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Motivated by the plethora of models, mainly remanant from superstring theories, in
which several U(1) factors are present, we consider constraints on these theories from the
requirement that non-perturbative, as opposed to perturbative, unification arises close to
the Planck scale. We find that non-perturbative unification can be realized with three
standard families up to a supersymmetry breaking scale of order 100-500 TeV and six
supersymmetric families above that scale. )

During the past, there have been two approaches for explaining the low-energy
values of the gauge interaction coupling constants of the standard model.

The first well-known approach is perturbative unification, ! i.e. the assumption
that all interactions remain perturbative up to a scale Mgyt more or less close to

. the Planck scale M,, where they are unified in one way or another. In that case,

the values turn out to depend very critically on the value q;(Mgyt) = agur, 2
feature which might appear unpleasant if we give a physical meaning to the large
scale Mgyr.. ‘

The second alternative approach is the non- perturbauve un1ﬁcat1on based
‘on the observation® that the low-energy coupling constant a(M W) of an
asymptomcally divergent interaction becomes more and more insensitive to its
value a(A) at a bigger scale A as A gets larger and larger compared to My. Alis
expected to be close to M, as gravity is supposed to cure the ultraviolet divergent
behavior. In that case, the interactions are strong and of comparable strength
(a;(A) = 0(1) at A = 0(M5)). Their low-energy values a,(My) are then essentially
determined by the value of A only, through renormalization group methods.

The second scenario cannot be easily realized in a non-supersymmetric ‘theory,
since there must exist many new states to render the gauge interactions of the
standard model asymptotically divergent. Things work better with super-
symmetry, where non-perturbative unification can be implemented ina N = 1
supersymmetric extension of the standard model with five generations. *
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On the other hand, string unification is at present the leading candidate for a
truly unified theory of all particle interactions.” Working in the heterotic string

type framework, on which most semi-realistic models are based, below .the
compactification scale M. we have an effective four dimensional theory with

gauge and gravitational couplings related at tree level by

_9 zzc;M—fs(M)2 “ 1
a_47z NS MP ()4

where M~ (a’)”"*is the string mass scale. Natural and aesthetic arguments then
suggest that My~ M= ¢ So, string unification offers the possibility that the
standard model gauge couphngs become strong and unify with one another (and
with gravity) at a single scale My close to M= My~ 0.1 M,. Predictions of the
low-energy parameters of the standard model are then made by solving the two-
loop renormalization group equations. Note that computation of string threshold
effects,” by integrating out the heavy string degrees of freedom, shows that Mis

expected to be

My~g X 5.3 X 107 GeV. O ®

It seems thus that string and non-perturbative unification coexist naturally.
The effective gauge group obtained from compacnﬁcauon of the heterotic type
. string contains, almost always, many U(1) factors.® So, it appears that in the
compactification scale the four-dimensional gauge interactions are of the form
SU(3)XSU2)XU(1)", which would correspond to the gauge symmetry of, a
superstring vacuum (similar groups with many U(1) factors are also obtained in
the four-dimensional formulation of superstrings®). In order to make contact
with experiment, the coupling constants have to be renormalized from their
values at a scale close to the compactification one, down to the weak scale, where
the observed gauge group is one of the standard model SU(3) X SU(2) X U(1)y.
Gauge coupling renormalization with several U(1) factors have been examined
by considering the mixing of the U(1) gauge bosons in the evolution of gauge
couplings.® In the present work we prefer to describe the mixing by parametrizing
the U(1), hypercharge generator normalization constant with C = (Z¢; o
obtained through the combination ¥ = Z ¢; U, of the various U(1)’s.*°
The purpose of the present work is to discuss the non-perturbative unification
'scenario in the presence of the parameter C, which reflects the dependence of the
U(1)y out of many U(1) factors. Our assumptions on the mass scales involved,
between M, and M, are the following: above M, is M}, an average, approximate
scale of supersymmetry breaking, above which the supersymmetric partners
contribute to the running coupling constants; and below M, is My, the scale at
which the gauge couplings become strong and where the gauge symmetry of the
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superstring vacuum SU(3)XSU(2)XU(1)" breaks to SU3)XSU(Q2)XU(1)y (we
do not complicate the discussion by considering other intermediate mass scales,

as these seem not to be favored in most cases''). We are going to discuss, in a
rather general way, constraints concerning the possible values of C, M;and M for
the realization of the non-perturbative unification scenario, so that acceptable
values of the low energy parameters are obtained.

Let us now turn to the calculation. The evolution of the gauge coupling
constants at two-loops is governed by the renormalization group equations

d ‘ —

1 .
™ bt + Z by of o 3

(87%) 5

1
2n
where i = 1, 2, 3 stands for the U(l)y, SU(2) and SU(3) gauge couplings,
respectively. We have neglected Yukawa coupling contribution to the above
equation since we restrict ourselves to three standard generations between My

and the next scale M,. Then, between My and M, the coefficients of the
renormalization group are given by!?
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for ihe two-loops, where 7 are the number of generations, which we put equal to 3,
and-ny the number of Higgs multiplets, which we put equal to 2, given that the
least number of Higgs supermultiplets above M, which is 2 is also fully active
below M,. Between M, and My, we have N = 1 supersymmetry with »’
generations and ny” Higgs supermultiplets. The coefficients of the renormaliza-

tion group are now given by
b3 = - 9 + 2 n’

1
b2=—6+2n,+5nﬁl . (6)

, (10 1
= C ?n' —l——z-nH’

for the one-loop, and

for the two-loop. :
The integration of the above Eq. (3) is performed numerically, starting from

M, and running the coupling constants to lower energies. The known value of
QoM ) = 1/ 128 is an input in the computation. According to the non-
perturbative unification philosophy, the values of &, (M) are insensitive to their
values at My. To be definite, we report our results for the initial values
a;(My) = g?/4n = 1. We have explicitly checked the lack of sensitivity of our
results in a change of this initial value. The relevant parameters are C, M;, My
(ahd n’, ny’) and we keep solutions which correspond to acceptable values of

’ Sinz Gw(Mw) and a3(Mw) 13
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Table

My T M C »‘”' a; sin’ 0y
.1.80%10° 0.75 0.120 - = 0.235

0.1%10" 2.00X10° 0.65 0.122 0.234
2.80X10° 0.52 - - 0.132 - 0.230

3.50X10° 0.47 0.139 0.227

3.00x10° 1.42 '0.127 0.235
0.2X10" 3.40X10° 1.00 0.130 0.234
3.60%X10° 0.88 0.132 0.233

3.85%10° 0.80 0.134 0.232

} 4.80%10° 1.70 0.137 0.233
5.00%X10° 1.40 0.138 - 0.233

5.20X10° 1.20 0.139 0.232

0.2226 = sin6, (M) = 0.2353
0.106 < (M) < 0.138.. (8)

Our results are presented in the Table and Figs. 1 to 4. The most important
feature is that, with three generations of fermions in low energies, there must be
six generations above supersymmetry breaking scale M;, for the scenario of the
non-perturbative unification to be realized. The number of Higgs multiplets is
two, both below as well as above M, which is exactly the minimum number of
Higgs needed for supersymmetry breaking. The unification scale My is in the
range of (.1 — .3)X 10"7 GeV, while the supersymmetry breaking scale M, lies in
the interval (1 —35)X 10° GeV, its accurate value depending on the parameter C
and M,. This value of M is not away from the range relevant to the gauge
hierarchy problem. In our numerical calculations we are varying C between 0.5
and 1.6, since we expect it to be around 1. Note that higher unification scales My
would be possible for larger values of C. In Figs. 1 and 2, sin®6, (M) and o5 (M )
are sketched as functions of M, for various M. For a given My, M, is constrained
by the experimentally accepted values of a;(My ) and sin®0,,(M,,). In Figs. 3 and
4, sin’0,(My,) and as(My) are sketched as functions of C, with similar
constraints. ‘ : : ' B

In conclusion, we find it ehcouraging that the three standard generations,
together with a double number of supersymmetric generations and the minimum

_number of Higgses, suffice to implement the nhon-perturbative unification

scenario, with very reasonable mass scales.
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L
M; 500 (TEV)

Fig. 1. Plot of sin @, (M,) as a function of M;, for My = (0.1, 0.2, 0.3) X 10" GeV. The curves are
bounded from below by the experimentally accepted value of a; (Mw).

200 M, 00 (ev)

Fig. 2. Same as in Fig. | for ay (My) vs M. The lower boﬁnd now come from sin’ 6, (M, w).

Fig. 3. Same as in Fig. | for sin? Ow(Mw) vs C.
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Fig. 4. Same as in Fig. 2 for a3(My) vs C.
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