
Phenomenology of flavoured 
3HDMs


Roman Pasechnik

Lund U.



The Standard Model is a tremendously successful theory that

explains “boringly” well the existing collider measurements  

However, it fails to explain:

• neutrino masses

• Dark Matter

• CPV and matter/antimatter asymmetry

• observed flavour structure

What simplest extensions of the SM can teach us 

about these problems?

Non-minimal Higgs sectors can provide natural

explanation to CPV and fermion puzzles, and more.. 

Active model-building activity with non-minimal scalar sectors  
(see e.g. Ivanov, 1702.03776)

Outline



The most  constraining realisable Abelian symmetry of 3HDM 
Keus, King, Moretti 2014; Ivanov, Keus, Vdovin, 2012

I. INTRODUCTION

The Standard Model (SM) remarkably stands as one of the most successful theories in

physics. However, it can still be considered rather ad hoc in its nature, with unexplained

features that arise from fitting the experimental data. In addition, it fails to o↵er an

explanation to several observed natural phenomena such as dark matter, neutrino masses

or baryon asymmetry in the universe. It is then natural to study extensions of the SM

that, while retaining its predictive power, o↵er explanations or shed light into the origin

of e.g. the hierarchy of fermion masses or rather specific flavour structure of the SM.

There is a plethora of such beyond the SM (BSM) theories, but not many of those o↵er

unconventional features testable at the current experiments.

One of the simplest and most studied extensions is the class of the so-called Two-Higgs

Doublet Models (2HDMs) that add a second SU(2)L doublet to the SM (an extensive re-

view can be found in Ref. [1]). The 2HDMs o↵er interesting phenomenological signatures

and can lead to e.g. extra sources of CP violation, dark matter candidates and stable

vacua at high energies. However, they typically introduce many new free parameters,

fail to address the origin of the mass hierarchy in the fermion sector of the SM and re-

quire extra discrete symmetries to avoid tree-level Flavour Changing Neutral Currents

(FCNCs).

The Three Higgs Doublet Models (3HDMs) can overcome some of those limitations (see

e.g. Refs. [2–4]) and have sparked interest in recent literature (see e.g. Refs. [5–11]).

While retaining most of the features of 2HDMs, 3HDMs can o↵er explanations to yet

unexplained features of the SM with predictions testable in the current collider mea-

surements. In particular, the increased field content makes it possible to impose higher

symmetries, which in turn can lead to interesting flavour structures.

As shown in Refs. [12, 13], the most constraining realisable abelian symmetry of the scalar

potential in 3HDM is U(1)⇥U(1). In this work, we promote the U(1)⇥U(1) symmetry

of the scalar sector to the fermion sector, hereinafter called U(1)X⇥U(1)Z, in such a way

that (1) no tree-level FCNCs are present, (2) a Cabibbo-like mixing is enforced, and (3)

the fermion mass hierarchies are related to a hierarchy in the three vacuum expectation

values (VEVs) of the doublets. This leads to a model that, although remarkably simple

due to its high symmetry, is still capable of both reproducing the current experimental
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• No tree-level FCNCs
• Cabbibo-like mixing at tree-level
• Fermion mass hierarchies are partly explained by hierarchy of VEVs
• New scalar states couple dominantly to the second quark family
   (exotic collider signatures)

Promote this symmetry to be a family symmetry of the fermion sector
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After spontaneous symmetry breaking, in the limit ⇠ ! 0, there remains a U(1)X ⇥

U(1)YZ symmetry where U(1)YZ is generated by a combination of the U(1)Y and U(1)Z

generators. That means that all processes violating U(1)X ⇥ U(1)YZ (and in particular

U(1)X) would be suppressed by some power of ⇠. As we will see, in the limit that ⇠ ⌧ 1 it

is possible to derive simple expressions for the masses and mixing matrices in the scalar

sector. It is worth mentioning at this stage that, while such expressions serve as tools to

understand the model’s features, all scalar masses and mixing matrices will be computed

fully numerically (i.e. not as expansions in ⇠) when scanning the parameter space of the

model.

A spontaneously broken U(1)X⇥U(1)Z global symmetry would lead to massless Goldstone

bosons and constrain the model significantly when considering e.g. the precise measure-

ments of the Z-boson width. This motivates us to softly break the symmetry by adding

additional mass terms in the scalar potential. The scalar potential consistent with a
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All parameters in the scalar potential can be taken real without any loss of generality.

This is due to the fact that the parameters in V0 are real by construction, while any
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All the parameters

can be taken real

U(1) x U(1) Three Higgs doublet model

The model is CP-conserving

Camargo-Molina, Mandal, Pasechnik, Wessén, JHEP 03 (2018) 024



phases on m
2
ij
can be eliminated by field redefinitions of the three Higgs doublets. As a

consequence the scalar sector of the model has no choice but to be CP-conserving.

For convenience we define
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B. Extending the U(1)X ⇥U(1)Z to the fermion sector

We assign the quark U(1)X⇥U(1)Z charges such that the neutral component ofH3 couples

to only up- and down-type quarks of the third generation while the neutral components

of H1 and H2 couple to the first and second generation down-type and up-type quarks

respectively, i.e.
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In this way we forbid scalar-mediated tree-level FCNCs and simultaneously enforce a

Cabibbo-like quark mixing, where the gauge eigenstates of the third quark family are

aligned with the corresponding flavour eigenstates. This also means that a hierarchy in

the VEVs of the Higgs doublets, where v3 � v1,2, leads to a third quark family that is

much heavier than the first two without a strong hierarchy in the Yukawa couplings. In

Table I, we show the most general quark charge assignments allowing the terms in Eq. (8)

once the U(1)X⇥U(1)Z charges of H1,2,3 are fixed. As long as the parameters ↵, �, � and

� in Table I satisfy

(� � �,↵� �) /2 {(�1,�1), (�1, 0), (0, 0), (1, 0), (1, 1), (2, 1)} , (9)

the terms in Eq. (8) are also the only allowed quark Yukawa interactions. It is worth

noting that in the mass basis, the free parameters in the quark sector are simply the quark

masses and the Cabibbo angle. The reader might note that at higher orders, the Yukawa

interactions only allow for a mixing between the first and second quark generations, thus

opening the question of how to reproduce the observed full CKM mixing in the quark
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TABLE I. Gharges of the global U(1)X, U(1)Z and gauge (hypercharge) U(1)Y symmetries in

the considering class of 3HDMs. The fermion charges together with the constraints in Eq. (9)

are chosen so that the only allowed Yukawa terms are those in Eq. (8).

sector. As this model is thought as an e↵ective theory, one can write the following
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Such terms will induce naturally small (suppressed by a scale of new physics) mixing terms

with the third quark family once Higgs VEVs appear. The operators can in principle be

generated à la Frogatt-Nielsen mechanism [30] by integrating out the heavy fields of a

high-energy theory. A deeper analysis of this is beyond the scope of this paper.

Finally, we note that the lepton Yukawa sector can be made very SM-like by assigning

the lepton U(1)X⇥U(1)Z charges such that they only couple to H3. We will assume that

this is the case throughout this work, and will not discuss the implications on lepton

phenomenology any further. However, we want to point out that there are also other

interesting scenarios, e.g. where the leptons couple to H1,2,3 such that the lepton mass

hierarchies are also related to v1,2 ⌧ v3.
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bosons and constrain the model significantly when considering e.g. the precise measure-
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All parameters in the scalar potential can be taken real without any loss of generality.

This is due to the fact that the parameters in V0 are real by construction, while any
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scalars, charged scalars and the W boson are given by
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The top line in Eq. (22) is written in the interaction eigenbasis of the scalars, while the

bottom line is the same expression in terms of the mass eigenstates. The W boson also

couples to pairs of charged scalars and pseudo-scalars as
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)Āj � H̄

+
i
(@µ
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Similarly, for the trilinear interactions with the Z boson, we have
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where cW is the cosine of the Weinberg angle and
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D. Scalar-fermion couplings

Knowing the mixing matrices S, P and C for the neutral scalars, pseudo-scalars and

charged scalars, respectively, to the first orders in ⇠, it is straightforward to obtain the

Yukawa interactions between the physical scalars and the quarks. Using Eq. (14) we find

that h125 couples to quarks in a way similar to the SM,

L �

X

q

mq

v3
q̄q h125 +O(⇠) . (28)
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SM-like Higgs:

For the third quark family, this is an obvious consequence of the model’s symmetries, as

t and b quarks receive their masses from H3 with v3 . v, and h125 is mostly made of h3.

On the other hand, the first and second family get their masses from H1,2 with v1,2 ⌧ v3,

so the corresponding Yukawa couplings with the gauge eigenstates H1,2 are quite large as

O(mq/v1,2) ⇠ O(mq/⇠v3). When shifting to the mass eigenbasis, h1,2 contribute to h125

only at O(⇠) thus giving an overall coupling of O(mq/v3).

In the same process, we also find the interaction terms between the quarks and the exotic

scalar states ha,b, Aa,b and H
±
a,b. Couplings to the third quark family are generally quite

small ⇠ mt,b⇠/v3. In our model, phenomenologically the most relevant couplings are with

the second quark family instead, which to the leading order in ⇠ read

L � cos ✓C

p
2ms

v1
s̄RcLH

�
a � cos ✓C

p
2mc

v2
c̄RsLH

+
b + c.c.+O(⇠)

+
ms

v1
s̄sha �

mc

v2
c̄chb + i

ms

v1
s̄�

5
sAa � i

mc

v2
c̄�

5
cAb +O(⇠) ,

(29)

where ✓C is the Cabbibo angle. When the masses of the scalars are in the appropriate

range, we can expect that the charged scalars H+
a,b would be produced in collider experi-

ments through cs̄ fusion while ha and Aa (hb and Ab) would mainly be produced by the

ss̄ (cc̄) fusion.

III. A MODEL INDEPENDENT APPROACH

One of the interesting features of our model is the existence of heavy charged scalars H+

(H�) that mostly couple to a cs̄ (c̄s) pair as their interactions with tb̄ (t̄b) are small due

to the model symmetries. Furthermore, we find that H
± can decay to a W

±
h125 pair

with a sizable branching ratio (BR) which is still allowed by the current experimental

data. It turns out that this unconventional channel, while not explored in the literature

before for mH± > 200 GeV, can be a rather clean way to search for charged scalars at

the LHC.

In the following, we adopt a model independent approach in searching for charged scalars

exhibiting those features. In section V, we will show how the analysis can be used to find

discovery regions in the parameter space of the 3HDM we have proposed above. We take

a model independent approach to not only test the predictions of our model, but also to

o↵er a guideline for our experimental colleagues to implement this new search channel in
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In the following, we adopt a model independent approach in searching for charged scalars
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a model independent approach to not only test the predictions of our model, but also to
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Main focus:

A generic prediction of the model is that the new scalars ha,b, Aa,b and H
±
a,b are likely

to couple strongly to the s and c quarks, yielding di↵erent signatures in colliders at

variance with the standard searches focusing on the third quark family. As an example,

we studied collider phenomenology of the lightest charged Higgs when its mass is in the

250 – 1000 GeV range, under the assumption that the other charged Higgs is su�ciently

heavy to be dropped out of the analysis. In that case, the lighter charged Higgs would be

resonantly produced through a cs̄ fusion, and, for certain regions of the parameter space,

subsequently decay to Wh125. All other decay channels are assumed to only contribute

to its total width.

We particularly focused on one of the possible channels – the cs̄ ! H
+

! W
+
h125

channel, which has not been explored before in the context of heavier charged Higgs

searches. This channel is specific to our class of 3HDMs and is particularly sensitive to

the sub-TeV charged Higgs mass and small-⇠ regions. We showed that this unconventional

channel, when combined with the power of a multivariate analysis, leads to good signal-to-

background ratios even for masses below 500 GeV and thus can be used to probe models

with that particular feature at the LHC. We employed a model independent formulation

so that our approach can be applied to any model which predicts a su�ciently large cross

section for the cs̄ ! H
+

! W
+
h125 process to be observed in the future LHC runs.

Our analysis can also be applied to improve sensitivity for W 0 searches especially for the

sub-TeV masses.

We then used a genetic algorithm to find parameter space points in our 3HDM which

would yield signals with > 5� significance, while still satisfying the standard phenomeno-

logical constraints. Although the scan did not rely on ⇠ ⌧ 1, a vast majority of the

points were consistent with that limit and thus showed all the features mentioned above

and described in section II. This shows that the described unconventional search strategy

can e↵ectively probe realistic multi-Higgs theories with the current LHC data, and so we

think it should be seriously considered by our experimental colleagues.
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Physical Higgs interactions



Charged Higgs production and decays
the experimental analyses.

We start with the following model independent Lagrangian for H± including its kinetic

(Lkin) and interaction (Lint) terms

Lkin � DµH
+
D

µ
H

�
�m

2
H± H

+
H

�
, (30)

Lint � 
p

cs
c̄RsLH

+ + 
m

cs
s̄RcLH

� + iWh125

�
h125@

µ
H

+
�H

+
@
µ
h125

�
W

�
µ
+ c.c. . (31)

There are four free parameters in the above Lagrangian viz. the charged Higgs mass

mH± , and the three couplings 
p

cs
, m

cs
and Wh125 . In general, p

cs
and 

m

cs
both could

be non-zero. In that case, the production cross section, �(pp ! H
±) is proportional to

the combination
⇥
(p

cs
)2 + (m

cs
)2
⇤
. Therefore, instead of two free couplings, we introduce

a single free parameter cs which is, 2
cs

= (p

cs
)2 + (m

cs
)2. From the above model inde-

pendent Lagrangian, we see that H
+ has only two decay modes: W

+
h125 and cs̄. The

corresponding tree-level partial widths are given by

�
�
H

±
! W

±
h125

�
=


2
Wh125

m
3
H±

64⇡m2
W

"
1�

(mh125 �mW )2

m
2
H±

#"
1�

(mh125 +mW )2

m
2
H±

#

⇥

"
1�

2
�
m

2
h125

+m
2
W

�

m
2
H±

+

�
m

2
h125

�m
2
W

�2

m
4
H±

#1/2

, (32)

�
�
H

+
! cs̄

�
=

3
⇥
(p

cs
)2 + (m

cs
)2
⇤
mH±

16⇡
=

32
cs
mH±

16⇡
. (33)

where mh125 = 125 GeV. The expression �(H+
! cs̄) is given in the limit of massless c

and s quarks. In general, H± can have other decay modes too. We, therefore, take the

BR of the decay mode H
±
! W

±
h125 denoted by BRWh125 as a free parameter instead

of Wh125 . So, one can write the following in the narrow-width approximation,

�(pp ! H
±
! W

±
h125) = �(pp ! H

±)⇥ BRWh125 = 
2
cs
⇥ �0(mH±)⇥ BRWh125 , (34)

where �0(mH±) is the cross section of pp ! H
± for cs = 1. We show �0(mH±) at the

LHC (
p
s = 13 TeV) as a function of mH± in Fig. 1.

IV. SEARCH FOR CHARGED SCALARS PRODUCED BY cs̄ FUSION

We implement the model independent Lagrangian of H± as shown in Eqs. (30) and (31)

in FeynRules [31] from which we get the Universal FeynRules Output [32] model files
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where mh125 = 125 GeV. The expression �(H+
! cs̄) is given in the limit of massless c

and s quarks. In general, H± can have other decay modes too. We, therefore, take the

BR of the decay mode H
±
! W

±
h125 denoted by BRWh125 as a free parameter instead

of Wh125 . So, one can write the following in the narrow-width approximation,

�(pp ! H
±
! W

±
h125) = �(pp ! H

±)⇥ BRWh125 = 
2
cs
⇥ �0(mH±)⇥ BRWh125 , (34)

where �0(mH±) is the cross section of pp ! H
± for cs = 1. We show �0(mH±) at the

LHC (
p
s = 13 TeV) as a function of mH± in Fig. 1.

IV. SEARCH FOR CHARGED SCALARS PRODUCED BY cs̄ FUSION

We implement the model independent Lagrangian of H± as shown in Eqs. (30) and (31)

in FeynRules [31] from which we get the Universal FeynRules Output [32] model files

12

Production cross section in NW approximation:

the experimental analyses.

We start with the following model independent Lagrangian for H± including its kinetic

(Lkin) and interaction (Lint) terms

Lkin � DµH
+
D

µ
H

�
�m

2
H± H

+
H

�
, (30)

Lint � 
p

cs
c̄RsLH

+ + 
m

cs
s̄RcLH

� + iWh125

�
h125@

µ
H

+
�H

+
@
µ
h125

�
W

�
µ
+ c.c. . (31)

There are four free parameters in the above Lagrangian viz. the charged Higgs mass

mH± , and the three couplings 
p

cs
, m

cs
and Wh125 . In general, p

cs
and 

m

cs
both could

be non-zero. In that case, the production cross section, �(pp ! H
±) is proportional to

the combination
⇥
(p

cs
)2 + (m

cs
)2
⇤
. Therefore, instead of two free couplings, we introduce

a single free parameter cs which is, 2
cs

= (p

cs
)2 + (m

cs
)2. From the above model inde-

pendent Lagrangian, we see that H
+ has only two decay modes: W

+
h125 and cs̄. The

corresponding tree-level partial widths are given by

�
�
H

±
! W

±
h125

�
=


2
Wh125

m
3
H±

64⇡m2
W

"
1�

(mh125 �mW )2

m
2
H±

#"
1�

(mh125 +mW )2

m
2
H±

#

⇥

"
1�

2
�
m

2
h125

+m
2
W

�

m
2
H±

+

�
m

2
h125

�m
2
W

�2

m
4
H±

#1/2

, (32)

�
�
H

+
! cs̄

�
=

3
⇥
(p

cs
)2 + (m

cs
)2
⇤
mH±

16⇡
=

32
cs
mH±

16⇡
. (33)

where mh125 = 125 GeV. The expression �(H+
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IV. SEARCH FOR CHARGED SCALARS PRODUCED BY cs̄ FUSION

We implement the model independent Lagrangian of H± as shown in Eqs. (30) and (31)

in FeynRules [31] from which we get the Universal FeynRules Output [32] model files
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Analysis

• implement the model-independent Lagrangian to FeynRules (leading order);

• generate UFO for MadGraph, use NNPDF for S/B event generation;

• use Pythia6 for showering/hadronisation of generated events;

• detector simulation via Delphes employing FastJet for jet clustering (anti-kT);

• for the multivariate analysis, we use Boosted Decision Tree Algorithm.

FIG. 1. �(pp ! H
±)/2cs = �0(mH±) as a function of mH± at the LHC (

p
s = 13 TeV).

for the MadGraph [33] event generator. We use the NNPDF [34] parton distribution

functions (PDFs) for the signal and background event generation. For the signal, we

use fixed factorization µF and renormalization µR scales at µF = µR = mH± while for

the background these scales are chosen at the appropriate scale of the process. We use

Pythia6 [35] for subsequent showering and hadronization of the generated events. Detec-

tor simulation is performed using Delphes [36] which employs the FastJet [37] package

for jet clustering. Jets are clustered using the anti-kT algorithm [38] with the clustering

parameter R = 0.4. For the multivariate analysis (MVA), we use the Boosted Decision

Tree (BDT) algorithm in the TMVA [39] framework. In this analysis, all calculations are

done at the leading order, for simplicity.

A. Signal

We focus the H
+ (H�) production from the cs̄ (c̄s) initial state followed by the decay

H
±

! W
±
h125. We consider a semileptonic final state where W

± decays leptonically

and h125 decays to bb̄. Therefore, the chain of the signal process in our case is

pp ! H
±
! W

±
h125 ! `

± + /ET + bb̄ . (35)

Here, ` = {e, µ}. We then have one charged lepton, two b-jets and missing transverse

energy in the final state and our event selection criteria is exactly one charged lepton

(either an electron or a muon including their anti-particles), at least two jets and missing

transverse energy that pass the following basic selection cuts:
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Process W + n j Wbj Wbb̄ tt̄+ n j tj tb tW WW WZ Wh125

x-sec (pb) 1.53⇥ 105 308.9 41.7 431.3 174.6 2.6 54.0 67.8 25.4 1.1

TABLE II. Parton-level cross sections of various background processes (without any cut) at the

LHC (
p
s = 13 TeV). Here, n is the number of jets.

• Lepton: pT (`) > 25 GeV, |⌘(`)| < 2.5

• Jet: pT (J) > 25 GeV, |⌘(J)| < 4.5

• Missing transverse energy: /ET > 25 GeV

• �R separation: �R(J1, J2) > 0.4, �R(`, J) > 0.4

Here, J1 and J2 denote the first and the second highest pT jets. After selecting the events,

we further demand b-tagging on the two leading-pT jets. The b-tagging on jets can reduce

the background very e↵ectively but it can also somewhat reduce the signal. Therefore,

to enhance the signal cut e�ciency we do not always demand two b’s tagging although

there are two b-jets present in the signal. Depending on the number of b-tagged jets we

demand, we define the following two signal categories

• 1b-tag: In this category, we demand at least one b-tagged jet among the two leading

pT jets.

• 2b-tag: In this category, we demand that both the two leading pT jets are b-tagged.

This category is a subset of the 1b-tag category.

To reconstruct the Higgs boson, we apply an invariant mass cut |mH± �mh125 | < 20 GeV

around the Higgs boson mass mh125 = 125 GeV. However, the full event is not totally

reconstructible due to the presence of the missing transverse energy.

B. Background

The main background for the signal with one lepton, at least one or two b-tagged jets

and missing energy can come from the following SM processes:

1. W
± + jets: The definition of our inclusive W

± + jets background includes up to

two jets and we include the b parton in the jet definition i.e. j = {g, u, d, c, s, b}.

We generate these background events in two separate parts. In one sample, we only

consider light jets i.e.j = {g, u, d, c, s} and combine pp ! W
±+(0, 1, 2) j processes

where we set the matching scale Qcut = 25 GeV. This background is the largest
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Parameter scan

Implementing Genetic Algorithm scan for points satisfying:

model this is the state that couples the strongest to bb̄ (see Eqs. (28) and (29)).

In addition, our model must be able to pass several consistency tests in order to be

phenomenologically viable, such as reproducing the electroweak precision measurements.

The original formulation [46] for BSM contributions to the electroweak precision observ-

ables in terms of the S, T and U parameters assumes that the scale of new physics is & 1

TeV. As our model allows for new exotic scalars to have masses around the electroweak

scale, we must employ the more general formalism introduced in Refs. [47, 48] with an

extended set of oblique parameters S, T , U , V , W and X. These can then be used to

calculate S
0, T 0 and U

0 for which the standard Z-pole constraints on S, T and U apply.

To compute S
0, T 0 and U

0, we have applied the results in Ref. [49], in which S, T , U ,

V , W and X are computed for a general N -Higgs Doublet Model with the inclusion of

arbitrary numbers of electrically charged and neutral SU(2)L singlets. To summarize,

when scanning the model parameter space for phenomenologically interesting regions, we

look for points for which the following constraints are satisfied:

• There are no tachyonic scalar masses and the scalar potential is bounded from below

(the corresponding constraints on the quartic couplings can be found in Ref. [12]

taking into account that our �ii di↵er by a factor two from theirs).

• The tree-level scalar four-point amplitudes satisfy |M| < 4⇡.

• The SM Higgs-like scalar has a mass no more than 5 GeV away from the observed

125 GeV value, and has a Yukawa coupling to the top quark satisfying |ytt̄h125 | 2

[0.9, 1.1].

• The exotic decays Z ! ha,bAa,b are kinematically forbidden, as to not be in conflict

with the precision measurements of the Z width.

• The lightest charged Higgs has a mass in the range [m(min)
H± , 1000GeV], with a

di↵erent m(min)
H± for each run (taking values 250, 300, 400 or 450 GeV).

• The computed values of S 0, T 0 and U
0 fall within the error bars on S, T and U as

reported in Ref. [50].

• The value of 2
cs
⇥ BRWh125 is at least 0.5 above the 100 fb�1 discovery threshold

for the 1b-tag category set by the MVA.
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Selection cuts:

Process W + n j Wbj Wbb̄ tt̄+ n j tj tb tW WW WZ Wh125

x-sec (pb) 1.53⇥ 105 308.9 41.7 431.3 174.6 2.6 54.0 67.8 25.4 1.1

TABLE II. Parton-level cross sections of various background processes (without any cut) at the

LHC (
p
s = 13 TeV). Here, n is the number of jets.

• Lepton: pT (`) > 25 GeV, |⌘(`)| < 2.5

• Jet: pT (J) > 25 GeV, |⌘(J)| < 4.5

• Missing transverse energy: /ET > 25 GeV

• �R separation: �R(J1, J2) > 0.4, �R(`, J) > 0.4

Here, J1 and J2 denote the first and the second highest pT jets. After selecting the events,

we further demand b-tagging on the two leading-pT jets. The b-tagging on jets can reduce

the background very e↵ectively but it can also somewhat reduce the signal. Therefore,

to enhance the signal cut e�ciency we do not always demand two b’s tagging although

there are two b-jets present in the signal. Depending on the number of b-tagged jets we

demand, we define the following two signal categories

• 1b-tag: In this category, we demand at least one b-tagged jet among the two leading

pT jets.

• 2b-tag: In this category, we demand that both the two leading pT jets are b-tagged.

This category is a subset of the 1b-tag category.

To reconstruct the Higgs boson, we apply an invariant mass cut |mH± �mh125 | < 20 GeV

around the Higgs boson mass mh125 = 125 GeV. However, the full event is not totally

reconstructible due to the presence of the missing transverse energy.

B. Background

The main background for the signal with one lepton, at least one or two b-tagged jets

and missing energy can come from the following SM processes:
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FIG. 5. The 5� discovery contours of 2cs ⇥ BRWh125 (scaled by 103) as functions of mH± for

L = 50, 100 fb�1 at the LHC (
p
s = 13 TeV) for (a) 1b-tag category and (b) 2b-tag category.

The dots represent the parameter points resulting form the GA scan with the corresponding

values of ⇠ encoded in their color.

Although the lightest charged scalar (identified as H± for the analysis) does not primarily

decay into Wh125, it can still reach the discovery regions due to being mainly produced

through cs̄ fusion and having BR(Wh125) comparable to the BR of the other decay

channels. In Fig. 6a we show the BR(H±
! W

±
h125) vs BR(H+

! light quarks) for

the lightest charged scalar, where light scalars refers to first and second generations and
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Mass and FCNC matrices:
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where Qa
L = (pa

L na
L)T and φi are the SU(2) weak isospin (left-handed) quark and Higgs

doublets, respectively, and φ̃k = iσ2φ∗
k. The p and n fields are the positively and negatively

charged quark fields, respectively. Upon rotation to the mass basis they will yield the
physical up and down quarks. The a and b are fermion family indices. Γ and ∆ are 3 × 3
Yukawa coupling matrices for the down and up sector, respectively. Upon spontaneous
symmetry breaking, the scalar doublets develop neutral vacuum expectation values (VEVs),
such that1 〈φ1〉 = v1/

√
2 and 〈φ2〉 = v2/

√
2, with v2

1 + v2
2 = (246 GeV)2. We define

tan β = v2/v1. For a CP-conserving model (both at the explicit and vacuum levels), the
model will have a charged scalar H+, a pseudoscalar A and two CP-even scalars, h and H.
The 2 × 2 CP-even mass matrix is diagonalized via an angle α.

The up and down quark mass matrices are then given by

Mp = 1√
2

(∆1v1 + ∆2v2) , Mn = 1√
2

(Γ1v1 + Γ2v2) , (2.2)

the eigenvalues of which will be the physical quark masses. In fact, these mass matrices
will be bidiagonalized in the usual form as

Du = V †
LMpVR = diag{mu, mc, mt} , Dd = U †

LMnUR = diag{md, ms, mb} , (2.3)

where mx are the physical quark masses, whereas V and U are U(3) matrices. These
matrices relate the physical quark states u and d to the p and n original states in the
following manner:

pL = VL uL , pR = VR uR ,

nL = ULdL , nR = VR dR . (2.4)

The CKM matrix is then obtained as

V = V †
LUL . (2.5)

We also define the following matrices,

Nu = 1√
2

V †
L (∆1v2 − ∆2v1) VR , Nd = 1√

2
U †

L (Γ1v2 − Γ2v1) UR , (2.6)

which end up being related to the Yukawa couplings between the physical scalars and
quarks. In fact, with the usual conventions (see for instance [9, 35]), the Yukawa Lagrangian

1We are assuming these VEVs are real which is the case of the BGL model but the generalization to
complex ones is trivial.
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smallness of the FCNC couplings in a way similar to the BGL case. In the considered
version of the model, tree-level FCNC interactions occur in the down-quark sector while
those in the up-quark sector are forbidden by the flavor symmetry. In this work, we
employ publicly available tools such as the generic BSM spectrum generator SARAH/SPheno
interfaced with the widely-used Higgs (HiggsBounds/HiggsSignals) and flavor (Flavio)
observables’ analysers enabling us to thoroughly verify the model parameter space against
the most relevant theoretical and experiments bounds. We find that relatively light scalars
can successfully pass through the stringent experimental constraints arising from flavor
data and hence may occur within the reach of the current and future collider experiments.
To motivate future searches, we also outline possible signatures of nonstandard scalars
present in our model. For such a purpose we use MadGraph5_aMC@NLO 2.6.2 and focus on
scalar and pseudoscalar production via gluon fusion with subsequent decay into tau leptons.

Our article is organized as follows. In section 2 we review the framework of BGL
models. Then, in section 3, we build our model, a 3HDM endowed with a U(1) × Z2
symmetry with a non-trivial structure in the Yukawa sector. In section 4 we review the
constraints imposed upon the model, both theoretical — boundedness from below, unitar-
ity, electroweak precision bounds — and experimental — LHC Higgs data and searches
for heavier scalars, flavour physics data, among others. In section 5 we explain in detail
the procedure we followed to perform a thorough numerical scan of the model and present
the results we found for the parameter space that survives all constraints imposed upon
the model. We conclude in section 6 with an overview of this work and a discussion of its
significance.

2 The BGL model

The BGL model is a version of the 2HDM where the scalar interactions with fermions
violate flavour — meaning, unlike the interactions of the photon and Z boson, the neutral
scalars in the BGL model “jump families” like the W boson does. In 2HDM the general
recipe to avoid FCNC is to only allow fermions of the same charge to couple to just one of
the doublets [31]. This is usually enforced by imposing a Z2 or U(1) [32] symmetry on the
model (see also [33, 34]). The reason for doing this in the first place is the fact that tree-
level mediated FCNCs would make significant contributions to flavour sector observables
such as the mass differences of the K0, Bd or Bs mesons, or to the εK quantity, ruining
an agreement found within the SM for those quantities — unless the masses of the new
scalars are all of order TeV, or the FCNC Yukawa couplings are tuned to be very small.

The BGL model is remarkable since it forces the FCNC couplings to be heavily sup-
pressed as the result of a symmetry. The model therefore provides a simple and natural
explanation as to why NP contributions to flavour observables would not ruin the agree-
ment found within the SM, without the need of any fine-tuning. To understand how this
is achieved, consider the Yukawa Lagrangian for the quark sector in the 2HDM,

− LY =
3∑

a,b=1

{
Q̄a

L [(Γ1)ab φ1 + (Γ2)ab φ2] nb
R + Q̄a

L

[
(∆1)ab φ̃1 + (∆2)ab φ̃2

]
pb

R

}
+ h.c.,

(2.1)
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In the quark sector, the symmetry transformations of eq. (2.8) impose zero values in
several entries of the Yukawa matrices of eq. (2.1). They are found to be

Γ1 =




0 0 0
× × ×
× × ×



 , Γ2 =




× × ×
0 0 0
0 0 0



 ,

∆1 =




0 0 0
0 × ×
0 × ×



 , ∆2 =




× 0 0
0 0 0
0 0 0



 , (2.9)

where, in general, “×” indicates a complex non-zero entry. Then, the form of ∆1 and ∆2
implies that the matrix Mp is block diagonal, namely

Mp =




× 0 0
0 × ×
0 × ×



 . (2.10)

and it may be bi-diagonalized by unitary matrices VL and VR of the form

VL =




1 0 0
0 × ×
0 × ×



 , VR =




eiθR 0 0

0 × ×
0 × ×



 . (2.11)

with some phase θR. The shape of VL is crucial for the FCNC suppression. First, though,
we see that the matrices VL and VR can simultaneously bi-diagonalize ∆1 and ∆2, and
therefore Mu and Nu are both diagonal in the basis of physical up quarks. A simple
calculation yields

Nu = diag
(

− mu1

tan β
, mu2 tan β , mu3 tan β

)
, (2.12)

with mu1,2,3 the masses of the up-type quarks. However, we have not yet specified which
generation is affected by the BGL transformations. Nevertheless, the above shows that for
any choice of quark generation in eq. (2.8) the Nu matrix is diagonal in the up-type quark
mass basis, and therefore — since this matrix contains the quark Yukawa couplings of the
neutral scalars — no FCNC occurs in the up sector.

The down-quark sector is a different story: given the form of the VL matrix in eq. (2.11)
and with the CKM matrix V given by (2.5), we immediately obtain

UL ≡




V (1, 1) V (1, 2) V (1, 3)

× × ×
× × ×



 , (2.13)

and the impact of this structure on the left rotation matrix for the down-quark sector is
considerable. Indeed, a straightforward calculation yields, for the Nd matrix (which, we
remind the reader, contains the Yukawa couplings between the physical down-type quarks
and scalars)

(Nd)aa = ma

(

tan β − |V1a|2

sin β cos β

)

, (2.14)
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where Qa
L = (pa

L na
L)T and φi are the SU(2) weak isospin (left-handed) quark and Higgs

doublets, respectively, and φ̃k = iσ2φ∗
k. The p and n fields are the positively and negatively

charged quark fields, respectively. Upon rotation to the mass basis they will yield the
physical up and down quarks. The a and b are fermion family indices. Γ and ∆ are 3 × 3
Yukawa coupling matrices for the down and up sector, respectively. Upon spontaneous
symmetry breaking, the scalar doublets develop neutral vacuum expectation values (VEVs),
such that1 〈φ1〉 = v1/

√
2 and 〈φ2〉 = v2/

√
2, with v2

1 + v2
2 = (246 GeV)2. We define

tan β = v2/v1. For a CP-conserving model (both at the explicit and vacuum levels), the
model will have a charged scalar H+, a pseudoscalar A and two CP-even scalars, h and H.
The 2 × 2 CP-even mass matrix is diagonalized via an angle α.

The up and down quark mass matrices are then given by

Mp = 1√
2

(∆1v1 + ∆2v2) , Mn = 1√
2

(Γ1v1 + Γ2v2) , (2.2)

the eigenvalues of which will be the physical quark masses. In fact, these mass matrices
will be bidiagonalized in the usual form as

Du = V †
LMpVR = diag{mu, mc, mt} , Dd = U †

LMnUR = diag{md, ms, mb} , (2.3)

where mx are the physical quark masses, whereas V and U are U(3) matrices. These
matrices relate the physical quark states u and d to the p and n original states in the
following manner:

pL = VL uL , pR = VR uR ,

nL = ULdL , nR = VR dR . (2.4)

The CKM matrix is then obtained as

V = V †
LUL . (2.5)

We also define the following matrices,

Nu = 1√
2

V †
L (∆1v2 − ∆2v1) VR , Nd = 1√

2
U †

L (Γ1v2 − Γ2v1) UR , (2.6)

which end up being related to the Yukawa couplings between the physical scalars and
quarks. In fact, with the usual conventions (see for instance [9, 35]), the Yukawa Lagrangian

1We are assuming these VEVs are real which is the case of the BGL model but the generalization to
complex ones is trivial.
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In the quark sector, the symmetry transformations of eq. (2.8) impose zero values in
several entries of the Yukawa matrices of eq. (2.1). They are found to be

Γ1 =




0 0 0
× × ×
× × ×



 , Γ2 =




× × ×
0 0 0
0 0 0



 ,

∆1 =




0 0 0
0 × ×
0 × ×



 , ∆2 =




× 0 0
0 0 0
0 0 0



 , (2.9)

where, in general, “×” indicates a complex non-zero entry. Then, the form of ∆1 and ∆2
implies that the matrix Mp is block diagonal, namely

Mp =




× 0 0
0 × ×
0 × ×



 . (2.10)

and it may be bi-diagonalized by unitary matrices VL and VR of the form

VL =




1 0 0
0 × ×
0 × ×



 , VR =




eiθR 0 0

0 × ×
0 × ×



 . (2.11)

with some phase θR. The shape of VL is crucial for the FCNC suppression. First, though,
we see that the matrices VL and VR can simultaneously bi-diagonalize ∆1 and ∆2, and
therefore Mu and Nu are both diagonal in the basis of physical up quarks. A simple
calculation yields

Nu = diag
(

− mu1

tan β
, mu2 tan β , mu3 tan β

)
, (2.12)

with mu1,2,3 the masses of the up-type quarks. However, we have not yet specified which
generation is affected by the BGL transformations. Nevertheless, the above shows that for
any choice of quark generation in eq. (2.8) the Nu matrix is diagonal in the up-type quark
mass basis, and therefore — since this matrix contains the quark Yukawa couplings of the
neutral scalars — no FCNC occurs in the up sector.

The down-quark sector is a different story: given the form of the VL matrix in eq. (2.11)
and with the CKM matrix V given by (2.5), we immediately obtain

UL ≡




V (1, 1) V (1, 2) V (1, 3)

× × ×
× × ×



 , (2.13)

and the impact of this structure on the left rotation matrix for the down-quark sector is
considerable. Indeed, a straightforward calculation yields, for the Nd matrix (which, we
remind the reader, contains the Yukawa couplings between the physical down-type quarks
and scalars)

(Nd)aa = ma

(

tan β − |V1a|2

sin β cos β

)

, (2.14)
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for the diagonal terms, whereas the off-diagonal ones are given by

(Nd)ab = − V ∗
1aV1b

sin β cos β
mb (a "= b) . (2.15)

Thus we see that the off-diagonal Yukawa couplings between scalars and down-type quarks
— which determine the strength of the FCNC interactions — are CKM-suppressed. There
is a freedom to choose the “first” family as any one of the physical quark generations, and
therefore one has three BGL models with FCNC in the down-quark sector and without
them in the up-sector. An analogous symmetry to that of eq. (2.8) associated with a given
family of up-type quarks would yield other three models, where CKM-suppressed FCNC
occur in the up-quark sector and where the down-sector is free from such flavour violation
interactions.

This then is how the hallmark of the BGL models is achieved: a flavour-breaking
symmetry, which yields off-diagonal FCNC couplings naturally suppressed by the entries
of the CKM matrix elements. In what follows we build a similar model but for the case of
three Higgs doublets.

3 A BGL-like 3HDM

Beyond the aesthetic reason of considering three Higgs doublets in analogy with three
fermion families, or the intellectual challenge of attempting to reproduce the BGL structure
with a larger scalar sector (see [37] for an earlier attempt), there are other reasons to explore
a 3HDM with similarly suppressed FCNCs. The BGL model is quite successful, but recent
studies [19] have found that its parameter space may be quite constrained. A possible
criticism one may levy at the analysis of [19] is that the latter has extended the BGL
structure to the leptonic sector as well — something that is not mandatory as the model
has enough freedom to accommodate a flavour-preserving leptonic sector in what concerns
the Yukawa interactions — which is what we will consider here. Nonetheless, this shows
that even with natural FCNC coupling suppression via off-diagonal CKM matrix elements,
the BGL structure can be quite constrained from experimental data. Working within the
framework of a 3HDM will in principle imply greater freedom in terms of parameters that
can be adjusted to comply with experimental bounds.

There is also another reason, more theoretical and fundamental, to attempt a 3HDM
study of the BGL paradigm. In many instances, comparisons of the 2HDM with 3HDMs
have revealed how special a model the 2HDM is. To give only a few examples, tree-level
vacuum stability against charge breaking or spontaneous CP breaking was found for charge-
and-CP conserving minima within the 2HDM [38–40], but charge breaking minima were
found to coexist with charge-preserving ones for NHDMs with N ≥ 3 [41]; a full listing of all
possible symmetries of the SU(2)×U(1) invariant 2HDM was found [42, 43] while for 3HDM
we refer to [24, 44, 45]; generic bounded-from-below [42, 43] and unitarity [46] bounds were
found for the 2HDM, but for the 3HDM such bounds only exist for particular versions
of the model. As such, the possibility of ascertaining whether the BGL structure can be
extended to a full 3HDM compels us to try to find it. And of course one can obtain an exact
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for the physical fields may be written as

−LY = iA

v

[
ū
(
NuPR − N †

uPL

)
u + d̄

(
N †

dPL − NdPR

)
d
]

+h

v
ū
[(

sβ−αMu − cβ−αN †
u

)
PL + (sβ−αMu − cβ−αNu) PR

]
u

+h

v
d̄
[(

sβ−αMd − cβ−αN †
d

)
PL + (sβ−αMd − cβ−αNd) PR

]
d

+H

v
ū
[(

cβ−αMu + sβ−αN †
u

)
PL + (cβ−αMu + sβ−αNu) PR

]
u

+H

v
d̄
[(

cβ−αMd + sβ−αN †
d

)
PL + (cβ−αMd + sβ−αNd) PR

]
d

+
√

2H+

v
ū
(
N †

uV PL − V NdPR

)
d +

√
2H−

v
d̄
(
V †NuPR − N †

dV †PL

)
u , (2.7)

where we used the notation sx ≡ sin x, cx ≡ cos x. On a side note, we can see from the
above Lagrangian how in the alignment limit the lighter Higgs’ Yukawa interactions are
exactly like those of the SM particles: in that limit one has sin(β − α) = 1 — which forces
the vertices between h and the electroweak gauge bosons to be identical to those of the SM
Higgs particle — and therefore the Yukawa couplings of h to quark pairs are proportional
to the quark mass, since the contribution of the N matrices vanishes.

In models with flavour conservation, each family of fermions of the same electric charge
couples to a single Higgs doublet, via the imposition of discrete Z2 [31, 36] or global U(1) [32]
symmetries. Then, the diagonalization of the Mu and Md matrices, eq. (2.3), is the same
as that of matrices Nu and Nd and there are no flavour-violating Yukawa interactions
mediated by neutral scalars. In general, though, that will not be the case and FCNCs
occur at tree level.

The BGL model is based on a symmetry imposed on the whole of the Lagrangian,
where some of the quark and scalar fields transform as

QL1 → eiθQL1, pR1 → e2iθpR1, Φ2 → eiθΦ2, (2.8)

with θ %= nπ, with n an arbitrary integer. All other fields remain invariant under this
symmetry. As we see, the symmetry treats differently one of the generations of quarks,2
since only the “first family” of quarks is affected by the transformations above. In fact,
there are six (not counting the leptonic sector) models of the BGL type, which depend
on which generation of quarks is chosen in eq. (2.8) above. For the scalar sector, the
above symmetry transformation yields a Peccei-Quinn [32] scalar potential, which must be
complemented with a soft breaking parameter as to yield a massive pseudoscalar particle.

2In fact, these are unrotated quark fields, not yet corresponding to physical quarks, but the principle
holds.
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In the quark sector, the symmetry transformations of eq. (2.8) impose zero values in
several entries of the Yukawa matrices of eq. (2.1). They are found to be

Γ1 =




0 0 0
× × ×
× × ×



 , Γ2 =




× × ×
0 0 0
0 0 0



 ,

∆1 =




0 0 0
0 × ×
0 × ×



 , ∆2 =




× 0 0
0 0 0
0 0 0



 , (2.9)

where, in general, “×” indicates a complex non-zero entry. Then, the form of ∆1 and ∆2
implies that the matrix Mp is block diagonal, namely

Mp =




× 0 0
0 × ×
0 × ×



 . (2.10)

and it may be bi-diagonalized by unitary matrices VL and VR of the form

VL =




1 0 0
0 × ×
0 × ×



 , VR =




eiθR 0 0

0 × ×
0 × ×



 . (2.11)

with some phase θR. The shape of VL is crucial for the FCNC suppression. First, though,
we see that the matrices VL and VR can simultaneously bi-diagonalize ∆1 and ∆2, and
therefore Mu and Nu are both diagonal in the basis of physical up quarks. A simple
calculation yields

Nu = diag
(

− mu1

tan β
, mu2 tan β , mu3 tan β

)
, (2.12)

with mu1,2,3 the masses of the up-type quarks. However, we have not yet specified which
generation is affected by the BGL transformations. Nevertheless, the above shows that for
any choice of quark generation in eq. (2.8) the Nu matrix is diagonal in the up-type quark
mass basis, and therefore — since this matrix contains the quark Yukawa couplings of the
neutral scalars — no FCNC occurs in the up sector.

The down-quark sector is a different story: given the form of the VL matrix in eq. (2.11)
and with the CKM matrix V given by (2.5), we immediately obtain

UL ≡




V (1, 1) V (1, 2) V (1, 3)

× × ×
× × ×



 , (2.13)

and the impact of this structure on the left rotation matrix for the down-quark sector is
considerable. Indeed, a straightforward calculation yields, for the Nd matrix (which, we
remind the reader, contains the Yukawa couplings between the physical down-type quarks
and scalars)

(Nd)aa = ma

(

tan β − |V1a|2

sin β cos β

)

, (2.14)
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In the quark sector, the symmetry transformations of eq. (2.8) impose zero values in
several entries of the Yukawa matrices of eq. (2.1). They are found to be

Γ1 =




0 0 0
× × ×
× × ×



 , Γ2 =




× × ×
0 0 0
0 0 0



 ,

∆1 =




0 0 0
0 × ×
0 × ×



 , ∆2 =




× 0 0
0 0 0
0 0 0



 , (2.9)

where, in general, “×” indicates a complex non-zero entry. Then, the form of ∆1 and ∆2
implies that the matrix Mp is block diagonal, namely

Mp =




× 0 0
0 × ×
0 × ×



 . (2.10)

and it may be bi-diagonalized by unitary matrices VL and VR of the form

VL =




1 0 0
0 × ×
0 × ×



 , VR =




eiθR 0 0

0 × ×
0 × ×



 . (2.11)

with some phase θR. The shape of VL is crucial for the FCNC suppression. First, though,
we see that the matrices VL and VR can simultaneously bi-diagonalize ∆1 and ∆2, and
therefore Mu and Nu are both diagonal in the basis of physical up quarks. A simple
calculation yields

Nu = diag
(

− mu1

tan β
, mu2 tan β , mu3 tan β

)
, (2.12)

with mu1,2,3 the masses of the up-type quarks. However, we have not yet specified which
generation is affected by the BGL transformations. Nevertheless, the above shows that for
any choice of quark generation in eq. (2.8) the Nu matrix is diagonal in the up-type quark
mass basis, and therefore — since this matrix contains the quark Yukawa couplings of the
neutral scalars — no FCNC occurs in the up sector.

The down-quark sector is a different story: given the form of the VL matrix in eq. (2.11)
and with the CKM matrix V given by (2.5), we immediately obtain

UL ≡




V (1, 1) V (1, 2) V (1, 3)

× × ×
× × ×



 , (2.13)

and the impact of this structure on the left rotation matrix for the down-quark sector is
considerable. Indeed, a straightforward calculation yields, for the Nd matrix (which, we
remind the reader, contains the Yukawa couplings between the physical down-type quarks
and scalars)

(Nd)aa = ma

(

tan β − |V1a|2

sin β cos β

)

, (2.14)
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In the quark sector, the symmetry transformations of eq. (2.8) impose zero values in
several entries of the Yukawa matrices of eq. (2.1). They are found to be

Γ1 =




0 0 0
× × ×
× × ×



 , Γ2 =




× × ×
0 0 0
0 0 0



 ,

∆1 =




0 0 0
0 × ×
0 × ×



 , ∆2 =




× 0 0
0 0 0
0 0 0



 , (2.9)

where, in general, “×” indicates a complex non-zero entry. Then, the form of ∆1 and ∆2
implies that the matrix Mp is block diagonal, namely

Mp =




× 0 0
0 × ×
0 × ×



 . (2.10)

and it may be bi-diagonalized by unitary matrices VL and VR of the form

VL =




1 0 0
0 × ×
0 × ×



 , VR =




eiθR 0 0

0 × ×
0 × ×



 . (2.11)

with some phase θR. The shape of VL is crucial for the FCNC suppression. First, though,
we see that the matrices VL and VR can simultaneously bi-diagonalize ∆1 and ∆2, and
therefore Mu and Nu are both diagonal in the basis of physical up quarks. A simple
calculation yields

Nu = diag
(

− mu1

tan β
, mu2 tan β , mu3 tan β

)
, (2.12)

with mu1,2,3 the masses of the up-type quarks. However, we have not yet specified which
generation is affected by the BGL transformations. Nevertheless, the above shows that for
any choice of quark generation in eq. (2.8) the Nu matrix is diagonal in the up-type quark
mass basis, and therefore — since this matrix contains the quark Yukawa couplings of the
neutral scalars — no FCNC occurs in the up sector.

The down-quark sector is a different story: given the form of the VL matrix in eq. (2.11)
and with the CKM matrix V given by (2.5), we immediately obtain

UL ≡




V (1, 1) V (1, 2) V (1, 3)

× × ×
× × ×



 , (2.13)

and the impact of this structure on the left rotation matrix for the down-quark sector is
considerable. Indeed, a straightforward calculation yields, for the Nd matrix (which, we
remind the reader, contains the Yukawa couplings between the physical down-type quarks
and scalars)

(Nd)aa = ma

(

tan β − |V1a|2

sin β cos β

)

, (2.14)
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1, φ2, φ3) = µ2
1
(
φ†

1φ1
)

+ µ2
2
(
φ†

2φ2
)

+ µ2
3
(
φ†

3φ3
)

+ λ1
(
φ†

1φ1
)2

+λ2
(
φ†

2φ2
)2

+ λ3
(
φ†

3φ3
)2

+ λ4
(
φ†

1φ1
) (

φ†
2φ2

)
+ λ5

(
φ†

1φ1
) (

φ†
3φ3

)

+λ6
(
φ†

2φ2
) (

φ†
3φ3

)
+ λ7

(
φ†

1φ2
) (

φ†
2φ1

)
+ λ8

(
φ†

1φ3
) (

φ†
3φ1

)

+λ9
(
φ†

2φ3
) (

φ†
3φ2

)
+ λ10

{(
φ†

1φ3
)2

+ h.c.
}

. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1, φ2, φ3) = µ2
12φ†

1φ2 + µ2
13φ†

1φ3 + µ2
23φ†

2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1, φ2, φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1, φ2, φ3) = µ2
1
(
φ†

1φ1
)

+ µ2
2
(
φ†

2φ2
)

+ µ2
3
(
φ†

3φ3
)

+ λ1
(
φ†

1φ1
)2

+λ2
(
φ†

2φ2
)2

+ λ3
(
φ†

3φ3
)2

+ λ4
(
φ†

1φ1
) (

φ†
2φ2

)
+ λ5

(
φ†

1φ1
) (

φ†
3φ3

)

+λ6
(
φ†

2φ2
) (

φ†
3φ3

)
+ λ7

(
φ†

1φ2
) (

φ†
2φ1

)
+ λ8

(
φ†

1φ3
) (

φ†
3φ1

)

+λ9
(
φ†

2φ3
) (

φ†
3φ2

)
+ λ10

{(
φ†

1φ3
)2

+ h.c.
}

. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1, φ2, φ3) = µ2
12φ†

1φ2 + µ2
13φ†

1φ3 + µ2
23φ†

2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1, φ2, φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1, φ2, φ3) = µ2
1
(
φ†

1φ1
)

+ µ2
2
(
φ†

2φ2
)

+ µ2
3
(
φ†

3φ3
)

+ λ1
(
φ†

1φ1
)2

+λ2
(
φ†

2φ2
)2

+ λ3
(
φ†

3φ3
)2

+ λ4
(
φ†

1φ1
) (

φ†
2φ2

)
+ λ5

(
φ†

1φ1
) (

φ†
3φ3

)

+λ6
(
φ†

2φ2
) (

φ†
3φ3

)
+ λ7

(
φ†

1φ2
) (

φ†
2φ1

)
+ λ8

(
φ†

1φ3
) (

φ†
3φ1

)

+λ9
(
φ†

2φ3
) (

φ†
3φ2

)
+ λ10

{(
φ†

1φ3
)2

+ h.c.
}

. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1, φ2, φ3) = µ2
12φ†

1φ2 + µ2
13φ†

1φ3 + µ2
23φ†

2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1, φ2, φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1, φ2, φ3) = µ2
1
(
φ†

1φ1
)

+ µ2
2
(
φ†

2φ2
)

+ µ2
3
(
φ†

3φ3
)

+ λ1
(
φ†

1φ1
)2

+λ2
(
φ†

2φ2
)2

+ λ3
(
φ†

3φ3
)2

+ λ4
(
φ†

1φ1
) (

φ†
2φ2

)
+ λ5

(
φ†

1φ1
) (

φ†
3φ3

)

+λ6
(
φ†

2φ2
) (

φ†
3φ3

)
+ λ7

(
φ†

1φ2
) (

φ†
2φ1

)
+ λ8

(
φ†

1φ3
) (

φ†
3φ1

)

+λ9
(
φ†

2φ3
) (

φ†
3φ2

)
+ λ10

{(
φ†

1φ3
)2

+ h.c.
}

. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1, φ2, φ3) = µ2
12φ†

1φ2 + µ2
13φ†

1φ3 + µ2
23φ†

2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1, φ2, φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.

– 8 –

Higgs doublets:

J
H
E
P
1
1
(
2
0
2
1
)
0
7
9

BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1, φ2, φ3) = µ2
1
(
φ†

1φ1
)

+ µ2
2
(
φ†

2φ2
)

+ µ2
3
(
φ†

3φ3
)

+ λ1
(
φ†

1φ1
)2

+λ2
(
φ†

2φ2
)2

+ λ3
(
φ†

3φ3
)2

+ λ4
(
φ†

1φ1
) (

φ†
2φ2

)
+ λ5

(
φ†

1φ1
) (

φ†
3φ3

)

+λ6
(
φ†

2φ2
) (

φ†
3φ3

)
+ λ7

(
φ†

1φ2
) (

φ†
2φ1

)
+ λ8

(
φ†

1φ3
) (

φ†
3φ1

)

+λ9
(
φ†

2φ3
) (

φ†
3φ2

)
+ λ10

{(
φ†

1φ3
)2

+ h.c.
}

. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1, φ2, φ3) = µ2
12φ†

1φ2 + µ2
13φ†

1φ3 + µ2
23φ†

2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1, φ2, φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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where vk represent the VEVs of each doublet which satisfy v2
1 + v2

2 + v2
3 = (246 GeV)2. The

minimization of the potential yields three equations that can be conveniently resolved by
expressing the quadratic mass parameters µ2

1, µ2
2 and µ2

3 in terms of the three VEVs and
other couplings as follows:

µ2
1 = −1

2

[

2λ1v2
1 + (λ4 + λ7) v2

2 + (λ5 + λ8 + 2λ10) v2
3 + 2

(
µ2

13v3 + µ2
21v2

)

v1

]

, (3.6a)

µ2
2 = −1

2

[

2λ2v2
2 + (λ4 + λ7) v2

1 + (λ6 + λ9) v2
3 + 2

(
µ2

21v1 + µ2
23v3

)

v2

]

, (3.6b)

µ2
3 = −1

2

[

2λ3v2
3 + (λ6 + λ9) v2

2 + (λ5 + λ8 + 2λ10) v2
1 + 2

(
µ2

13v1 + µ2
23v2

)

v3

]

. (3.6c)

For latter use, we parameterize the VEVs as,

v1 = v sin β1 cos β2 , v2 = v sin β2 , v3 = v cos β1 cos β2 , v =
√

v2
1 + v2

2 + v2
3 (3.7)

and setting v13 =
√

v2
1 + v2

3, define the following orthogonal matrix which rotates the
gauge eigenstates into the so-called Higgs basis, greatly simplifying the analysis of the
scalar sector,

Oβ =




v1/v v2/v v3/v

v3/v13 0 −v1/v13
v1v2/(vv13) −v13/v v2v3/(vv13)



 =




sin β1 cos β2 sin β2 cos β1 cos β2

cos β1 0 − sin β1
sin β1 sin β2 − cos β2 cos β1 sin β2



 .

(3.8)
We now turn our attention to the physical scalar spectrum of the model. Since we

are considering a potential with explicit CP conservation and a vacuum which does not
spontaneously break CP, the neutral scalars have definite CP quantum numbers. The
scalar spectrum of the model is composed of a pair of pseudoscalars, a trio of CP-even
scalars and a pair of charged scalars, to be discussed in what follows.

In this work, we have studied the properties of the Higgs sector in the so-called Higgs
alignment limit such that one of the physical scalars coincides with the SM Higgs boson
(i.e. features its mass and interactions). In order to ensure this in the input data prepared
for our parameter scans we would like to utilise an inversion procedure and require the
alignment limit at the level of input parameters. Such an inversion procedure would enable
us to express the parameters of the scalar potential in terms of physical masses, VEVs and
mixing angles.

The mass terms for the pseudoscalar sector can be straightforwardly extracted from the
scalar potential — they will correspond to the terms quadratic in the zk (k = 1, 2, 3) fields,
after one has replaced the expression for the doublets of eq. (3.5) into the potential (3.3)
and (3.4). One obtains

V mass
P =

(
z1 z2 z3

) M2
P

2




z1
z2
z3



 , (3.9)
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This means that putting mh = 125 GeV, α1 = β2 and α2 = −β1 + π/2 will ensure the
presence of a 125 GeV SM Higgs boson in the spectrum — that is the exact alignment limit
of this model, forcing the interactions between h and the electroweak gauge bosons Z, W

(as well as with SM fermions, see below) to be exactly identical to those of the SM.
In practice, the exact alignment implies that (M̃2

S)11 = m2
h and (M̃2

S)12 = (M̃2
S)13 = 0

where we define the Higgs basis mass matrix

M̃2
S ≡ Oβ · M2

S · O!
β . (3.28)

This can be further solved with respect to λ1, λ2 and λ10 such that one can write

λ1 = 1
2v4

1

[
m2

h(v2
1 − v2

3) + 2v4
3λ3 − v2

1v2
2(λ4 + λ7) + v2

2v2
3(λ6 + λ9)

]
,

λ2 = 1
2v2

2

[
m2

h − v2
1(λ4 + λ7) − v2

3(λ6 + λ9)
]

,

λ10 = 1
2v2

1

[
m2

h − 2v2
3λ3 − v2

1(λ5 + λ8) − v2
2(λ6 + λ9)

]
.

(3.29)

At this point, it is instructive to summarise the above steps. First of all, in order to
make our numerical calculations technically feasible and time efficient, in this work the
analysis of the scalar spectrum (couplings, mixing and masses) is performed entirely at
tree level. We note that the scalar potential in eqs. (3.3) and (3.4) contains sixteen real
parameters. Among them, the quadratic parameters µ2

1, µ2
2 and µ2

3 can be traded in favor of
the three VEVs, v1, v2 and v3 or equivalently v, tan β1 and tan β2. In our numerical studies
we take advantage of the exact alignment limit in order to randomly sample tan β1, tan β2,
λ3,...,9 as well the soft parameters µ2

13, µ2
21 and µ2

23 such that, using eq. (3.29), one obtains
the correct λ1, λ2 and λ10 quartic couplings compatible with an exact alignment of the
SM-like Higgs boson. While off-alignment deviations are beyond the scope of this article,
we provide in appendix A generic formulas to obtain the gauge eigenbasis parameters if
the physical masses and mixing angles are provided as inputs.

3.2 The Yukawa sector

Alongside the scalar field transformations of eq. (3.1) the following quark fields are assumed
to transform nontrivially under the U(1) × Z2 flavor symmetry:

U(1) : QL3 → eiαQL3 , pR3 → e2iαpR3 , (3.30a)
Z2 : QL3 → −QL3 , pR3 → −pR3 , nR3 → −nR3 , (3.30b)

with α the same arbitrary phase of eq. (3.1), and the rest of the quark fields remain unaf-
fected under said symmetry transformations. In eq. (3.30), as before, QLa = (pLa, nLa)T

denotes the left-handed quark doublet of the a-th generation whereas pRa and nRa denote
the a-th generation (unrotated) up (positively charged) and down (negatively charged)
type quark singlets respectively. Notice the similarity between these transformation laws
and those of the BGL model, eq. (2.8).
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The quark Yukawa Lagrangian for a 3HDM will then have the general form

LY = −
3∑

k=1

[
Q̄La(Γk)ab φk nRb + Q̄La(∆k)ab φ̃k pRb + h.c.

]
, (3.31)

where as before Γk and ∆k stand for the Yukawa matrices in the down and up quark sectors
respectively. Due to specific charge assignments given for the Higgs doublets and quark
fields under U(1) × Z2 these Yukawa matrices will have the following textures:

Γ1 =




0 0 0
0 0 0
× × 0



 , ∆1 =




0 0 0
0 0 0
0 0 0



 , Γ2, ∆2 =




× × 0
× × 0
0 0 0



 , Γ3, ∆3 =




0 0 0
0 0 0
0 0 ×



 . (3.32)

Therefore, the quark mass matrices that emerge from these Yukawa matrices have the
following structure:

Mp = 1√
2

3∑

k=1
∆kvk =




× × 0
× × 0
0 0 ×



 , Mn = 1√
2

3∑

k=1
Γkvk =




× × 0
× × 0
× × ×



 . (3.33)

We then rotate from the p and n fields to the physical quark states u and d via rotation
matrices VL, VR, UL and UR identical to those of eq. (2.4). We thus obtain diagonal mass
matrices as in eq. (2.3), and the CKM matrix is, as before, given by V = V †

LUL. Let us
now analyse carefully the Yukawa couplings between the neutral scalar eigenstates and the
physical quarks, with particular attention to any FCNC couplings which may arise.

In the alignment limit, with α1 = β1 and α2 = β2, the physical scalar h completely
overlaps with H0. In that limit, the other physical scalars, H1 and H2, will, in general, be
an orthogonal mixture of the intermediate states defined above, H ′

1 and H ′
2.

Now, the terms in the Yukawa Lagrangian pertaining to the interactions between CP-
even scalars and quarks are

L CP even
Y = − 1√

2

[

n̄L

( 3∑

k=1
Γkhk

)

nR + p̄L

( 3∑

k=1
∆khk

)

pR + h.c.

]

, (3.34)

from which, using the rotation matrix of eq. (3.19) to express the hk in terms of H0, we
can obtain

L H0
Y = − H0

v

[

n̄L

(
1√
2

3∑

k=1
Γkvk

)

nR + p̄L

(
1√
2

3∑

k=1
∆kvk

)

pR + h.c.

]

,

= − H0
v

[
d̄LDddR + ūLDuuR + h.c.

]
.

(3.35)

In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.
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The quark Yukawa Lagrangian for a 3HDM will then have the general form

LY = −
3∑

k=1

[
Q̄La(Γk)ab φk nRb + Q̄La(∆k)ab φ̃k pRb + h.c.

]
, (3.31)

where as before Γk and ∆k stand for the Yukawa matrices in the down and up quark sectors
respectively. Due to specific charge assignments given for the Higgs doublets and quark
fields under U(1) × Z2 these Yukawa matrices will have the following textures:

Γ1 =




0 0 0
0 0 0
× × 0



 , ∆1 =




0 0 0
0 0 0
0 0 0



 , Γ2, ∆2 =




× × 0
× × 0
0 0 0



 , Γ3, ∆3 =




0 0 0
0 0 0
0 0 ×



 . (3.32)

Therefore, the quark mass matrices that emerge from these Yukawa matrices have the
following structure:

Mp = 1√
2

3∑

k=1
∆kvk =




× × 0
× × 0
0 0 ×



 , Mn = 1√
2

3∑

k=1
Γkvk =




× × 0
× × 0
× × ×



 . (3.33)

We then rotate from the p and n fields to the physical quark states u and d via rotation
matrices VL, VR, UL and UR identical to those of eq. (2.4). We thus obtain diagonal mass
matrices as in eq. (2.3), and the CKM matrix is, as before, given by V = V †

LUL. Let us
now analyse carefully the Yukawa couplings between the neutral scalar eigenstates and the
physical quarks, with particular attention to any FCNC couplings which may arise.

In the alignment limit, with α1 = β1 and α2 = β2, the physical scalar h completely
overlaps with H0. In that limit, the other physical scalars, H1 and H2, will, in general, be
an orthogonal mixture of the intermediate states defined above, H ′

1 and H ′
2.

Now, the terms in the Yukawa Lagrangian pertaining to the interactions between CP-
even scalars and quarks are

L CP even
Y = − 1√

2

[

n̄L

( 3∑

k=1
Γkhk

)

nR + p̄L

( 3∑

k=1
∆khk

)

pR + h.c.

]

, (3.34)

from which, using the rotation matrix of eq. (3.19) to express the hk in terms of H0, we
can obtain

L H0
Y = − H0

v

[

n̄L

(
1√
2

3∑

k=1
Γkvk

)

nR + p̄L

(
1√
2

3∑

k=1
∆kvk

)

pR + h.c.

]

,

= − H0
v

[
d̄LDddR + ūLDuuR + h.c.

]
.

(3.35)

In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.

– 14 –

Up/down mass matrices:

J
H
E
P
1
1
(
2
0
2
1
)
0
7
9

The quark Yukawa Lagrangian for a 3HDM will then have the general form

LY = −
3∑

k=1

[
Q̄La(Γk)ab φk nRb + Q̄La(∆k)ab φ̃k pRb + h.c.

]
, (3.31)

where as before Γk and ∆k stand for the Yukawa matrices in the down and up quark sectors
respectively. Due to specific charge assignments given for the Higgs doublets and quark
fields under U(1) × Z2 these Yukawa matrices will have the following textures:

Γ1 =




0 0 0
0 0 0
× × 0



 , ∆1 =




0 0 0
0 0 0
0 0 0



 , Γ2, ∆2 =




× × 0
× × 0
0 0 0



 , Γ3, ∆3 =




0 0 0
0 0 0
0 0 ×



 . (3.32)

Therefore, the quark mass matrices that emerge from these Yukawa matrices have the
following structure:

Mp = 1√
2

3∑

k=1
∆kvk =




× × 0
× × 0
0 0 ×



 , Mn = 1√
2

3∑

k=1
Γkvk =




× × 0
× × 0
× × ×



 . (3.33)

We then rotate from the p and n fields to the physical quark states u and d via rotation
matrices VL, VR, UL and UR identical to those of eq. (2.4). We thus obtain diagonal mass
matrices as in eq. (2.3), and the CKM matrix is, as before, given by V = V †

LUL. Let us
now analyse carefully the Yukawa couplings between the neutral scalar eigenstates and the
physical quarks, with particular attention to any FCNC couplings which may arise.

In the alignment limit, with α1 = β1 and α2 = β2, the physical scalar h completely
overlaps with H0. In that limit, the other physical scalars, H1 and H2, will, in general, be
an orthogonal mixture of the intermediate states defined above, H ′

1 and H ′
2.

Now, the terms in the Yukawa Lagrangian pertaining to the interactions between CP-
even scalars and quarks are

L CP even
Y = − 1√

2

[

n̄L

( 3∑

k=1
Γkhk

)

nR + p̄L

( 3∑

k=1
∆khk

)

pR + h.c.

]

, (3.34)

from which, using the rotation matrix of eq. (3.19) to express the hk in terms of H0, we
can obtain

L H0
Y = − H0

v

[

n̄L

(
1√
2

3∑

k=1
Γkvk

)

nR + p̄L

(
1√
2

3∑

k=1
∆kvk

)

pR + h.c.

]

,

= − H0
v

[
d̄LDddR + ūLDuuR + h.c.

]
.

(3.35)

In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.
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In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.
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In the above matrix, we find

(B2
C)22 = − 1

2v1v3v2
13

[
v5

1v3(2λ10 + λ8) + v1
(
v2

2v3
3λ7 + v5

3(2λ10 + λ8)
)

+ 2v4
1µ2

13 + 4v2
1v2

3µ2
13

+ 2v3
3(v3µ2

13 + v2µ2
21) + v3

1
(
2v3

3(2λ10 + λ8) + v2
2v3λ9 + 2v2µ2

23
)]

,

(B2
C)23 = − v

[
v1v2v3(λ7 − λ9) + 2v3µ2

21 − 2v1µ2
23
]

2v2
13

,

(B2
C)33 = − v2 [v2

1v2λ7 + 2v1µ2
21 + v3(v2v3λ9 + 2µ2

23)
]

2v3v2
13

. (3.15)

Then, one switches to the mass basis in the charged scalar mass matrix as follows,

Oγ2 · (BC)2 · OT
γ2 =




0 0 0
0 m2

C1 0
0 0 m2

C2



 , (3.16a)

with the charged mixing matrix

Oγ2 =




1 0 0
0 cos γ2 − sin γ2
0 sin γ2 cos γ2



 , (3.16b)

and where mC1 and mC2 denote the masses of the two physical charged scalars, H±
1 and

H±
2 , respectively.

Repeating the procedure above also for the CP-even states, we obtain

V mass
S =

(
h1 h2 h3

) M2
S

2




h1
h2
h3



 , (3.17)

where M2
S is a 3 × 3 symmetric mass matrix. In explicit form,

M2
S =





−µ2
21v2 + µ2

13v3 − 2λ1v3
1

v1
v1v2(λ4 + λ7) + µ2

21 v1v3(2λ10 + λ5 + λ8) + µ2
13

v1v2(λ4 + λ7) + µ2
21 −µ2

21v1 + µ2
23v3 − 2λ2v3

2
v2

v2v3(λ6 + λ9) + µ2
23

v1v3(2λ10 + λ5 + λ8) + µ2
13 v2v3(λ6 + λ9) + µ2

23 −µ2
13v1 + µ2

23v2 − 2λ3v3
3

v3





.

(3.18)
Switching to the Higgs basis, 


H0
H ′

1
H ′

2



 = Oβ ·




h1
h2
h3



 . (3.19)

we notice that the state H0 has the same gauge and Yukawa couplings at tree level as those
of the SM Higgs boson.
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In a similar manner, we can write down the Yukawa couplings of H ′
1 and H ′

2 with the
down type quarks as follows:

L
H′

1,H′
2

Y = −H ′
1

v
d̄LNd1dR − H ′

2
v

d̄LNd2dR + h.c. , (3.36)

where the matrices Nd1 and Nd2 are given by

Nd1 = v√
2v13

U †
L(Γ1v3 − Γ3v1)UR ,

Nd2 = U †
L

[
v2
v13

1√
2

(Γ1v1 + Γ3v3) − v13
v2

1√
2

Γ2v2

]
UR .

(3.37a)

To simplify further the expressions for Nd1 and Nd2, we go back to the textures of the mass
matrices in eq. (3.33). From the block diagonal structure of Mu, one can conclude that the
corresponding bidiagonalizing matrices, VL and VR, should have block diagonal structures
too. In fact, we can choose

VL =




× × 0
× × 0
0 0 1



 (3.38)

with the understanding that the phase of (Mu)33 can always be absorbed into (VR)33. Here,
unlike the BGL example of section 2, we are choosing to single out the third family. Then,
from eq. (2.5) we obtain

(UL)3A = V3A , (3.39)

which means that the third row of UL is identical to that of the CKM matrix, as occurred
in the 2HDM BGL case. To proceed further, it is useful to define the following projection
matrix

P =




0 0 0
0 0 0
0 0 1



 . (3.40)

Thus, in view of the structures of the Yukawa matrices, we obtain the following relations
in the down quark sector:

Γ3 = (Γ3)33P ,
1√
2

(Γ1v1 + Γ3v3) = P Md . (3.41)

Using eqs. (3.39) and (3.41), the expressions for Nd1 and Nd2 can now be simplified so that:

(Nd1)AB = v v3
v1v13

V ∗
3AV3B(Dd)BB − 1√

2
v v13
v1

(Γ3)33V ∗
3A(UR)3B , (3.42a)

(Nd2)AB = v13
v2

(Dd)BBδAB +
(

v13
v2

+ v2
v13

)
V ∗

3AV3B(Dd)BB . (3.42b)

These equations tell us that the FCNC interactions of H ′
2 are exactly BGL-like — all off-

diagonal elements in Nd2 are CKM-suppressed. That however is not the case for H ′
1 —

the first term in the right-hand side of eq. (3.42a) is a matrix whose off-diagonal entries
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too. In fact, we can choose
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with the understanding that the phase of (Mu)33 can always be absorbed into (VR)33. Here,
unlike the BGL example of section 2, we are choosing to single out the third family. Then,
from eq. (2.5) we obtain

(UL)3A = V3A , (3.39)

which means that the third row of UL is identical to that of the CKM matrix, as occurred
in the 2HDM BGL case. To proceed further, it is useful to define the following projection
matrix

P =




0 0 0
0 0 0
0 0 1



 . (3.40)

Thus, in view of the structures of the Yukawa matrices, we obtain the following relations
in the down quark sector:

Γ3 = (Γ3)33P ,
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These equations tell us that the FCNC interactions of H ′
2 are exactly BGL-like — all off-

diagonal elements in Nd2 are CKM-suppressed. That however is not the case for H ′
1 —

the first term in the right-hand side of eq. (3.42a) is a matrix whose off-diagonal entries
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with the understanding that the phase of (Mu)33 can always be absorbed into (VR)33. Here,
unlike the BGL example of section 2, we are choosing to single out the third family. Then,
from eq. (2.5) we obtain

(UL)3A = V3A , (3.39)

which means that the third row of UL is identical to that of the CKM matrix, as occurred
in the 2HDM BGL case. To proceed further, it is useful to define the following projection
matrix

P =




0 0 0
0 0 0
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Thus, in view of the structures of the Yukawa matrices, we obtain the following relations
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corresponding bidiagonalizing matrices, VL and VR, should have block diagonal structures
too. In fact, we can choose

VL =


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× × 0
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
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with the understanding that the phase of (Mu)33 can always be absorbed into (VR)33. Here,
unlike the BGL example of section 2, we are choosing to single out the third family. Then,
from eq. (2.5) we obtain

(UL)3A = V3A , (3.39)

which means that the third row of UL is identical to that of the CKM matrix, as occurred
in the 2HDM BGL case. To proceed further, it is useful to define the following projection
matrix

P =




0 0 0
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0 0 1
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from eq. (2.5) we obtain

(UL)3A = V3A , (3.39)

which means that the third row of UL is identical to that of the CKM matrix, as occurred
in the 2HDM BGL case. To proceed further, it is useful to define the following projection
matrix

P =




0 0 0
0 0 0
0 0 1



 . (3.40)

Thus, in view of the structures of the Yukawa matrices, we obtain the following relations
in the down quark sector:

Γ3 = (Γ3)33P ,
1√
2

(Γ1v1 + Γ3v3) = P Md . (3.41)

Using eqs. (3.39) and (3.41), the expressions for Nd1 and Nd2 can now be simplified so that:

(Nd1)AB = v v3
v1v13

V ∗
3AV3B(Dd)BB − 1√

2
v v13
v1

(Γ3)33V ∗
3A(UR)3B , (3.42a)

(Nd2)AB = v13
v2

(Dd)BBδAB +
(

v13
v2

+ v2
v13

)
V ∗

3AV3B(Dd)BB . (3.42b)

These equations tell us that the FCNC interactions of H ′
2 are exactly BGL-like — all off-

diagonal elements in Nd2 are CKM-suppressed. That however is not the case for H ′
1 —

the first term in the right-hand side of eq. (3.42a) is a matrix whose off-diagonal entries
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L
H′

1,H′
2
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d̄LNd1dR − H ′

2
v

d̄LNd2dR + h.c. , (3.36)
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2v13
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2
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(3.37a)
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BGL-like 3HDM: numerical results
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Figure 1. STU electroweak precision observables for all sampled points. Only coloured points pass
the STU analysis with a confidence level (CL) of, at least, 95%.

rejected. However, as expected in a model with multiple doublets, it is not difficult to find
regions of parameter space for which all constraints on the oblique parameters are satisfied.

In figure 2 we show the effect of non-flavour constraints on the allowed parameter space.
Here, the impact of restrictions from the LHC experiments, both in terms of measurement
of the Higgs bosons’ properties or in the searches for extra scalars, incorporated in the
HS/HB framework have been analysed. Unitarity bounds on the model’s quartic couplings
are also imposed, as well as precision electroweak constraints via the S, T and U parameters,
each leading to a considerable reduction of the allowed parameter space. We see a close
correlation between mA1 and mH1 for large values, stemming mostly from unitarity and
electroweak precision constraints. Note, the same tendency of near-degeneracy is observed
in the mass spectrum of the 2HDM. Furthermore our scan generates very low masses for the
scalars, which are excluded by various direct collider searches and implemented in HS/HB.
It is important to mention that the size of the input soft masses, together with that of the
quartic couplings in table 2 set, approximately, the scale of the physical BSM scalars.

In figure 3 we show how some of the QFV observables might further constrain the
model’s parameter space that survives the Higgs physics, unitarity and electroweak preci-
sion constraints. For instance, the dependency of the ratio of the b → sγ width computed in
the BGL-like 3HDM to the expected SM value as a function of mH1 is shown in figure 3(a).
Here, we observe a dispersion around the SM value such that some of the points deviate
by more than 2σ. The 1σ band is defined in the first line of table 1. In analogy to many
known versions of the 2HDM, the b → sγ constraint is a very important one, excluding a
number of parameter points which otherwise could be perfectly acceptable. Not all flavour
variables yield strong constraints, though — in figure 3(b) we show the values obtained
within our parameter scan for the Kaon system CP-violating εK phase. One notices a
rather minuscule variation around the SM value after all other QFV observables have been
constrained to lie within a 2σ interval of their respective SM-expected values. This is
clearly an indication that there are no substantial FCNC contributions to this observable
in the considered BGL-like 3HDM.
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Figure 2. Scatter plots of the allowed parameter space under several constraints imposed by the
BGL-like 3HDM. While on the right panel, b), we plot the masses of the two lightest BSM CP-even
scalars H1 and H2, the left one, a), showcases the relation between H1 and its heavy CP-even
counterpart H2.

Figure 3. Scatter plots of parameter space allowed by several constraints imposed on the BGL-like
3HDM. In the left panel, (a), we show the results for b → sγ, namely, the ratio of 3HDM-to-SM
branching fractions for B → Xsγ reaction while in the right panel, (b), we plot an analogous ratio
for εK , both in terms of the H1 mass. The colour code is as in figure 2 and grey points are excluded,
at 2σ level, by at least one QFV observable.
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Figure 2. Scatter plots of the allowed parameter space under several constraints imposed by the
BGL-like 3HDM. While on the right panel, b), we plot the masses of the two lightest BSM CP-even
scalars H1 and H2, the left one, a), showcases the relation between H1 and its heavy CP-even
counterpart H2.
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Figure 3. Scatter plots of parameter space allowed by several constraints imposed on the BGL-like
3HDM. In the left panel, (a), we show the results for b → sγ, namely, the ratio of 3HDM-to-SM
branching fractions for B → Xsγ reaction while in the right panel, (b), we plot an analogous ratio
for εK , both in terms of the H1 mass. The colour code is as in figure 2 and grey points are excluded,
at 2σ level, by at least one QFV observable.
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Figure 5. εK as a function of the H±
1 mass for the parameter space allowed under several constraints

imposed on the BGL-like 3HDM. The colour code is the same as in figure 3.

in a Type I 2HDM — again to be expected, certain regions of our parameter space should
mimic well the Type-I behaviour. A similar phenomenon was observed for a 2HDM with
tree-level FCNCs, see [9].

We further observe that the values of the B → Xsγ width in our model approach the
corresponding SM value for very large values of the lightest charged Higgs boson mass.5
This is not surprising since NP contributions to this observable depend on the inverse of
the square of the extra scalars’ masses and are thus expected to approach zero as those
masses tend to infinity. In figure 5 on the other hand, considering again the full set of
phenomenological constraints, we observe how the inverted procedure we are using to
constrain the Yukawa sector yields an excellent agreement with other QFV observables —
there we plot the values of εK as a function of the lightest charged Higgs boson mass, and see
how close it gets to the SM value for all the generated points. We see that this observable
attains, in this model, values extremely close to the SM prediction, with deviations of the
order of ∼ 0.01%. To put these results in context, the current experimental uncertainty on
εK stands at less than 0.5% of its central value. The minimal value of the charged Higgs
boson mass that still reproduces the experimental value of εK and satisfies all constraints
is found to be ∼ 150 GeV.

For completeness, let us also consider the B-meson mass differences. These are the
observables which in the SM are generated by one-loop box diagrams but also receive
tree-level contributions in theories with scalar mediated FCNC interactions in the down-
quarks sector. Again, and as expected, we see in figures 6 and 7 that the values obtained
in the BGL-like 3HDM for ∆MBs and ∆MBd approach their SM values for large enough
masses of the extra scalars. We also see that our scanning procedure produces values of
∆MBd extremely close to that of the SM (even for lower masses), with a larger dispersion

5As we saw in figure 2(b), theoretical and experimental constraints imposed upon the model force the
extra scalars to have small mass splittings for large values of their mass. A value of mH±

1
above 1 TeV thus

corresponds to all other scalar particles having masses of the same order.
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Figure 6. Bs mass difference as a function of the CP-even H1 and pseudoscalar A1 masses. The
colour code is as in figure 4.

Figure 7. Bd mass difference as a function of heavier CP-even Higgs boson masses. The colour
code is the same as in figure 4.

found in ∆MBs , still within a 2σ variation. This is clearly due to the fact that we chose
a specific structure for the Yukawa matrices in eq. (3.42) in order to single out the third
generation. Furthermore, for a BGL-like model, the FCNC interactions are expected to be
suppressed by the CKM matrix elements, which, for the B-meson oscillation observables
under consideration, explains how contributions to ∆MBd , which involve a “jump” across
two generations, are more suppressed than those contributions to ∆MBs , for which scalars
only “jump” one generation in their QFV interactions.

While we do not show all the numerical results explicitly, we have analysed a wealth
of other flavour physics observables, encountering 1σ agreement with current experimental
bounds for all of them. These included the remaining QFV observables such as neutral
Kaon mass differences, neutral B mesons decays to muon and electron pairs and other
leptonic sector measurements, Z → bb̄ observables etc.
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Figure 6. Bs mass difference as a function of the CP-even H1 and pseudoscalar A1 masses. The
colour code is as in figure 4.
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Figure 7. Bd mass difference as a function of heavier CP-even Higgs boson masses. The colour
code is the same as in figure 4.

found in ∆MBs , still within a 2σ variation. This is clearly due to the fact that we chose
a specific structure for the Yukawa matrices in eq. (3.42) in order to single out the third
generation. Furthermore, for a BGL-like model, the FCNC interactions are expected to be
suppressed by the CKM matrix elements, which, for the B-meson oscillation observables
under consideration, explains how contributions to ∆MBd , which involve a “jump” across
two generations, are more suppressed than those contributions to ∆MBs , for which scalars
only “jump” one generation in their QFV interactions.

While we do not show all the numerical results explicitly, we have analysed a wealth
of other flavour physics observables, encountering 1σ agreement with current experimental
bounds for all of them. These included the remaining QFV observables such as neutral
Kaon mass differences, neutral B mesons decays to muon and electron pairs and other
leptonic sector measurements, Z → bb̄ observables etc.
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Predictions for the LHC searches
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Figure 9. The pseudoscalar A1 production cross section in gluon-gluon fusion at the LHC center
of mass energy of 13 TeV, times its decay branching ratio to τ τ̄ as a function of mA1 . Grey points
represent the sets of scenarios excluded by not obeying at least one QFV observable at 2σ. Blue
points, both dark and light shades, correspond to an agreement with all QFV observables at least
at 2σ level. Those points that are further allowed by all imposed constraints are represented by
the dark blue points. The 1 and 2σ observation limits available from the CMS Collaboration for
searches in this channel are taken from [74].

Until the end of LHC operation we can expect an increase in accumulated luminosity
by at least a factor of 100, which would roughly lower the exclusion lines shown in figure 9
by an order of magnitude. As such, we can expect the searches in this channel to at least
exclude parts of the parameter space for mA1 < 400 GeV. In fact, we see in figure 9 that the
maximum of the signal strength occurs for mA1 ! 350 GeV, which is unsurprising, given
that this value roughly corresponds to twice the top mass. In fact, it is well known that the
gluon-gluon fusion cross section has a local maximum for a c.o.m. energy equal to twice
the top mass, both for the production of a CP-even or a CP-odd scalar.

The di-tau channel is also appropriate in searches for a heavier CP-even state, as we
see in figure 10. As before, take notice of the expected sharp drop in the value of the signal
rate for masses mH1 > 2mt. Both in direct production via gluon-gluon fusion into H1, or in
its associated production with a bottom quark pair, the obtained signal strength including
the branching ratio for H1 → τ τ̄ is very close to the current CMS sensitivity for the lower
mass region. Thus, we see that our BGL-like 3HDM is close to being probed by the current
LHC data, and before the end of the next LHC run certain parts of its parameter space can
also be tested in direct searches for BSM scalars. We therefore provide five representative
benchmark points in table 3 to be searched for in the LHC run-III. These were chosen such
that they obey all theoretical and experimental contraints on the scalar, gauge and fermion
sectors, and further satisfying the following criteria:

• BP1 corresponds to the lightest CP-even BSM Higgs boson found in our scans with
mass mH1 = 249 GeV. This point also corresponds the lightest charged Higgs scenario
with mH±

1
= 101 GeV;
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Figure 10. The signal strength for production of a CP-even scalar via the gluon-gluon fusion
mechanism (a) times its branching ratio to τ τ̄ , and (b) with associated production of a bb̄-pair
times its branching fraction to τ τ̄ , as a function of the lightest CP-even mass, mH1 . The colour
code is the same as in figure 9 and the exclusion bounds in both panels were also taken from [74].

• BP2 represents the second-to-lightest CP-even and charged BSM Higgs bosons found
in our anlysis with masses mH1 = 285 GeV and mH±

1
= 146 GeV;

• BP3 and BP4 correspond to the lithest and next-to-lightest CP-odd Higgs boson
found in our scan with masses mA1 = 161 GeV and 206 GeV respectively;

• BP5 offers an early discovery or early exclusion scenario in the gg → A1 → ττ

channel, mA1 = 338 GeV, where the signal strength was found to be the closest one
to the CMS bound.

• BP6 corresponds to an early discovery/exclusion scenario in the gg → H1bb̄ → ττbb̄

channel, mH1 = 313 GeV, where the signal strength was found to be the closest one
to the CMS bound.

• Last but not least, BP7 represents an early discovery/exclusion scenario in the gg →
H1 → ττ channel, mH1 = 353 GeV, where the signal strength was found to be the
closest one to the CMS bound.

Note that the entire scalar spectrum in BP3, BP4 and BP5 is lighter than 1 TeV and
potentially at the reach of the LHC run-III. Furthermore, it is remarkable to note that
the lightest charged Higgs in BP1 is allowed to be lighter than the SM Higgs boson while
conforming with all experimental constraints. On the other hand, in BP1 and BP2 the
heavy scalar masses mH2 , mA2 and mH±

2
are larger than 4 TeV while in BP6 and BP6

their masses are approximately 1.5 TeV and 1.1 TeV. We also provide in table 3 both the
production cross sections and the branching fractions calculated for each of the studied
channels as well as the 3HDM-to-SM ratio of each of the five QFV observables in table 1.
While the former are relevant for direct searches for new scalars at the LHC, the latter
may be probed in flavour experiments.
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Summary

• additional scalars offers way to resolve some of the long-standing 
issues of the SM framework 

• 3HDMs offer rich collider phenomenology at colliders 

• flavour symmetries enable to generate very specific  
patterns in mass, mixing and FCNC hierarchies


• search for suitable UV complete theories giving rise to such models 
is under way


