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We calculate the B-function for the Oross-Neveu model up to three loop order. The result found is B(2)= (N-1 ) [ -422/  
4/r+ 823/(470 2-  27624/(4n)3] showing an unexpected lack of a term proportional to N 2 in the last term. This suggests the exis- 
tence of an N-independent rescaling of the coupling that eliminates all but the first two terms of the B-function. 

The G r o s s - N e v e u  model  [ 1 ] belongs to the class 
of  two-dimensional  model  field theories which ex- 
hibit  many interest ing propert ies  such as asymptot ic  
freedom, non-per turba t ive  mass generat ion as a re- 
sult o f  spontaneous  breaking of  the discrete chiral 
symmetry  as well as a rich bound  state spectrum. The 
model  is classically integrable [ 2 ] while the quan tum 
S-matr ix  for the different  sectors o f  the theory has 
been known for some t ime [ 3 ]. 

The lagrangian of  the model  is 

- • I - "~ L = W(l~ ) q,'+ :2 (~'~')', (l)  

where a summat ion  over  the f lavour index of  the fer- 
mionic field ~,i, i =  1 ..... N, is understood. When N =  1 
the two-dimensional  Fierz identi t ies  ensure that the 
lagrangian above is equivalent  to the lagrangian cor- 
responding to the massless Thirr ing model,  which is 
known to be a finite field theory (i.e. the fl-function 
vanishes) .  

In this letter we calculate theft-function up to order  
2 4, one order  higher than existing in the literature [ 4 ]. 

The quant i ty  to be calculated is the three-loop cou- 
pling renormal iza t ion  constant  Za where 2B=Za2R. 
NOW, Za can be given in terms of  the 2- and 4-point  
function renormal iza t ion  constants  as 

z a = z 4 z ;  2, (2)  

R B where G2(4)  = Z2(4) G2(4 ) .  

In the minimal  subtract ion (MS)  scheme, the B- 
function is only associated with the residues (i.e. the 
coefficients of  1/e)  of  the renormal iza t ion constants  
[5]. 

The structure of  the contr ibut ing Feynman  graphs 
is best unders tood in the ~r-field formulat ion where 
the lagrangian is writ ten as [ 1 ] 

Lo=~7( i~)~ '+  ½o2-g~/ /o  ", g2=2, (3)  

where a is a non-propagat ing scalar field. This lagran- 
gian gives identical  fermion Green functions as the 
original one. The Feynman rules are shown in fig. 1. 

Wri t ing the ft-function in the usual form 

ft (/~-) = ft0/~- 2 "31- ftl 2 3 "t ft2~l. 4, ( 4 )  

we expect ,80, ft~ and ,132 to be polynomials in N, van- 
ishing for N =  I. Indeed it is known that [4 ] 

, ~ ,  - r n  

Fig. 1. Feynman rules in the a formulation. 
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flo = --422 (N - 1 ) / 4 ~ ,  

f l ,  = 8,'].3 (N - 1 ) / (4~r)  2. (5)  

Note that factors of  N are associated with the pres- 
ence of  fermionic  loops. We therefore expect that  f12 
has the form 

f12 = ( N -  1 ) (,4N2 +CN+ D) 

= A N 3 +  (C-A)z~r 2 ~ - (D-C)N-D,  (6)  

where ,4, C and D are constants  to be calculated. 
As previously stated, A should be associated with 

three loop graphs conta ining three fermion loops. In 
fact there is only one such a graph depic ted  in fig. 2. 
It is easy to see, however, that this graph does not 
require a genuine three loop counter term (it  is only 
associated with subdivergences)  giving therefore no 
contr ibut ion to the fl-function at this order.  Eq. (6)  
now simplifies to 

/ ~ 2  = C N 2 +  ( D - C ) N - D .  (7)  

The physical meaning of  this expression is ob- 
vious. The constant  C is related to graphs containing 
two fermion loops, D - C  to graphs containing one 
fermion loop and D to graphs containing no fermion 
loop. This way, the value of  D could be deduced from 
graphs containing two and one fermion loop respec- 
tively. It is amusing to realize that  this rather  tr ivial  
observation can be used to prove inductively that any 
new four-fermion opera tor  appear ing in per turbat ion  
theory will not require new counterterms,  

We now turn on to the actual calculations. The 
quanti t ies  to be computed  are the N-dependent  infi- 
nite parts of  the 2- and 4-point  functions.  The con- 
t r ibut ing diagrams are shown in fig. 3, where all 
propagators  and vertices are dressed up to the appro-  
priate order. Since the 4-point  function is logari thm- 
ically divergent,  we would not expect any depen- 
dence of  the infinite part  upon d imensional  
quanti t ies,  such as external momenta  or mass param-  
eters. In order  to keep computa t iona l  compl ica t ions  
down to a min imum,  we choose to calculate the 4- 

Fig. 2. The only three loop graph proportional to N 3. 
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Fig. 3. Skeleton graphs. All propagators and vertices are dressed 
to the appropriate order. 

point  function at zero external momenta  and add a 
fermion mass parameter  to be used as an infrared 
regulator. Mass renormal iza t ion effects must  now be 
taken into account,  however, the final result does not 
depend on this par t icular  choice as it should. 

All calculat ions have been performed using d imen-  
sional regularization and the MS scheme. The gen- 
eral structure of  the infinite parts of  the relevant dia- 
grams and the corresponding one and two loop 
counter terms are 

three loop graph: (a+be+cE2)l 3, (Sa)  

two loop counter term: 

(A2/62"k-B2/6 ) (a2 q-b2(- q-c2f:2)l, (8b)  

one loop counter term: 

(AI/f-) (al  q-hi {~ °1-c1 ¢2)12, (8c)  

where ~ - - 1 - ½ n  and l = ) d " k / ( k 2 - m 2 ) .  Renormal-  
izabil i ty of  the theory requires the following relations 
to hold true: 

3a +a lA ~  =0 ,  a2A2 +a~A~ =0 ,  

3b+a2B2 + ])2z |2  +2b~Al =0.  (9)  

These relat ions also ensure that  some unwanted 
terms, such as In 4zr, 7 and ~u(0), cancel out between 
graphs and countergraphs.  

The results we finally get are as follows (only the 
N-dependent  residues are shown ): 

Z 2 = 1 --{ [).2/(47~)2]N 

+ [23/(47z)3](-~N2-6N)}/~,  (10)  

Z 4 = 1 --{ [2 / (47c) ]2N 

+ [)3/(47r)3]  ( _ ~ _ N Z + 5 8 N ) ] I / t .  (11)  

Now eq. (2)  can be used to write 
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Za = 1 - {  [ 2 / ( 4 ~ r ) 1 2 N -  [22/(4zr)212N 

+ [23/(4zt)3170N}/e,  (12) 

where again only the N-dependent residues are shown. 
Finally, the/~-function can be computed in terms 

of the formula 

fl(2) = 222(d /d2)  [Res Za] 

= 2 2 2 ( d / d 2 )  [Res(Z4 - 2 Z 2 )  ] , (13) 

so that f12 turns out to be 

f12 = -- [24/(47r)31420(N - 1) , (14) 

and the fl-function up to this order now reads 

/~(2) = ( N -  l ) 

X [ - 422/47r+ 8 2 3 / ( 4 z 0 2 - 4 2 0 2 4 / ( 4 g ) 3 ] .  (15) 

The lack of a term proportional to N 2 is interesting 

and unexpected. It is well known that f12 is renormal- 
ization scheme dependent  [ 5]; upon an analytic re- 
scaling of the coupling, ,82 is modified by a term pro- 
portional to f l o (N-  1 ). The results found indicate that 
the whole three loop contr ibut ion to the fl-function 
can be el iminated by a suitably chosen rescaling of 
the coupling which is N-independent  and therefore 
unique for all N. 

It would be interesting to speculate on the possibil- 
ity of el iminat ing all the coefficients fin, n >  2, in an 

N-independent  way. The result ing//-function would 
then have only the first two terms, a fact that could 

facilitate the understanding of the mass generation 
mechanism of the theory. Work towards this direc- 

tion is in progress. 
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