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1．Motivation 

Modified gravitational theories　


However if it originates from a vacuum energy of 
particle physics, its energy scale is too much 
larger than the dark energy density today.


f(R) gravity,

Scalar-tensor theories


Cosmological constant (    ) 

• There must be a stable accelerating solution which explains cosmic acceleration. 

• These models need to recover General Relativistic (GR) behavior at short 
distances to satisfy solar system constraints. 

The source for the late-time cosmic acceleration is named Dark Energy. 
The simplest candidate for dark energy is the cosmological constant.  

with a potential term
 without a potential term


Λ

Dark energy problem may imply some modification of 
gravity on large scales. 

DGP braneworld,

Galileon gravity




  Recovery of GR behavior at short distances 

In the DGP braneworld the non-linear effect of the field self-interaction term 

                     allows the possibility to recover GR at short distances.


However a fine tuning of initial conditions is 
required to realize a viable cosmology. 

However the DGP model suffers from a ghost 
problem, in addition to the difficulty for 
consistency with the combined data analysis. 

!φ(∂µφ∂µφ)

1.  Chameleon mechanism


If a scalar field has a potential with a large effective mass in the region high 
density, then the model can recover GR.  

2.  Vainshtein mechanism 

f(R) gravity,

Scalar-tensor theories


DGP braneworld,

Galileon gravity




The field self-interaction                     appearing in the DGP model 
satisfies the Galilean symmetry in the flat space-time： 

Imposing this symmetry in the flat space-time one can show that the field 
Lagrangian consists of five terms, and they were extended to covariant 
forms in the curved space-time as the following.


  Galileon gravity 
A. Nicolis, R. Rattazzi, 
E. Tricherini 
Phys. Rev. D 79, 064036 (2009) 

∂µφ→ ∂µφ + bµ

C. Deffayet, G. Esposito-Farese, 
A. Vikman 
Phys. Rev. D 79, 084003 (2009) 

L1 = M3φ , L2 = (∇φ)2 , L3 = (!φ)(∇φ)2/M3 ,

L4 = (∇φ)2
[
2(!φ)2 − 2φ;µνφ;µν −R(∇φ)2/2

]
/M6,

L5 =(∇φ)2[(!φ)3 − 3(!φ) φ;µνφ;µν

+ 2φ;µ
νφ;ν

ρφ;ρ
µ − 6φ;µφ;µνφ;ρGνρ]/M9

!φ(∂µφ∂µφ)

The field equations of motion are kept up to the second-order. 
This property is welcome to avoid the appearance of an extra 
degree of freedom associated with ghosts.




2．Background cosmology 
Since we are interested in the evolution of matter density perturbations 
long after the radiation-domination, let us consider the following action;


S =
∫

d4x
√
−g

[
M2

pl

2
R +

1
2

5∑

i=1

ciLi + Lm

]

c1 = 0

H = HdS = constant, φ̇ = φ̇dS = constant.
In the FLRW background one can have a de Sitter solutions with


The background equations


xdS ≡
φ̇dS

HdSMpl

{
α ≡ c4x4

dS

β ≡ c5x5
dS

3M2
plH

2 = ρDE + ρm ,

3M2
plH

2 + 2M2
plḢ = −pDE

c2x
2
dS = 6 + 9α− 12β ,

c3x
3
dS = 2 + 9α− 9β .

at the de Sitter (dS) point. 




There are three distinct fixed points


In order to discuss the cosmological dynamics, it is convenient to introduce 
the following variables


r1 ≡
φ̇dSHdS

φ̇H
, r2 ≡

1
r1

(
φ̇

φ̇dS

)4
At the dS point, one has


r1 = 1, r2 = 1

(r1, r2) = (0, 0), (1, 0), (1, 1)

観測的に好ましくない 
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dS solution: 
r1 = 1, r2 = 1,

wDE = −1

late time tracking solution:  
r1 ! 0, r2 ! 0, wDE ! −1/8

tracker solution: r1 ! 1, r2 ! 0, wDE ! −2

α = 1.414± 0.056
β = 0.422± 0.022

The background combined data analysis 
based onCMB + BAO + SNIa gives 
Savvas Nesseris, Antonio De Felice, 
Shinji Tsujikawa Phys. Rev. D. 82. 124054 

observationally disfavored  

(68% C.L.)




観測的に好ましくない 
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r1 ! 0, r2 ! 0

r1 ∝ a
9
8 , r2 ∝ a

3
8

r1 = 1, r2 ! 0

Since any solutions which have small initial conditions approach the bottom 
dotted line at late time, it is called the “tracker” solution and the others 
called  the “late-time tracking” solutions.


The late-time tracking solution also looks dangerous, since it’s equation of 
motion become less than -1. However, there is viable model parameter space 
in which one can avoid the ghosts or the Laplacian instabilities. 




3．Cosmological perturbation theories   
The modified evolution of matter density perturbations can allow 
us to distinguish the Galileon model from the LCDM.  

Expansion of the action at second order gives


Variations of the second-order Lagrangian L with respect to above variables gives


ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)δijdxidxj

[
√
−gL](2) ≡ L(Ψ,Φ, δφ, v)

φ(t, x) = φ̃(t) + δφ(t, x)

velocity potential
v(t, x)

EΨ = 0, EΦ = 0, Eδφ = 0,

δ̈m + 2H δ̇m +
k2

a2
Ψ = 3(Q̈ + 2HQ̇)

δm ≡ δρ/ρ + 3Hv, Q ≡ Hv − Φwhere




  Quasistatic approximation on subhorizon scales 

δ′′
m +

(
2 +

H ′

H

)
δ′
m −

3
2

Geff(t)
G

Ωmδm " 0

Φeff ! −
3
2

Geff(t)
G

1 + η(t)
2

Ωmδm

(
aH

k

)2

This corresponds to the approximation under which the dominant 
contributions to the perturbation equations are those including                  .


The full equations for perturbations are very complicated, but they are 
simplified under this approximation as following


where


Unlike LCDM model, the effective gravitational coupling          and 
the anisotropic operator         which describes the difference 
between the two gravitational potentials depend on time.




tracer regime 

r1 = 1, r2 ! 0

late-time tracking regime  

de Sitter regime 

r1 ! 0, r2 ! 0

r1 = 1, r2 = 1

  the approximation in three different regimes 

Though in f(R) gravity and in Brans-Dicke theory one has 
                                          , in Galileon gravity the unusual behavior of 
the anisotropic parameter      leads to the nontrivial evolution of perturbations.




4．Full Numerical result 
  Considering the case in which the solutions reach the tracker at late times.
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The wave numbers relevant to the linear 
regime of the galaxy power spectrum:


k = 5a0H0
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The wave numbers relevant to the ISW 
effect in CMB anisotropies:


The quasi-static approximation (the dotted green line) agrees with 
full numerical results for the modes deep inside the Hubble radius. 



  The evolution of growth rate     defined as 

Limin Wang, Paul J. Steinhardt 
Astrophys.J.508:483-490,1998 

δ′
m/δm = (Ωm)γ
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nearly constant: 


Galileon model 

γ0 ! 0.35

LCDM model


For the modes relevant to large-scale 
structure, we find that     varies in 
time with the present value:


This property can be 
distinguished from the LCDM.




5．Conclusion 
  We have studied the dynamics of cosmological perturbations in 

the Galileon model, and it can allow us to distinguish the 
Galileon model from the LCDM model further. 

  Unusual behavior of the two important quantities, effective 
gravitational coupling         and the anisotropic parameter      , give 
rise to the nontrivial evolution of perturbations relative to those in 
LCDM model. 

  The modified growth of perturbations affects the large-scale 
structure, the ISW effect in CMB, and weak lensing. 

It will be of interest to find some signatures of the 
Galileon model and its generalizations in future 
high-precision observations.



