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Analytic results for the Gross-Neveu model 3 function in three loops
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We calculate the three-loop 3 function for the Gross-Neveu model, showing explicitly the tech-
niques used to minimize the number of diagrams needed to be evaluated. The lack of a term quad-
ratic in N suggests that an N-independent coupling rescaling could possibly eliminate all but the first

two terms of the 3 function.

I. INTRODUCTION

The Gross-Neveu (GN) model' has been, for a long
time, a very useful testing ground for investigating vari-
ous interesting phenomena in field theory. It is an
asymptotically free two-dimensional fermion field theory
with a quartic interaction. The model has been analyzed
in the 1/N approximation, where N is the number of fer-
mions, and found to exhibit dynamical breaking of the
discrete chiral symmetry of the model and a rich bound-
state spectrum. The symmetry-breaking sign is a nonvan-
ishing vacuum expectation value for the composite field
. The dynamical mass depends, in a nontrivial way, on
the coupling constant, vanishing exponentially with it.
The last statement is a more general one for asymptoti-
cally free gauge theories where all masses are generated
dynamically. Lately the GN model was analyzed using
the so-called 8 expansion,? and it is argued that the
dynamical symmetry breaking is being achieved for finite
N as well as for N— . The model is also classically in-
tegrable® and the quantum S matrix has been known for
some time.*

The Lagrangian of the model is

L =9id)y+r{)?/2 , (1.1

where a summation over the flavor index of the fermion
field ¢!, i=1,...,N, is understood. When N=1 the
two-dimensional Fierz identity

2Py = — (Py )Py )
ensures that the Lagrangian above is equivalent to
Loy =90 — MGy )Py ) /2,

which corresponds to the (massless) Thirring model,
known to be a finite field theory (i.e., the 8 function van-
ishes). The 3 function of the GN model, up to order A3,
was evaluated some time ago.® In this paper,® exploring
properties of the specific model and of the renormaliza-
tion procedure, we evaluate the 8 function to order At in
an easy way.

The structure of the contributing Feynman graphs is

(1.2)
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best understood in the o-field formulation where the La-
grangian is written as!

L,=Wid)y+o?/2—g(PP)o, g’= (1.3)

where o is a nonpropagating scalar field. This Lagrang-
ian gives fermion Green’s functions identical to the origi-
nal one. The Feynman rules, for both Lagrangians in Egs.
(1.1) and (1.3), are shown in Fig. 1.

The quantity to be evaluated is the 3-loop coupling re-
normalization constant Z,, defined through Az =2Z, Az,
where B (R) stands for bare (renormalized). Now Z; can
be given in terms of the 2- and 4-point function renormal-
ization constants Z, and Z,, as

z,=2,Z;*, (1.4)

where Z, and Z, are  defined  through
G2, 4)=Z4,G®4). Working in the minimal subtraction
(MS) scheme, the 8 function is only associated with the
residues (i.e., with the coefficient of 1/¢ in dimensional
regularization) of the renormalization constants’

d
=724 _
B(A)=2A }\(ResZ}L)

d
ZZKZH[ReS(Z4—222 )] .
The calculation of Z, requires an off-shell evaluation of
the corresponding 4-point function that diverges logarith-
mically. The infinite part therefore cannot depend on any

(1.5)
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FIG. 1. The Feynman rules for the Gross-Neveu model.
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dimensional parameter, such as external momenta or
mass parameters. In order to keep computational com-
plications down to a minimum, we choose to calculate
the 4-point function at zero external momenta and add a
fermion mass parameter to be used as an infrared regula-
tor. Mass renormalization effects must now be taken into
account; however, the final result does not depend on this
particular choice, as should be the case. Moreover the
very existence of this mass parameter allows the summa-
tion of classes of diagrams by means of Ward-like identi-
ties.

The structure of the paper is as follows. In Sec. IT we
explain in detail the ideas and the shortcuts used in order
to reduce the tedium of the calculations. In Secs. III-V
we evaluate the relevant graphs for the wave function and
the vertex, the o propagator and the contribution of the
two-loop skeleton graphs correspondingly. In Sec. VI we
evaluate the desired renormalization constants and finally
the 8 function. The conclusion and several remarks are
stated in Sec. VII.

II. GENERAL CONSIDERATIONS

In this section we present the ideas that allow us to
reduce considerably the amount of work to be done.
There are four main considerations.

If we write the 8 function in the usual way

BA)=BA*+ B A3+ B,A* 2.1)

we expect the coefficients 3y, B;, and 3, to be polynomials
in N. Note that factors of N are associated with the pres-
ence of fermionic loops. The connection with the Thir-
ring model (vanishing 3 function), on the other hand, al-
lows us to factor out an N —1 term:

By=(N —1)(By,N2+ ;N +By)
=/322N3+(321*Bzz)Nz+(Bzo“le IN =By »

where f3,;, i=0,1,2, are constants. It is obvious from Eq.
(2.2) that we only need to evaluate three out of the four
coefficients of the third-order polynomial appearing. The
most convenient choice is to avoid calculating f3,,, corre-
sponding to diagrams without a fermionic loop, which
are the most cumbersome.

Next we note that diagrams relevant to Z, and corre-
sponding to ‘‘non-one-particle-irreducible- (1PI-) like
graphs,” in the o formulation, do not contribute, since
the loops are disconnected. Some examples are shown in
Fig. 2. In particular the first of these diagrams is the only

(2.2)

-0-0-0
7 -@ i
--0-

FIG. 2. Non-1PI-like diagrams, in the o formulation, which
do not contribute. The first is the only one proportional to N3.
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one proportional to N3. This diagram can be renormal-
ized using the 1-loop counterterm, leading therefore to
the statement that 3,, in Eq. (2.2) is zero.

The third point is the following. All diagrams contrib-
uting to the 4-point function are, in general, overall loga-
rithmically divergent. If this overall divergence is miss-
ing, either in a diagram or in a sum of appropriate dia-
grams, we do not have a contribution, since the subdiver-
gences are canceled by the lower-order counterterms,
rendering thus the diagram finite at this level.

There are two cases where the statement above can be
applied. The first case refers to diagrams having a fer-
mion loop with an odd number of fermion propagators
(dressed or not). This loop is obviously proportional to m
and the overall divergence has disappeared. For the
second case consider a diagram where a subdiagram con-
sists of a fermion-line correction. We expect this correc-
tion to have a term proportional to the momentum
(slashed) of this line and a term proportional to the mass
m of the fermion. This last term cannot contribute since,
having lost a power of momentum, the overall divergence
is lost. This point gets extremely useful in the case of a
1-loop fermion-line correction where there is only an m-
proportional term, rendering the whole diagram unin-
teresting.

The last point we would like to consider is the follow-
ing. If we differentiate a fermion propagator with respect
to m we create a vertex carrying a zero-momentum o
line. By analogy, differentiating a diagram we take the
sum of diagrams where one o line is coming out of each
fermion propagator. Applying this idea to the diagrams
contributing to the mass renormalization we get graphs
contributing to the vertex renormalization.

The ensemble of 3-loop diagrams contributing to the
4-point function, shown in Fig. 3, can be generated by the
zero-, one-, and two-loop skeleton diagrams dressed in all
possible ways (propagators and vertices) plus the new
structures appearing at this loop level. Let us go through
each group shown in the figure. Groups II and VI do not
contribute since, adding them in pairs, the diagrams lose
their overall divergence. Group IV also does not contrib-
ute since an odd-number fermion propagator loop ap-
pears. As a general rule we can state that graphs vanish-
ing for m —0 do not contribute. In group I we have ei-
ther a vertex or a o-propagator correction (if we have
both, the diagram is a “non-1PI-like” one). The vertex
correction diagrams can be taken, as a bonus, by
differentiating with respect to the mass m, the fermion 2-
point function corrections which we evaluate in Sec. III.
The o-propagator corrections can be found, as is shown
in Sec. IV, by differentiating vacuum-to-vacuum dia-
grams twice with respect to m. Finally group III is eval-
uated in Sec. V.

All calculations have been performed using dimension-
al regularization and the MS scheme. The general struc-
ture of the infinite parts of the relevant diagrams and the
corresponding one- and two-loop counterterm graphs is
shown below:

3-loop graph:

(a +be+ced)?; (2.3a)
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FIG. 3. Diagrams contributing to the 4-point function in the
3-loop order. Groups I, II, and III are supposed to be dressed
in all possible ways (vertices and propagators).

2-loop counterterm graph:

(A,/e*+B, /e)a,+bye+c,e?)l (2.3b)
1-loop counterterm graph:
(A,/eNa,+be+c,e)I?, (2.3¢)

where e=1—n /2 and I=fd"k/(k2—m2). Renormal-

izability of the theory requires the following relations to
hold true:

3a+a,A4,=0, a,A,+a;4,=0,

3b+a,B,+b, A, +2b, 4,=0 . (2.4)

These relations ensure that terms of the form In°m /g?,
as well as some unwanted terms, such as In4sx, y, and
¥(0), cancel out between graphs and countergraphs. The

TABLE 1. Infinite part of the 1-loop diagrams. A factor of
1/(47r) is understood.

RalN igem/e (1.1)

_:'_|‘L ig3/e (1.2)
1

—_—

L Lig%/(2)] (vH) (v,) (1.3)
—_ -

> -[ig%/(2e)] (v¥) (vy) (1.4)
--O-- -ig22N/e (1.5)
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TABLE II. Infinite part of the 2-loop diagrams. A factor of
1/(41)? is understood.

-ighm(-1/€2+1/¢) (2.1)

-igh(f/ (26)+m(-1/(262)-1/¢)) (2.2)

\ 1g4N(f/esm(-1/(£2)-1/¢)) (2.3)

ig%N{-2/(2)+2/¢) (2.4)

ig5N(-1/(€2)-1/¢) (2.5)

By igON(1/(2€2)+1/€) () (vy) (2.5)

] ]
Qi -1g5N(1/(262)+1/¢) (Y¥)(vy) (2.7)

~(ig8/e) (1) (1) (2.8)

interesting 1/¢, 1/¢%, and 1/¢3 terms are given by

1/¢ term: ¢+ A;c;+ A,c,+b,B, , (2.5a)
1/¢? term: b+ A,b,+b,A,+a,B, , (2.5b)
1/¢* term: a+a,4,+a, 4, . (2.5¢)

Although all infinite parts could be written in the form
of Egs. (2.3), in a number of diagrams we have been faced
with terms of the form

n n

m?I f 2 2 ; kzd £ 29( 12 2ya?
(k2—mH)[(k +p)*—m?*(p?—m?)"
which cancel out completely when counter diagrams are
included. We have neither put these terms in the form of
Egs. (2.3), nor included their contribution in the follow-
ing tables, in order to keep the picture as clear as possi-
ble. Tables I and II give all the infinite parts needed for
the evaluation of the counterterms in the three-loop ap-
proximation.

a=1,2,

III. FERMION WAVE FUNCTION
AND VERTEX RENORMALIZATION

We have evaluated all N2 and N-proportional dia-
grams contributing to the wave-function renormalization
of the fermion with s (external) momentum. The results,
following the notation of Eq. (2.3), are shown in Table
III. The 1/e term is then easily evaluated, using Eq.
(2.5a):

i[g%/(4m)>[NA—84/3+4m /3)+N(—6§—4m)]/e.
3.1)
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By differentiating with respect to m we get the corre- IV. 0 PROPAGATOR
sponding contribution of the Yo vertex to the 4-point

function, appropriately multiplied by 2g2, The diagrams contributing to the o propagator can be

easily evaluated by applying twice the differentiation
i[g¥/(4m)*)(8N?/3—8N) /¢ . (3.2)  technique to three vacuum diagrams. Diagrammatically

TABLE III. 3-loop diagrams and counter diagrams contributing to the fermion wave-function renor-
malization. The external momentum of the fermion line is s. A factor of ig® is understood.

£ m
DIAGRAM | 1/€2 | I/e | €0 e | e |0 e |€ FACTOR
o Q - - 0 |8/3 }-8/3 |4/3 |-8/3 |4/3 N2
ok - 2 0 1 1 1 | -1 0 F2N2/(4n)
adem—_—
- 4 0 0 0 1 1 0 0 | N2/(4n)2
AR
,/CD\ - - o |43 | 0 [2/3 |2/3 | 0 |-N
[ S N
DN -l 1o |1 o |1 |1 o |anem
cme—r—
e 2 (-2 0o |0 |1 1 0 | 0 [|-2N/(4m)?2
,’0‘, - 0 4/3 0 2/3 }2/3 0 2N
\~_, / )
ik 2 | o 2|1 {20 |o | 2v(@n
1 - n
_1_,;:._7_ !
EON -1 Lo {1 o |1 |1 |o |-28(4n
M s )
,”‘“\l 2 0 0 0 2 1 0 0 |-2n/(am)2
1 1 0 0 0 1 0 0 |-2N/(4nm)2
- ﬁ'
; -172 | -1 0 0 0 2 |-2 0 |-2N/(4n)2
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this can be written as E? 5\‘2_; {]: 2 + 2@ + ,
FHO-Q0 O N
() 1HOF @ (poooa

The results for the three vacuum diagrams are given in

TABLE III. (Continued).

N - - 0 - -

O o | o |23 |-2 |43 | -N
,’,5-‘: \ -l 20 o o |1 [-2 |0 | nuen
PR 0 | -1 0 0 0 2 | -2 0 | -N/(4m)2

\

e e

1 1 0 0 0 1 | -2 0 | -N/(4n)2

; 1/2 1 0 0 0 2 -2 0 | -N/(4n)2

’ \
"'1'—7—‘"" - - 0 0 0 1 -5 4 -N
4'0.\\
’ \ - -1 0 0 0 1 -5 4 -N/ (4
: /(4n)
/'*\‘
L | -2 lo oo |1 |-2 |0 | N4
N
I‘x~‘ 2
’ M -2 -
0 0 0 0 1 2 0 N/ (4n)

/2 | 1 0 0 0 2 | -2 0 | -N/(4m)2

{Q\ Q - - 0 0 0 0 2/3 | 2/3 -N

0 | -1 0 0 0 2 | -2 0 | -N/(4n)2

’ \ IT DOES NOT CONTRIBUTE




3452

Table IV. We note that these diagrams have (mass) di-
mension 2, expecting them to be proportional to m 2.

Finally the contribution of the o propagator to the
desired 4-point function is

i[g®/(47)*)(8N2/3—10N /3) /¢ . 4.1)

V. 2-LOOP SKELETON DRESSED

Since we do not evaluate graphs independent of N, the
only dressing we can have in these diagrams is a fermion

N. D. TRACAS AND N. D. VLACHOS 43

loop in one of the three o lines appearing in all possible
ways. In Fig. 4 we show all these graphs which give

Group I: —i[g%/(47)3](8N) /¢, (5.1a)
Group II: —i[g8/(47)*)(—4N/3) /e, (5.1b)
Group IIL: —i[g®/(47)3](40N) /¢ . (5.1¢)

TABLE IV. As in Table III for the 3-loop vacuum-vacuum diagrams used for the o propagator

corrections. A factor of ig*m? is understood.

DIAGRAM 1/€2 | 1/¢ | €0 e |€? FACTOR
- - 2 | -6 4 -N
@ - -1 2 | -6 4 |-2N/(4n)
@ - |-172 4 -8 4 -N/(4n)
O 1 | -1 | 2 |-2 | o |avn)?
O 1] o | 2 |-6 | a4 |-N@n)2
- - a3 | 0o |83 -N
@ - -1 2 -2 0 -4N/(4n)
@ - 12| 4 | -8 4 | -2N/(4n)
O 0 |-1/2 | 2 | -2 | o [|-4N/(4n)2
172 | 1 2 | -2 | o |-4N/(4n)2
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TABLE IV. (Continued).

- - |83 |83 [16/3] N2
@ - 2 -2 0 |-2N2/(4n)
O 0o | -1 2 | o [aN2/(an)2
1 1 -2 0 |4N2/(4n)2
® - |12 o | o |N%/(4n)
@ - | 12 o | o | N/(an)
VL. THE Z,, Z,, AND Z, RENORMALIZATION [A3/(47)*)(—70N) /e (6.4)

CONSTANTS, THE 8 FUNCTION

Using Egs. (3.2), (4.1), and (5.1) we get the complete
1/€ term of the diagrams contributing to Z,:

i[g®/(4m)*1(16N2/3—58N) /¢ . 6.1
Therefore the 3-loop order of Z, is
[g%/(4m)3)(16N?/3—58N) /¢ . (6.2)

From Eq. (3.1) we can find the corresponding term for
Z,:

[g%/(47)*1(8N?%/3+6N) /¢ . (6.3)
Finally from Eq. (1.4) we get Z,:

— Sy B e e —_———
) 1) ’
P V4 R ‘\¢/
T v(’ H ] 3
o.:: N 'Q' n

S ] !
Vo SN V) AN
—_— —_ —_ —_—d
IR} Y é TN N T
[N l v !
s AN o N
/ M f \ h
BV C% AN el

FIG. 4. The 2-loop skeleton diagrams dressed with a fermion
loop.

where we have switched back to the A coupling. Amaz-
ingly enough, the N2 dependence is canceled and the only
nonzero coefficient of Eq. (2.2) is B,y. This way, Z, is ful-
ly written as

—[A*/(47)*170(N —1) /e . (6.5)
Using Eq. (1.5) we evaluate [3,, which turns out to be
B,=—[1/(4mw)3]420(N —1) , (6.6)
and the S function up to this order now reads
42* | 82 420A*
(AM=(N—1)|——+—=— 6.7
P 47 (4m)?  (47) ©7

VII. CONCLUSIONS AND REMARKS

The interesting and unexpected point of Eq. (6.7) is the
lack of the N2-proportional term in the third-loop contri-
bution. One may argue that this contribution, as well as
the higher ones, is renormalization-scheme dependent.
Careful examination of this point reveals that the scheme
dependence of the 3, term is proportional to (N —1),
which shows that the N2-proportional term is scheme in-
dependent, provided that the coupling rescaling is N in-
dependent. Therefore, the whole 3-loop contribution to
the B function can be eliminated by a suitable rescaling of
the coupling, which is N independent, and therefore
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unique for all N.

The next question is now obvious: Does the lack of the
scheme-independent terms persist in higher orders too?
In this case all coefficients 3,, n > 1 could be eliminated
in an N-independent way, leaving only the first two
terms. We believe that this fact, if present, could shed
light on the understanding of the mass-generation mecha-
nism of the model.

We note also that even in the next term of the 8 func-
tion (4 loop), the scheme dependence is again proportion-
al to N —1. The speculation above requires the vanishing
of both terms proportional to N* and N2. This subject is
under investigation presently.
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f d"pd"k d"lA(p,k,l,m)
(pr—mA(k*—m )(IP—mY)[(p +k +1)*—m?]*

=A(p,k,l,m)/(a)
1/(1). .. finite
k2/(1). .. I°+finite
(kI)/(1)...—1I%/3+finite
pikp)/(2)...3(1—n/2)I*/2+finite
1%(kp)/(2)...(1—n/2)I*/2+finite
k*/(2)...(2n —3)I*+finite

ACKNOWLEDGMENTS pzlz/(Z) ... —2(1—n /2)I*+finite

We would like to thank J. Tliopoulos for stimulating ~ (k[)*/(2)... —(1—n/2)I*/3+finite

discussions. (kp)(KD)/(2) . .. —(1—n /2)I* /3+finite
APPENDIX m*(k)*/(3)...(1—n/2)(1—n /8)I+finite

We give the infinite part for a number of integrals  m2(kp)(kl)/(3)... —(1—n/2)(n —3)I3/8+finite
needed in the calculations.

Integral 1: Integral 2:

J
n n n
f 2 2va 2 dzp;i deIA(p,k,i,m) 2 2 57— Ak, ,m)/(a)
(pe—m )k —m )Y I*—m)[(p +k)'—m )[(p +1)"—m~*]

m2(pk)(pl)/(2)...0

m2(pk)(kl)/(2). .. —I(m?E,+m*E,) /4+finite
m2(kp)*/(2). .. I(m2&,+m*E,)/2+finite

(k) /(1) ... [Im?,+(Tn —6)I*/12]/(n —1)+finite
(pk)ph/(1)...1%/3

(pk)/(1). . . finite

(kl)/(1). .. finite
(kD(pk)/(1). .. —=5I°/12—Im?, /4+finite

where §,, a=1,2, are given by

f d"kd"p
(k2_m2)[(k +P)2__m2](p2_m2)a

,a=1,2.
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