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Abstract. String Unified Models based on the= 1 level  an intermediate scale to confine the fractional charges into
of the Kac-Moody Algebra, predict the existence of “ex- bound states [2, 10].
otic” new states which carry fractional electric charges. We  In this work, we would like to explore an alternative sce-
analyse the possibility of considering these “exotics” as premario: Since the fractionally charged states are generic [8]
onic matter which can be used to form the families andin k=1 level, it might be possible that in particular string
the gauge group breaking higgs scalars. It is proposed thahodels they could play the role of sorpesonic matter su-
such a formation may occur provided that these states tranperfields which transform non-trivially under sorhidden
form non-trivially under a non-Abelian gauge group with gauge group. Thigdidden group could very well play the
a relatively large rank in order to confine them at a suffi- role of the confining gauge group of the preonic fields into
ciently large scale. Such a situation is natural in string de-composite states which could be the representations contain-
rived unified models, since the role of the confining grouping the ordinary Quarks and Leptons.
can be played by (part of) the Hidden symmetry. As an ex-  Models with composite Quarks and Leptons have al-
ample, we present a string derived toy model based on theeady been introduced by many people [11-15] the last two
SU(4) x SU(2)r, x SU(2)r Pati-Salam gauge group. decades, either in the context of the Standard gauge group of
Electroweak interactiofsor within Grand Unified schemes.
Both scenarios are well motivated in the context of Super-
string k=1 constructions. Indeed, if we insist on the econ-
o ) _omy of the models derived from the String, we would feel
One of the most attractive and interesting issues in stringsynhappy with a large variety of representations left in the
is the construction [1] of realistic models which are con- jight spectrum of the effective field theory, even if we man-
sistent with the low energy phenomenology. Most of the age with a judicious choice of the parameters of the theory
attempts in string model building [2-7] have been concen-(moduli, flatness conditions etc) to make them massive at
trated in constructions of string models based on level-ongome intermediate scale.. Instead, it would appear more
(k=1) Kac-Moody algebras. In the search for the realistichatural to derive an effective field theory with a relatively
string derived models, two main obstacles have appeared: small number of representations.
(i) Unified models based on these constructions do not con- |4 what follows, motivated by the appearance of such
tain fields in the adjoint or higher representations. Thereforegyotic states in string constructions, we will concentrate on
traditional Grand Unified Theories (GUTs), likel/(5) and 4 particular gauge group which leads to a viable low en-
S0(10) could not break down to the Standard Model. At- ergy scenario. In particular we will explore th&l/(4) x
tempts to overcome this difficulty led to the construction of SU(2)., x SU(2)r Pati-Salam symmetry assuming the exis-
models where the gauge group needs only small Higgs reprnce of representations carrying fractions of the known elec-
resentations to break [2, 4]. tric charges possessed by the ordinary Quarks and Leptons.
(i) The appearance of ]‘ractlona!ly charged'states, other thagy, this work, we will not discuss long standing problems
the ordinary Quarks, is unavoidable [8] in the k=1 Kac- which arise when trying to implement the idea of compos-
Moody constructions. Such states, unless they become maganess. Relevant discussions about the problems appearing
sive at the String scale, they usually create problems in thg, the various approaches to the compositeness may be found
low energy effective theory. Indeed, the lightest fractionally i the literature [11, 12, 17].
charged particle is expected to be stable. In particular, if itS |, the free fermionic four dimensional constructions 1],

mass lies in the TeV re'gion, then the estimation of its relic;, principle it is possible to choose boundary conditions on
abundances [9] contradicts the upper experimental bounds by

several orders of magnitude. It has been proposed that this 1 Compositeness may also be combined with Technicolor and Extended

problem can in principle be solved by constructing modelStechnicolor Theories [16] to produce interactions which may create dy-
containing a hidden gauge group which becomes strong atamically the fermion masses
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the world sheet fermions of the basis vectors of a particulaunder part of the hidden gauge group. String toy models
model and project out all the integrally charged representawith such properties can be easily constructed [19].
tions2. The fermion families, will appear then at an interme-  With the form of the minimal theory in mind, let us now
diate scale as composite fields of the preonic representationattempt to derive it considering onpreonicfields, assuming
Therefore, it would be natural to ask, if any phenomenolog-that the ordinary superfields are not present in the original
ically viable preonic model could arise from the Plank scaletheory. As has already been discussed, we assume that the
physics. symmetry of the observable sector is based on the gauge
The necessary fields of the minimal supersymmetric ver-group SU(4) x SU(2). x SU(2)r, while the fields belong
sion together with their transformation properties under thealso to someV(V)-dimensional representation oftfidden
PS-gauge symmetry are shown in the table gauge group. The fractionally charged states which appear
Fp = (4,2,1): F_R _ (Z, 1,2); H = (4,1,2). = (Z, 1,2); in the string spectrum of these models, in the most general

h=(122) D=(611) ¢mo=(L11),m=123 case, are of the following types

The superpotential of the model can be written as follows K =411y Ké =41 Doy
. — — 3 Kn = (47 17 1)n1\7 K_j = (47 17 1)71\7 (2)
V" = MFLFRrh + Mo FrH ¢; + Asgohh + Xa¢p ar; =(L,2,1)iv  arm =(@1,1,2)mN
+NsHDD + \sHHD + \7FrFrD + X\eFLFLD (1)  arm =1,2,1),,5 ar =@1,1,2),5

The superpotential (1) includes trilinear terms with statesLet us explain our notations in the above fields. The numbers
arising only from the decomposition of the ordinary irre- in the parentheses, as usually, refer to the transformation
ducible representations (irreps) of th#0(10) theory. At  properties of the variougreonicfields under the observable
k=1 Kac-Moody level in particular, all irreps appearing in gauge symmetry of the model. The indiceg, m,n refer
the theory are smaller than the adjoint. For the model unto the number of the corresponding representations and run
der consideration for example, the possible representatiortsom 1t0.7, 7, .74, .4 respectively. Care has been taken,
underSU(4) x SU(2)r x SU(2)r arise from the decompo- so as (44) as well as V/N) representations appear in pairs
sitions of 16 16 and 10of SO(10). In string constructions, to ensure that the theory is anomaly free. The indgXV) in
however, the case is more complicated. In fact, in this particeach of the above representations refers to its transformation
ular model the effective theory gauge symmetry is based on @roperty under théliddengauge groug.
product of non-Abelian groups rather than on a single unified  We should note here, that in realistic string constructions,
one. In the fermionic constructions for example, the modelthe fields might also carry exti@(1)-charges while thélid-
is constructed from a set of vectors whose components ardengauge group is not always simple. However, in order to
phases picked up by the world-sheet fermions when paralmake the subsequent analysis simple and model independent,
lel transported around non-contractable loops. The masslesge consider only a simpl8U(N)-Hiddengauge group. The
states of the theory are those surviving the projections of thexistence of thé/(1) factors would have the obvious impli-
various vectors onto the others. As a result, in addition tocation of reducing the possible gauge invariant trilinear and
the above states, new representations may arise which arégher order Yukawa terms of the superpotential.
singlets under all but one of the non-Abelian factors of the  Now, if we define the charge operator in the usual sense
symmetry of the model. Thus in addition to @ 1), (4,1, 2)

one may get the “exotics” (4, 1), (4,1,1), while together ¢ ="Ti5+ 1TL + 1TR 3)

with (1, 2, 2) one also obtains (2, 1) and (1 1, 2). Of course 6 2 2

such representations are not present in the ordifdr10)  whereT1s = diagonal(l,1,1 — 3), and Ty r=diagonal(1,

irrep decompositions. —1), it is clear that all the above fields carry charges which
There are two ways of handling these states: are fractions of those of ordinary Quarks and Leptons. Un-

i) One can redefine the charge operator [8, 4, 18]. Indeedder theHidden gauge group, they form composite states at
in the usual string constructions the resulting “observable”some intermediate scalel;; < M¢c < Mp;, which may be
gauge symmetry is accompanied by “hidden” gauge groupsdentified with the ordinary superfields of Quarks and Lep-
and a rather large number of U(1) factors. Most of the fieldstons. The possible composite states created from the above
discussed above carry non-zero charges under the surplyseonicfields are listed in Table 1.
U(1)’s. One then could extend the charge operator by in- We observe that all the fields of the superpotential in
cluding one or more of these U(1)’s. Such cases have bee(l) are present in Table 1. The indicés j,m,n} indicate
discussed in the literature but they usually lead to the wronghe multiplicity of each representation. Thus, in the general
predictions for the weak mixing angle. case considered above, one obtajfis/z+.7./ " left handed
if) As a second possibility we consider the case discusseflelds F;, and an equal number of right handed representa-
here where the string model predicts only the “exotic” statestions Fz. These representations are going to accommodate
discussed above, with non-trivial transformation propertiesthe known fermion families of quarks and leptons and their

2 In the SU(4) x SU(2);, x SU(2)r model this is rather obvious. In- syperpartners. Note -howe-ver’ that the above are accompa-
deed the charge operatof is a com];ination of diagonal generatolrs of almed by 7'7 *+./¢.)" “anti-left” ¥y, and “antl-”ght” I

; ; i 2

the group factors. Therefore, in the fermionic language for example, we‘l'?lds' The rest of the co_mposne spectrum includes-. 7
may extend the basis by adding “phase-vectors” until all representationdliggses in (1,2,2), Z.4~ (6,1,1)-sextets and an equal num-
transform non-trivially under only one of the non-Abelian groups. Many of ber of (10,1,1) irreps. The new feature is the appearance

these representations do not belong to any known “GUT” multiplets and
possess charges which are fractions of those of the ordinary fermions 3 Sextets undeSU(4) can also arise at this level
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Table 1. suggested approach of the previous sections. We will work
B B in the free fermionic formulation of the four dimensional

(Fr)jm = Kjapm = (42,1) 5 (Fp)ji = Kjop: = (41,2) superstring using free world-sheet fermions which pick up

((}%):m _ é("g;; _ gi—: g 3 ({ﬁ’gﬁm; ﬁ’%’;’:‘ _ E?T: i g phases [1] when parallel transported around the string. A
(Fr)i; = Ié}au = @.2,) ; (FR)jm = Kfapm = 4,1,2) specific choice of phases — consistent with the modular in-
Djn = K;Kn = (6,1,1); Dn; = KSK® = (6,1,1) variance constraints — for all world-sheet fermions of the left
Tjn = KjKn =(1011); T, = K& ;g; =(10,1,1) (super.symmepnc) and right (non—sypersymmgtrlc) sectors of
Yy = KK =(1511); Sen = K{Kn =(151,1) the string, define a ‘phase’ vector. The specific choice of the
P = KiK§ = (LL1); Pnn = KiKn = (L1L1) boundary conditions, will determine the exact gauge group
hii = apiar; = (1,2,2) ; hmm = CrRmOLm = (1,2,2) of the theory and the specific transformation properties of
Apim = apiopm = (4,3,1) § Apmi = armar: = (1,1,3) the preonic fields we are using. More precisely, these vec-
P, =ariarm = (LL,1) 5 i = apmar: = (L 11) tors break simultaneously the original high strirg({(44))

symmetry to the observablBS-gauge group and the hid-
den part. In particular, the supermultiplets of the observable
72+ 472 adioi . gauge group are formed from the fractionally charged states
Oy s sesenaton (15,1) 6 S0 0 Ve Gt a4 o eptesiaions of 0 (1)
singlets. den gauge group. Although this is not a f_uIIy realistic modgl,
In order to avoid the appearance of “antifamilies” in it serves as an example where the basic featl_Jres desc_rlbed
the light ¢ th hould bi ith | _so far in the field t_he_ory approach of the previous section,
€ lignt spectrum, they should combineé With equal NUM-q e 35 the basic ingredients of the model, can be found
ber of families and receive mass at a high scale. If we de~In the string spectrum of: = 1 models. The rank of the
mand r generations to remain in the light spectrum, thenSU(4)Hidden group is smaller than the bne needed to con-
we .ShOUId have Fr —#bp =, and an equal ”“mbef fine the preonic matter at the conventional GUT scale of
of right partners. This requirement leads to the equation g6 ;.1 | the most optimistic case, th&l/(4) confining
A~ T)x (7 — A7) =T, M).'Ch Is satisfied for varl-  scaie s of the order 8GeV, ie. 3— 4 orders smaller
ous choices o7, 7’ //é and. /. o than the conventional GUT scale. In models with PS-gauge
Thus, let us distinguish some simplified cases: symmetry such a low scale is not disastrous. In fact, there
e .74 = 0. In this case, the above requirementsi#er 3 are no gauge bosons mediating proton decay and the SU(4)
lead to the condition.(/” — 7) x .7 = 3. An acceptable preaking scale can be low enough provided this is consis-
case for three generations would b = 1, ./~ = 2 and  tent with the low energy values of gauge couplings. This is
7 = 3. In this case one obtains B.'s, 3 FL’s, 3 Fr'S  jndeed the case revealed in several recent renormalization
and 6 F’s. In addition, there are £’s, 9 h's and 5 sin-  group analyses [20, 21] of models based on the PS- gauge
glets. In order to remain with the minimal spectrum of the group. Note however that a realistic model should at least
superpotential of (1), three paids, + Fi, should become hayveSi/(5) or a higher rank symmetry as a confining group.
massive throggh some effective S.Uperpotentlal term of the Let us now present the basis of ‘phase vectors’ generat-
form < & > F Fy. As far as the right representations are jng the preonic matter discussed above, at the string level.

concerned, one paifr + Fr should be interpreted as the \e denote the 18 real free fermions of the supersymmetric
higgsesH + H which break theSU(4) symmetry, while the  |eft-moving sector withy:+8, y1+-6, w16, For the right mov-

remaining two additional pairs should become massive in thgng 22 complex fermions we use the notatigr-5, d---9

same way as the left fields. In a similar way, we can giveand Z‘I...S_ Now a particu|ar basis is generated by assum-

superheavy masses to any other additional representatiofgg consistent [1] boundary conditions on the world-sheet

like sextets and doublets. fermions of the two sectors of the heterotic string. In our
e 7 =0.Inthis case the condition readg (~.#%) x ./ case, we assume six vectors of boundary conditions which

= 3. We may further chooseZ = 4, .22 =1,./7 =1  form a group under addition modulo 2. The basis is the fol-

or.7 =2,.#4 =1, 4" = 3. For the second case for |owing:

example we obtain the following spectrum:fg(+ Fg), LTl 55

3(Fr, + Fgr), 5(1,2,2) LR-higgses 9 (151, 1)-higgs in the 1 ={yn, Xiz oyt ® whe O e Sple918)

adjoint of SU(4) and 2 (13, 1) + (1, 1, 3) pairs accompanied *~ = {9#, x , ’(3)7 "6'70; 0..,0 @'2';9}23_1 8

by 18 neutral singlet fields. There are no sextet fields butbr = {¥*, x*% ¢**%  0,..,0; Wi=@1=z" 7}

usually they arise naturally in the original spectrum of the A (4)
particular string model. by = {v", X3, y*?%, 0,..,0; U*pIB o8 71657}
The remarkable feature in this spectrum is the presence 1/2 _\172

of two types of higgses which both can break tH&(4) bs = {00, 0.0, y*+5, W16 578}
symmetry. This fact gives various possibilities of symme- ¢ = {00, 0...0,0,...,0, 0,...,0; $123¢678;12}
try breaking patterns which will be described in a future
publication.

In the following we present a string toy example [19]
based on the Pati-Salam (PS) observable gauge symme
and a specific hidden interaction which can play the role o
confining gauge group, previously referred $8 (V). This
will enable us to give a more detailed description of the [SU(4) x SU(2)rL x SU(2)r]lobservabie

All world sheet-fermions appearing in the vectors — except
those underlined witht-1/2 — possess periodic boundary
t nditions, while those not appearing in a particular vector
(ésr)e antiperiodic. The symmetry breaks down to the following
product group
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x[{SU@Y}o x SU4Y x SU(2Y an N = 4 space-time supersymmetric model, while the in-
" 6] troduction of the rest of the basis vectors break successively
xSUR) x U)idden ®)  then =4 supersymmetries t& = 2 and N = 1. In the
where theObservableand theHidden sectors of the sym- class of models we are dealing with, the confinement scale
metry are denoted with subscripts. The particular contentc is assumed to be no less than the GUT scale, i.e., the
of the model depends on the choice of the specific set ofU(4)-breaking scale. Thus, at the scalé- we are left

the projection coefficients: [H One possible choice is with an V = 1 supergravity model base_d on PS-observable
i gauge symmetry. Now, the only consistent way to break

cll] = H =1 ¢ [gﬂ = ¢ {gﬂ = _1 ¢ [H = —1, N =1 local supersymmetry is spontaneously via the super
Higgs mechanism. No matter what the mechanism of su-
persymmetry breaking is (dynamical breaking [22], gaugino
condensation [23], coordinate dependent compactifications
[24] etc) a natural hierarchynz;; < Mpjaner, Should be
generated, whergiz,, is the gravitino mass which sets the
scale of supersymmetry breaking. This in turn implies that
there should exist a class of string effective supergravities
where certain conditions are satisfied like absence of fine

¢ [;fz] = —1, whilec [ﬂ=+1 for the remaining with < j in
the order of appearance in (4). All the others are fixed from
the modular invariance constraints.

The spectrum which arises is listed below, where the
guantum numbers refer to tli@bservablesector groups, the
two {SU(4)?}¢ groups and the &/(1)s.

g}): : ][% z Ej’ 1’ 3%’ 13(0’0’1/2’1’1/4’1/4) tuning, vanishing cosmological constant uprtgm3 ) cor-
bgl' ' o 2 _ (1’ 5 1)(4’ 1)(0’0’_1/2’_1’_1/4’_1/4) rections etc. It has been shown [25] that such conditions can
3b, - &lL _ (1’ 5 1)(1’ 1)(1/2’0’71/2’71’1/2’0) ©6) be met particularly in the four dimensional string fermionic
Zbi N by ai; _ (1’ 1’ 2)(1’ 1)§_/1/2’°’/1/2’1’_1;2;0) constructions we are dealing with in this work. In particu-

' — oo 1/2,0.1/2,1,0,-1/2 lar, supersymmetry breaking via gaugino condensation can
201+ 3b2 : azp = (1,1,2)(4,1)—1/2,0,-1/2,-1,0,1/2) persy y g gavg

be shown [25] to exist in examples for superpotentials with
non-trivial dependence on the dilaton figfdwith a well be-

An equal number of fractionally charged states trans-naved positive-semi-definite potential. However, as the the
forming as 4 or4 under the second of thgSU(4)%} ¢, dif- Hidden gauge group of this kind of models is rich, a dynam-
fering only in the U(1) factors, arises if we add the vector ical supersymmetry breaking scenario [22] is quite possible
¢ to the above sectors. The above fields are accompaniel@€ré [26]. In such models, the messengers could be states
by singlet fieldss;, ¢; which arise from the Neveu-Schwarz ©f & Hidden gauge group. In the present case, heR
(N-S) and ¢ sectors and two (@, 1) + (1,2,2) represen- epresentations of theU(4) x SU(2) Hidden symmetry
tations from the B + 3b, + ¢ sector. Finally there are four do not couple to the ordinary matter representations, whilst

SU(4Y x SU(2Y representations transformin 4,2), they form trilinear couplingsb;QQ with the gauge singlet
C§=( (4)[ 2)/_ (2) rep 9@s=(4.2) fields ; = &;, (; of the N-S and( sectors, in the tree level

Fuperpotential. Due to the presence of the massless matter

All th Iti i f th I . . :
the resulting representations of the observable s_ectomuItIpIetS in the spectrum. the Hidden gauge graiip(4)

have double multiplicity while they transform as the 44or X . :
under one of the tw&'U (4)c groups. In particular, fermion may be strongly |nteract|rlg at a reIauYer IQW sgaleln-
like condensates arise from the combinatidfis = Kyaay, degd, the beta _funqhobﬁl = —12+2n4 = —4 in this case,
and Fip = Kfaip. Similarly one can obtain the rest of while the scale is given by
the spectrum presented in Table 1. Unfortunately, the num-, 2m 1 1
ber of preonic states in this toy example does not meet thé! = Mistringexp b (amm - ozA)} @
conditions put previously in order to obtain the right num- 4 I
ber of generations and higgs fields, at least not directly affius, for M ing ~ 5 x 10VGeV and agiring = 1/24, s
the string level. However, in general, this fact does not ex-becomes- 0.2 atA ~ 5x 10°GeV. Now, one of the singlet
clude the possibility of finding a flat direction where some fields may obtain a non-vanishing vev along the scalar and
of the singlet fields get non-zero vevs and make massivé’- components. As a result, gaugino masses arise at one
the superfluous preonic fields through trilinear couplings ofloop, being directly proportional to the scale
the superpotential shown in the Appendix. Thus, our string a;
toy example, although not a realistic one, it is deductive ™~ 47/1 ®)
with respect to what one should expect from a string de-, . . .
rived spectrum. For example, families (and other fields) areg%z;?g;’;lzytgﬁézi Srﬁ’ﬁi% ZL;?;;%eswed order for a
dlstlngws'hed from each other by differefi(1) factors ac- In conclusion, in this note we have examined the pos-
companying the PS symmetry. Thus the family constructed ibility of obtaining low enerav effective gaude models us-
above has quantum numbeFs;, = (4,2,1)10 1 51 1 SIbility gx gy €etle g_ 9 :
- 20-15-24,—; ing only representations which arise at k=1 level of string

and Fir = (4,1,2)1 01,1, 1). The appearance of U(1) constructions, with gauge symmetry based on $&4) x
symmetries is an encouraging fact as it may generate thg{/(2); x SU(2)r Pati-Salam (PS) gauge group. We have
desired fermion mass hierarchy. argued that even though the adjoint or higher representations

Let us finally discuss how we reach thé = 1 super- are absent from the spectrum of such string derived models,
symmetry. The element of the above basis, with exactly there are still various possibilities of obtaining a consistent
8 left movers, plays the role of supersymmetry generator iflow energy phenomenology. In particular, in constructions
the fermionic construction. The subsft, 5,1 +(} defines  based on the aforementioned PS-gauge symmetry and k=1



Kac-Moody level, we have seen that a viable low energyio.
phenomenological theory can be derived in the following
ways:

i) One can use the standard PS-representation®, 13
(4,1,2) to accommodate the three fermion families, while ;,
the standard gauge symmetry is obtained after the sponta-
neous breaking of the PS symmetry with a minimum num-13.
ber of Higgses sitting in (4L, 2) + (4,1,2) representations

[4]. The standard model can break with the use of the twol4-
standard doublets found in the (1,2,2) of the PS-symmetry.
These standard representations are accompanied by the “ex-
otics” (4,1,1), 4,1,1) and (12,1), (1, 1,2) which carry
fractional electric charges, and should form massive states
at a rather high scale to avoid phenomenological problems.
ii) As a second possibility, we have argued in this paper that®-
the above “exotics” may arise with non-trivial transforma-
tion properties under a “hidden” gauge group with sufficient
rank, in order to confine to integral charged states at a high
scale. It has been shown that the resulting condensates can.
have the correct transformation properties to accommodat&s.
quark, lepton and higgs fields and reproduce the model of®:
case i). In addition, new symmetry breaking patterns can,,
be obtained as it is possible now to accommodate higgs
fields in the adjoint representation. The models of case iiyp1.
are reminiscent of supersymmetric composite models, proz2.
posed sometime ago [13, 12, 14].

11.
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