for the negative
helicity state A_ for modes satisfying —k7 < 2£.

In the presence of gauge field production, the coupling ¢FF may significantly affect inflaton
fluctuations through the inverse decay of amplified fluctuations in the gauge field sector: d A +
0A — 0¢. In order to investigate these effects, we will focus on the mode equation of the canonical
variable Q4 = ad¢, which can be derived from (3.4) as

acad d3p
foJ (2m)3/2

(33. + k2 + mgff(f)) Qu(1,k) = Jy(1, k) = Ei(1,k — p)Bi(7,p). (3.8)
In terms of the slow-roll parameters and background quantities, the time dependent mass term
is given by

3n 1 1 i
mie(r) = —(@H)? [2- e+ F 4 4o = Jen+ 5. (3.9)

where we defined )
¢ €
2H2MZ® T eH

(3.10)

€
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Figure 2: The evolution of ¢ (left) and Hubble parameter H (right) with respect to e-folds for
the parameter choices given by (4.1) (See also Table 1) in the potential (1.1).
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Figure 3: The evolution of slow-roll parameters € (left) and 7 (right) with respect to e-folds
during inflation for the same parameter choice provided in Figure 2.
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Figure 4: The vacuum power spectrum ’Pg ) (left) and the total power spectrum in eq. (4.4)
(right) as a function of number of e-folds in the bumpy axion monodromy model we studied in
Section 4.1. On the right panel, the parameter choice & = 10.54 corresponds to i.e. Fpgg = 1
where PBHs constitutes the total DM abundance.

4.3.2 Primordial and Induced GW background from bumpy axion inflation

In the inflationary scenario we introduced above, there are two'® distinct populations of SGWB:

1. The GW background that originates from the amplified gauge fields during inflation through
the channel: 0A_ 4+ JA_ — h_ which we study in Section 3.2. We label this contribution
as “primordial”.

2. The induced GW background that originates from the scalar fluctuations that are enhanced
by the gauge fields during inflation. The induced GW signal in this case is associated with
the enhanced scalar modes that re-enter the horizon to form PBHs during RDU. We label
this contribution as “induced” and study its production channel: 6A_+06A_+6A_+5A_ —
R 4+ R — hy in Appendix B.
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Figure 5: Primordial (orange solid) and induced (red dashed) contributions to the total SGWB
presented in eq. (4.9) for the bumpy axion inflation. As explained in the main text, to estimate
the total contribution to the induced signal, we multiplied the power spectrum of “Reducible”
diagram Piind’red) by two (See e.g. eq. (C.12) of Appendix B).



Comments

e In Section 4.1 and 4.2 we have seen that the presence of pronounced modulations in the axion
potential (See eq. (1.1) and Figure 1) alter inflationary dynamics in a way to provide sufficient
amount of inflation even for an intermediate range of field excursions A¢/Mp ~ O(1) [80].
In particular, the existence of smooth plateaus in the potential leads to relatively small scale
of inflation with a smaller tensor-to-scalar ratio r ~ 10~° at CMB scales when compared to
models that exhibit smooth monomial terms in its scalar potential.

e In Section 4.3.1, we showed that in the presence of the coupling in eq. (1.2), the motion of
¢ around the cliff-like region of its potential triggers an instability for vector fields which in
turn efficiently amplify the curvature power spectrum through éA_ + dA_ — R, leading to a
pronounced bump in the scalar power spectrum, see e.q. right panel of Figure 4. We have seen

that these scalar fluctuations can later collapse into PBHs of mass M ~ 10~!3 M, which can
constitute the total dark matter abundance in the universe.



Comments cd

In Section 4.3.2, we found that this large population of PBHs is accompanied by an unavoidable
SGWB at LISA scales (See Figure 5) due to the non-linear nature of gravity [59-63]. As
a primordial mechanism that leads to these findings at sub-CMB scales, the strongly non-
Gaussian nature of scalar fluctuations (which obeys x? statistics) in bumpy axion inflation
can be considered as a distinguishing feature compared to single-field inflationary scenarios
[160—162] and astrophysical backgrounds [163] which are expected to be Gaussian to a high
degree. For example, compared to a Gaussian model of peaked scalar fluctuations at sub-CMB



Non-minimal curvaton
- revisited

A, Ghoshal, C. Chen, Y. Luo, A. Naskar JCAP (2023)
D. Langlois, S. Pokorski, K. Turzynski JCAP 07 (2007) 014



S = /d%f [ le - —qusvﬂqb — —/\2(¢)VMXV“X - V(¢ x)

Veur(x) = (1 — COS %)

Case study: the GGaussian-like dip

A(B) = A {1 — Aexp [— (9 - ¢§ip)2] }
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Figure 1. Left panel: An illustration of the field metric A\?(¢) in terms of three typical values of
A: 0.9 (blue), 2.2 (orange) and —0.2 (green), with the same width o) = 0.1. This work only focuses
on the first case 0 < A < 1. Right panel: The numerical results of 3 + n.g during the Starobinsky
inflation for o), = (0.01,0.1,0.2) shown by the blue, orange and green curves, respectively. The
parameters are taken as: m, /Mp; = 1078, ¢ini/Mp) = 5.5, Gdip/Mp1 = 4.8, A =0.995, o = 0.01 and
A*/MF, ~2 x 1074,



1 I I I
10} A . 10°
— 0.995
104} 09l 10*
£l & — | #A&
= 0 13 @
4 ¥4
= =
& 100 & 100
1072} . 1072
10—4 1 1 1 1 10—4 1 1 1 1
104 1072 10° 102 10* 104 102 10° 102 10*
K/kgip k/kgip

Figure 4. Left panel: The curvaton power spectra Ps,(te,k) in terms of various values A =
(0.995,0.9,0.5) for a fixed value ox = 0.01. Right panel: The curvaton power spectra Psy(te, k)
in terms of various values o) = (0.01,0.1,0.2) for a fixed value A = 0.995. All other parameters are
the same as Fig. 2.
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Figure 7. The numerical results of final curvature power spectrum P¢(tdec, k) at the curva-
ton’s decay in terms of four set of parameters: {¢gip/Mp1=4.8,0x =0.01} (the blue curve);
{@aip/Mp1 = 4.5,05 = 0.01} (the black curve); {paip/Mp1=5.0,05 =0.01} (the purple curve);
{@aip/Mp) = 4.8,05 = 0.1} (the green curve), and the rest parameters are the same with Fig. 2.
The current constraints on Pr (k) from Planck [1], Lyman-« [63], FIRAS [64] and PTA [24] are shown
by the shadowed regions, while the grey dashed line refers to Pr ~ 1072 in order to produce an
abundance of PBHs.



We plot fppu(M) in Fig. 8 in terms of three spectra (blue, black and purple curves) shown
in Fig. 7, and the power spectrum shown by the green curve only produce small fraction of
PBHs that is not shown in Fig. 8. Note that the produced PBH fraction shown by the black

curve is able to account for the whole dark matter.
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Figure 8. The current PBH abundance fppy in terms of three sets of parameters corresponding to
the spectra (the black, blue and purple curves) shown in Fig. 7, with various constraints on fpgpy
adopted from Ref. [6].



Scalar-induced gravitational waves
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Figure 9. The current energy spectra Qgw(70, f) corresponding to three curvature spectra (the

black, blue and purple curves) shown in Fig. 7, along with various GW experiments shown in Ref.
185].



The NANOGrav 15-year Data Set: Search for Signals from New Physics
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Figure 6. Same as in Fig. 5 but for the SIGW-BOX model.
The regions above the teal contour lines labeled fega = 1
lead to the overproduction of PBHs, according to our anal-
ysis in Appendix C.2; however, see text for more discussion.



Scalar-induced gravitational waves
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Figure 9. The current energy spectra Qgw(70, f) corresponding to three curvature spectra (the
black, blue and purple curves) shown in Fig. 7, along with various GW experiments shown in Ref.

85].



Summary

We have identified the role of the nontrivial metric in field
space

It plays a role of an effective friction term for curvaton
perturbations

Curvaton perturbations grow due to the presence of nontrivial
Kinetic coupling
Case study - Gaussian-like dip in the field metric

We have obtained analytically and numerically full spectrum of
curvature fluctuations for axion-like curvaton potential

Current PBH abundance in this model is sufficient to explain
whole DM and concomitant SIGW signals are detectable
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