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We calculate the leading logarithms of the four-point Green’s function G

) responsible for had-

ronic weak decays to order g,°. The result shows factorization of the two types of logarithms, each

factor appearing in exponential form.

I. INTRODUCTION

The use of the operator-product expansion (OPE) has
proved to be a powerful tool in the study of phenomena
which are dominated by large invariants. Properties de-
pending on these invariants can be absorbed into multipli-
cative factors (Wilson coefficients), which can be calculat-
ed in several cases. Asymptotic freedom of the underlying
dynamical theory is usually a sufficient condition for the
feasibility of such a calculation. There are cases, however,
where the OPE cannot be applied directly, due to
kinematic restrictions.

For this reason, a diagrammatic approach even in cases
where the OPE has been found to work, is useful, not only
for providing an independent test, but also for helping an
intuitive understanding of the underlying physics.

In this work we make a diagrammatic analysis of a sup-
posedly short-distance-dominated process, namely, the
AS=1 weak quark decays through charged-W-boson ex-
change. This process is rather well understood within the
OPE framework where the Wilson coefficients are found
to be of the form (In My2/u?)%, where My, is the W mass
and p is a typical QCD momentum scale.!

Our analysis extends up to three-loop graphs, an order
which is sufficient for providing us with all the necessary
information needed.

The quark multiplets will be considered to be elements
of an unbroken SU(4) flavor group (in order to avoid com-
plications arising from penguin graphs), where the under-
lying color group will be SU(3) as usual.

The lowest-order graph is shown in Fig. 1 and corre-
sponds to a color-singlet amplitude

Mo=——5y,(1—yshu @y*(1—ys)d . (L.D
My

Addition of one gluon will produce the graphs of Fig. 2,
which by means of standard methods, are found to give

the leading-logarithm-approximation (LLA) result:
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p? 7
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(1.2)

where p? is the quark virtual mass squared and ¢° the usu-
al SU(3) color matrices.

It is interesting to point out that in the Landau gauge
the graphs (b) in Fig. 2 do not contribute and Eq. (1.2) will
come out from graph (a) alone.

The same result is obtained by shrinking the W line to a
point.2 The resulting reduced graph is then superficially
UYV divergent and has to be calculated by means of an ef-
fective cutoff My,.

Addition of extra gluons will not modify the chiral
structure (V' —A)X(V —A) of Eq. (1.2) and the general
form of the amplitude will be a linear combination of the
color singlets available,

Lo, =5y, (1—ysuay*(1—vs)d , (1.3)
Lo, =57, (1—ys)tu iy, (1—yskt’d , (1.4)

namely,
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FIG. 1. Tree graph.
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FIG. 2. (a) First-order corrections. (b) shows the two graphs

which do not have leading contributions in the Landau gauge.
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TABLE 1. Coefficients of order-g? leading terms calculated
in the Landau gauge. Symmetry factors are included. A factor
of 1/1642 is understood. C’=6.
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The purpose of this paper is the calculation of the dimen-
sionless functions F; and F, in the LLA, where p is a
scale introduced by renormalization.

The organization of this paper is as follows. In Sec. II,
we calculate the p-independent term of both skeleton
graphs and graphs containing renormalization parts. In
Sec. III, we calculate the u-dependent term of graphs con-
taining renormalization parts, and in Sec. IV, we present
our final results and conclusions.

I. CALCULATION
OF p-INDEPENDENT TERMS OF G¥

In this section, we calculate the leading contribution,
with respect to Inp?/My?, of the diagrams up to order g°.
In Table I, we give the diagrams contributing to g2 order
and the corresponding coefficient of (1/1672%) Inp2/My>.
Obviously they contribute only to ', [pure (2)(1)]. In
Table II, we show the skeleton graphs, which contribute a
nonzero leading term to order g*. All other skeleton
graphs giving nonleading contributions, as shown in the
Appendix, are given in Fig. 3 for completeness. In Table

TABLE II. Coefficients of order-g* skeleton graphs calculat-
ed in the Landau gauge. Only the nonzero contributing graphs

are shown. Symmetry factors are included. A factor of
1/(167)* is understood.
Lo, To,
! c? c”?
.‘ § % 2%9 T 3x4
'_‘; : CIZ _ CIZ
21 2%9 3x4
Sum Cc'%/9 —C'%/6
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FIG. 3. Skeleton graphs which do not give leading contribu-
tions to order g2.

III, we show the graphs with a renormalization part con-
tributing a nonzero leading term to order g*. Note that to
this order these are the only graphs with a leading contri-
bution. All other graphs are given in Fig. 4. Table IV
gives the order-g® skeleton graphs and the corresponding
coefficient of [1/(1672)*]In*p%2/My%. In order to evaluate
the order-g® graphs having renormalization part(s), con-
sider first the element of the ladder shown in Fig. 5. The
blobs 4, D, and T, which represent the finite part of the
fermion propagator, gluon propagator, and vertex correc-
tions, respectively, will generate logarithms (UV loga-
rithms) from the region where the internal momentum
flow is large. In Landau gauge, 4 is zero to leading order,
therefore we neglect it. Renormalization will introduce a
momentum scale u? so that D and T will be functions of
Inp2/u? where p? is the square of the largest momentum
involved. We have

Suv
k2

D, (k%p?)=i —kyk, (2.1a)

/ [14D(Kk2u?],

Tu(p.p kA u?) = —iy, (k% pu?) . (2.1b)
Note that in leading order there is a momentum hierarchy
Pk pl.

The ladder element is proportional to

G =T%k?%u®)/[1+D(k%u?], (2.2)

where factors involving Lorentz indices have been omit-
ted. The functions ' and (14D) satisfy the
renormalization-group equations (RGE’s)

DT —L1yeT=0, D(1+D)—yg(1+D)=0, (2.3)

TABLE III. Coefficients of order-g* graphs with a renormal-
ization part calculated in the Landau gauge. Only the nonzero
contributing graphs are shown. Symmetry factors are included.
y¢! is the first coefficient in the ¥ function of the gluon field. A
factor of 1/(167%)? is understood.

Ty, To,
BC’ ’}’5;C'
1 — —_—
! 0 2 + 2
L
1 YGC
i 0 T
Sum 0 —pBiC' /2
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FIG. 4. Graphs with renormalization parts which do not give
leading contributions to order g*.

where as usual ys is the anomalous dimension of the
gluon field and
)
D=pg - ~+BQO——
Since we are 1nterested in leading order only, we neglect,

in Landau gauge, the factor —yrI" in the RGE for T.
Now G itself satisfies the equation

2G=0 2.4)
with leading-order solution
6=/ |1- Zﬂlln
: ).
=g2+ﬁ1g“lnﬁ; —Bﬁg"’lrnz/u2 +0@gY), 2.5)

where B, is the order-g> coefficient of the 8 function of
the RGE. This expansion represents the sum of all the
graphs shown in Fig. 5 with insertions up to the relevant
order.

Using Eq. (2.5) to the required order, we calculate the
LLA contributions of diagrams shown in Table V, where
the coefficient of [1/(1672)*]In’p2/My? is given.

III. EVALUATION OF
THE p-DEPENDENT TERMS OF G¥

The RGE gives the dependence of a Green’s function
from the renormalization pomt U, up to the order that the
B and y functions are known.> Our Green’s function G
obeys the RGE

i+ﬁ<g>——2n~<g) =0,

8 (3.1

TABLE IV. Same as in Table II, to order g° A factor of
1/(1672)? is understood.

Lo, Lo,

: 3 :; _ Cl3 C13
1832 281 2x18

:; ' _ Ct3 Ca3
¢4 2% 81 218
Sum —C"/81 Cc/18
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FIG. 5. Fully dressed ladder element.

where

2

2
g l +0(g" (3.2a)

2
@) =712
YF\& 71 1617'2 +7’2 167T2

is the anomalous dimension of the fermion field and B(g)
is given by
2

2 2
BE)=8 |Br iz +B: | ¢ | +0&" (3.2b)
We write
GW=To,(1+8°4+g*B)+T0,(g’C+g*D)  (3.3)

(in order to make the calculations as simple as possible we
shall proceed to the g order in the next step). Now, ap-
plying Eq. (3.1) to (3.3), we get a simple differential equa-
tion for 4, B, C, and D, in each order of g2. Since in the

Landau gauge y,=0, we get
A=0, C=0. (3.4)

Since the RGE gives only the u-dependent terms, we add

TABLE V. Same as in Table III, to order g5. A factor of
1/(1672) is understood.

Lo, To,
| _ BiC? BiC"?
! 3I%X9 3X6
i _ BiC? BiC"?
] 3%9 3X6
BiC”? BiC"?
2X3X9 2X3X6
| 8 __BCc? _BiC?_
| & 2X3X9 2X3X%X6
i c
! 0 &< 3
2 2
Sum —BiC?/9 EI:;—C + —B%—
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to the above results the ones shown in Table I, namely, the
p-independent terms, to get

’ 2
A4=0, C=——mh-£—, (3.5)
1672 My
where C'=6. .
Solving now for B we get
1 1 B
=——"=—2y,ln=-, (3.6)
(1627 2720 2

which is obviously a subleading contribution. Taking into
account the u-independent leading contribution of Table
IT we get

”2 2
L Lo (3.7)
(167? 9 My?
Solving, finally, for D we get
= c 1n—L1 (3.8)
T 1677'2)2 o "2

and adding the contribution shown in Tables II and III,
we find

1 _E_
—_—— ,ln 1
(e | P T2
BC 2| , p?
) + 6 In —E—MWZ (3.9)

We next make a further step and add g® terms to the
Green’s function of Eq. (3.3):
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FIG. 6. Two typical order-g* graphs. (a) gives leading contri-
bution while (b) does not.

1

C/2 2 2
67 —2ﬁ1-—1nz—1é—’—21111;—2 , (3.11)
1 2 Z_Hi E2
= C'In 1
(627 |P! P My

2 2
+B,C' (B ++C - (3.12)
My~ p

Again we have to go back to Tables IV and V and add the
corresponding ,u-independent contribution to get

1 L‘_ 2_p?
= (16 ~281%5 intin My?
c?  BC? | p?
31 + 9 In | (3.13a)
E=—1_|grcm -2
(1672%)3 pr Myt

2
+B,C"(By++CHInEs L —
p w

3 B ZCI C 2 2
G-——'ro (1+g2A+g4B+g6F) + C + 1 +ﬁl 11’13 p
‘ 8" 3 6 2
+T0,(g°C+g*D+8°E) . (3.10)
(3.13b)
Working as before we find We can now write the full G function up to order g,
J
2 ,2 g2 3 c? 2
G(4)=I'*o 1+ g 5 C 2 E + ___2B1__1n1u“_1n2 B — C Bl ln3 P 5
‘ 1602 | 9 My? = M2 |81 7 9 M,
2 )? 2 2 B,C’ 2 2
g’ p* g 12— Lad AN Ol PO -l
r C'l —B3C'In~1n — In
AR TR VA Bl P [ B I ‘ 3 T My?
2 )3 2 2 ' 2 3 B 2¢ B,C
& 20?2 ' C il 2P c” A €7 P’ _
| qem | [P aingy,r TAIC {B‘+ O R T R BT N M7

(3.14)
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IV. FINAL RESULTS AND CONCLUSIONS

The form of G in Eq. (3.14) does not exhibit explicit factorization. However, if we reexpress the logarithms in
terms of Inu’/p? and Inu?/My,* and use the linear combination (o, + %1‘02), 5(Co,—3T,), which are the eigenvec-
tors of the anomalous dimension matrix that were found in Ref. 1, with eigenvalues 2C’'/3 and —4C'/3, we actually
resurrect the first three terms, in the g2 expansion, of the exponential form

2 2 |7¢ 2
GY=2(Tp +2T,) |1+-8—pB I 1+-8
s\lo 1310, 16172/31 »? + 1672
+L(ry —3T,.) 1+——&i—BlnEi ‘ 1+ g’
300 162" p? 167
where
2C"/3 4C'/3
a= , d= . 4.2)
2B, 2B

This exponentiation shows clearly that results obtained
by means of the OPE under the assumption of short-
distance dominance, can be reproduced in perturbation
theory by summing up selected terms taken from indivi-
dual Feynman graphs. These terms which are the leading
logarithms of the W mass, correspond to the short-
distance part of the specific process. The low-momentum
(large-distance) dynamics have been oversimplified by as-
suming a universal off-shell quark momentum p?, so that
an attempt to compare the results found with experiment
could be unrealistic.

A final comment has to be made concerning the role of
penguin graphs. In a broken SU(4) flavor group, where
the ¢ quark is heavy, these graphs may play an important
role*=% It has been shown® that the sum of all penguin-
type graphs still equals a sum of Wilson coefficients times
the matrix elements of local four-fermion operators. As
the problem now involves three momentum scales
(p,My,,m.), the resulting OPE effective Hamiltonian is
quite complicated. The equivalence between the leading-
logarithm summation and the OPE in this case has not, to
the best of our knowledge, been checked to all orders so
far.
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APPENDIX

In this appendix we will outline why the graphs in Figs.
3 and 4 are not giving leading contribution. It is clear
that internal momenta larger than My? are not important
in this case. We can therefore use M2 as an UV cutoff
for all the graphs. In this region the W propagator can be
shrunk to a point and all graphs will become logarithmic-
ally divergent by power counting. This trick will identify
the dominant graphs as these graphs which contain the
maximum number of superficially divergent subintegrals.
As an example, consider the two graphs in Fig. 6. The
above line of thought would identify graph (a) as dom-
inant while graph (b) should not be dominant because it
does not contain a superficially divergent subintegration
when the W propagator is shrunk to a point.

In order to check this conjecture we calculated all the
graphs (by means of standard methods) and extracted the
leading-logarithmic behavior by Mellin transforming the
amplitude’ with respect to My%. The result proves that
the cutoff trick is in fact correct.

As we have already mentioned, the two graphs shown
in Fig. 2(b) do not give leading contributions in the Lan-
dau gauge. And this is due to the Lorentz and y-algebra
structure of the graph. This structure, in leading order,
persists even in the case when we add more gluons, in any
way we like, to these two graphs. The same is true for the
graphs of Fig. 4 if we recall that y,, the coefficient of
g%/167* in the fermion y function, is zero in Landau
gauge.
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