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Path integral formulation of quantum mechanics

A classical particle follows a unique trajectory.

Quantum mechanics can be described by Path Integrals: All
possible trajectories contribute to the transition amplitude.

To define the functional integral, we discretize the time
coordinate and approximate each path by linear pieces.
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Path integral formulation of quantum mechanics
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Quantum mechanics can be described by Path Integrals: All
possible trajectories contribute to the transition amplitude.

To define the functional integral, we discretize the time
coordinate and approximate each path by linear pieces.

time

sp
a

ce

t1 t2

classical
trajectory

quantum
trajectory

Andrzej Görlich Causal Dynamical Triangulation



Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time geometry.

The role of a trajectory plays now the geometry of
four-dimensional space-time.

All space-time histories contribute to the transition amplitude.

1+1D Example: State of system: one-dimensional spatial geometry
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Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time geometry.

The role of a trajectory plays now the geometry of
four-dimensional space-time.

All space-time histories contribute to the transition amplitude.

1+1D Example: Evolution of one-dimensional closed universe
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Path integral formulation of quantum gravity

General Relativity: gravity is encoded in space-time geometry.

The role of a trajectory plays now the geometry of
four-dimensional space-time.

All space-time histories contribute to the transition amplitude.

Sum over all two-dimensional surfaces joining the in- and out-state
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Transition amplitude

Our aim is to calculate the amplitude of a transition between two
geometric states:

G (gi , gf , t) ≡
∫

gi→gf

D[g ]eiS
EH [g ]

To define this path integral we have to specify the measure D[g ]
and the domain of integration - a class of admissible space-time
geometries joining the in- and out- geometries.
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Regularization by triangulation. Example in 2D

Dynamical Triangulations uses one of the standard regularizations
in QFT: discretization.

1 One-dimensional state with a topology S1 is built from links
with length a.

2 2D space-time surface is built from equilateral triangles.

3 Curvature (angle deficit) is localized at vertices.
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Causality - difference between DT and CDT

Causal Dynamical Triangulations assume global proper-time
foliation. Spatial slices (leaves) have fixed topology and are
not allowed to split in time.

Foliation distinguishes between time-like and spatial-like links.

In Euclidean DT one cannot avoid introducing causal
singularities, which lead to creation of baby universes.

EDT and CDT differ in a class of admissible space-time
geometries.
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From 1 + 1 to 3 + 1 dimensions

2D triangles are replaced by higher-dimensional simplices.
Spatial states are 3D geometries with a topology S3.
Discretized states are build from equilateral tetrahedra.
4D simplicial manifold can be obtained by gluing pairs of
4-simplices along their 3-faces.
The metric is flat inside each 4-simplex.
Length of time links at and space links as is constant.
Curvature is localized at triangles.

Fundamental building blocks of Euclidean DT

2D 3D 4D
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From 1 + 1 to 3 + 1 dimensions

2D triangles are replaced by higher-dimensional simplices.
Spatial states are 3D geometries with a topology S3.
Discretized states are build from equilateral tetrahedra.
4D simplicial manifold can be obtained by gluing pairs of
4-simplices along their 3-faces.
The metric is flat inside each 4-simplex.
Length of time links at and space links as is constant.
Curvature is localized at triangles.

3D spatial slices with topology S3
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From 1 + 1 to 3 + 1 dimensions

2D triangles are replaced by higher-dimensional simplices.
Spatial states are 3D geometries with a topology S3.
Discretized states are build from equilateral tetrahedra.
4D simplicial manifold can be obtained by gluing pairs of
4-simplices along their 3-faces.
The metric is flat inside each 4-simplex.
Length of time links at and space links as is constant.
Curvature is localized at triangles.

4D space-time with topology S3 × S1
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From 1 + 1 to 3 + 1 dimensions

2D triangles are replaced by higher-dimensional simplices.
Spatial states are 3D geometries with a topology S3.
Discretized states are build from equilateral tetrahedra.
4D simplicial manifold can be obtained by gluing pairs of
4-simplices along their 3-faces.
The metric is flat inside each 4-simplex.
Length of time links at and space links as is constant.
Curvature is localized at triangles.

Fundamental building blocks of 4D CDT
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Regge action

The Einstein-Hilbert action has a natural realization on piecewise
linear geometries called Regge action

SE [g ] = − 1

G

∫
dt

∫
dDx
√
g(R − 2Λ)

N0 number of vertices

N4 number of simplices

N14 number of simplices of type {1, 4}
K0 K4 ∆ bare coupling constants (G ,Λ, at/as )
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Regge action

The Einstein-Hilbert action has a natural realization on piecewise
linear geometries called Regge action

SR [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)

N0 number of vertices

N4 number of simplices

N14 number of simplices of type {1, 4}
K0 K4 ∆ bare coupling constants (G ,Λ, at/as )
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Causal Dynamical Triangulations

Causal Dynamical Triangulations (CDT) is a background
independent approach to quantum gravity.

The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by the
Einstein-Hilbert action.

Z =

∫
D[g ]e iS

EH [g ]

To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.

The path integral is written as a nonperturbative sum over all
causal triangulations T .

Wick rotation is well defined due to global proper-time
foliation. (at → iat)
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The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by the
Einstein-Hilbert action.

Z =
∑
T

e−S
R [T ]

To make sense of the gravitational path integral one uses
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Numerical setup

To calculate the expectation value of an observable, we
approximate the path integral by a sum over a finite set of
Monte Carlo configurations

〈O[g ]〉 =
1

Z

∫
D[g ]O[g ]e−S[g ] → 〈O[T ]〉 =

1

Z

∑
T
O[T ]e−S[T ]

↙

〈O[T ]〉 ≈ 1

K

K∑
i=1

O[T (i)]

Monte Carlo algorithm probes the space of configurations
with the probability P[T ] = 1

Z e
−S[T ].

The simplest observable, giving any information about the
geometry, is the spatial volume N(i) defined as a number of
tetrahedra building a three-dimensional slice i = 1 . . .T .
Restricting our considerations to the spatial volume N(i) we
reduce the problem to one-dimensional quantum mechanics.
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CDT phase diagram:
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CDT phase diagram: Phase A
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CDT phase diagram: Phase B
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CDT phase diagram: Phase C
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De Sitter space-time as background geometry

Among the three phases, the de Sitter phase (C) is physically
most interesting. The distribution N(i) is bell-shaped.
The average volume 〈N(i)〉 describes Euclidean de Sitter
space (S4), a classical vacuum solution (Λ > 0,
ds2 = dτ2 + a2(τ) dΩ2

3):

〈N(i)〉 ∝ cos3 (i/W )
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Quantum fluctuations

We can measure correlations of spatial volume fluctuations around
the classical solution:

Cij ≡ 〈(N(i)− 〈N(i)〉)(N(j)− 〈N(j)〉)〉

The propagator C appears in the semiclassical expansion of the
effective action describing quantum fluctuations of spatial volume.

The recovered effective action agrees with the minisuperspace
action:

S [N = N̄ + η] = S [N̄] +
1

2

∑
i ,j

ηi C−1ij ηj + O(η3),
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Quantum fluctuations

We can measure correlations of spatial volume fluctuations around
the classical solution:

Cij ≡ 〈(N(i)− 〈N(i)〉)(N(j)− 〈N(j)〉)〉

The propagator C appears in the semiclassical expansion of the
effective action describing quantum fluctuations of spatial volume.

The recovered effective action agrees with the minisuperspace
action:

S = Γ

∫
dτ
(
−6aȧ2 − 6a + 2Λa3

)
, N(i) ∝ a3(τ)
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Summary

Causal Dynamical Triangulations is a background independent approach
to quantum gravity.

1 Only geometric invariants like length and angles are involved. While
no coordinates are introduced, the model is manifestly
diffeomorphism-invariant.

2 Phase diagram consists of three phases. In phase C emerges a
four-dimensional universe with well defined time and space extent.

3 The background geometry corresponds to the Euclidean de Sitter
space, i.e. classical solution of the minisuperspace model.

4 Quantum fluctuations of the spatial volume are also properly
described by this simple model.
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Thank You!
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Monte Carlo simulations - Alexander moves

We construct a starting space-time manifold with given
topology (S3 × S1) and perform a random walk over
configuration space.

Ergodicity In the dynamical triangulation approach all possible
configurations are generated by the set of Alexander moves.

Fixed topology The moves don’t change the topology.
Causality Only moves that preserve the foliation are allowed.
4D CDT We have 4 types of moves.

Minimal configuration
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Monte Carlo Markov Chain

We perform a random walk in the phase-space of
configurations (space of piecewise linear geometries).

Each step is one of the 4D CDT moves.

The weight (acceptance probability) W (A → B) of a move
from configuration A to B is determined (not uniquely) by the
detailed balance condition:

P(A)W (A → B) = P(B)W (B → A)

The Monte Carlo algorithm ensures that we probe the
configurations with the probability P(A).

After sufficiently long time, the configurations are
independent.

All we need, is the probability functional for configurations
P(A).
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