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Fffective supergravity models from strings
rermain in the effective field theory
form of the Kahler function, the superpotential
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The general form of the gauge invariant Kahler function is 1]

G(z,3) = Kl ) + logl W(z) P | (1)

where K(z, 2) is the Kahler potential and W is the superpotential. Denoting z = (®, @), where
& stands for the dilaton field S and other moduli 7; while @ for the chiral superfields and

assuming a general factorizable form of the Kéhler potential, at tree level we can write

K(8.8) = —log(S+5) - T, halog(Tn + Tn) + Z35(T, TY0:Q;
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2] and {---} stand for possible non-renormelizable

where ko 1s 2 model dependent constant |
effective higgs mixing term

contributions. Terms bilinear in the fields Q; refer in fact to an

[3. 4] .
Under modular symmetries the moduli 7%, the matter fields Q; and the superpotential W

transform in the following way:
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where we have introduced the notation t, = icIln + d,. while g; is the modular weight of the .
corresponding matter feld Q;. Assuming invariance of the u parameter under the symmetries
of the string we end up with the following relation between the modular weights:

T = [ T4 @
{ m n

stant constraint and simplify our approach assumin
H, in the superpotential, we get the simple
ights govern th

If we further impose the cosmological con:
a single modulus T and a Higgs mixing term 7%:
3. Such a relation could be helpfull since modular we

relation g, + g2 = A =
d m}, and could in principle trigger a radiativ

initial conditions for the scalar masses my, an
symmetry breaking at a Jower scale.
It is well known that using only the MSSM spectrum, unification of the gauge coupli

occurs naturally at My ~ 1018GeV i.e. almost two orders lower than the string scale.
is rather suggestive for the existence of an Intermediate Gauge Symmetry (IGS). Models w.

1GS have appeared in 2 string confext [5]. In what follows, it will be assumed that ?h
is at least one pair of higgs fields, Hiz, having the required group properties, and obtaill
which break the intermediate gauge group dows f0-

large vacuum expectation values ( vevs)
r computation in the context of only one moduln

MSSM symmetry. We will also perform ou
T and the dilaton field S. .
With respect to the fields z;

V(z) =5 (6167361 - 3)+1DF

(z) is given by
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(3, T, H,, Ha), the scalar potential 1%



D [ are the D-terms and Gr is the derivative of G with respect to the field z;. In oder
5 examine i detail the properties of the scalar potential, we need the specific knowledge
: uperpotential. However, for illustrative purposes, let us collect only terms independent

2. In terms of the unrenormalized field vevs v =< H; > we obtain, at the minimurm(6],

2 2 2
1’01[ + Q2l—v—i— and vu; =< H; > (6)

Ta T

<G> (3 — (fl- + ks + 1i)} where @ *=h+a
Qr Tu TR ’

- determines the two vevs v1s of the IGS breaking higgs fields. Assuming that the potential
minimum is zero and equal renormalised vevs (so that the flatness of the effective potential
ssured), we can express the vev as a function of & and the sum ¢y + g2 = ¢. For h close to 3
the additional constraint ¢ = 3, we can get 2 sensible result of vev~ 10-2 My,. The terms
pped out of the potential could allow for a wider range of g and h giving vev in the desired
on.
Iu the following, we would like to examine the possibility of breaking the IGS radiatively,
tty much the same way as this happens in the MSSM We will take as an example the
U(4) x SU(2) x SU (2) model(7]. The breaking of this symmetry is realized at a high scale
ith the introduction of a higgs pair belonging to H + g=(412)+412) representations.
"he SM symmetry breaking occurs due to the presence of the two standard doublet higgs fields
ich are found in the A = (1,2,2) representation of the original symmetry of the model. The
auge invatiant tree level superpotential which is of relevance to our discussion here is {7]

W = AlFLFRh+A2FRH¢i+A3HDD—:—MITH:ID (7

where Fr, = (4,2,1), Fr=(4,1,2), D =(6,1, 1) and ¢; are gauge singlet fields. Using now the
iknown RGEs for the scalar masses and the Yukawa couplings we can check thepossibility of one
.of the mass-squared parameters to turn negative. Of course the initial values at the M- scale
are needed. After rescaling to obtain correct normalized fields, while assuming zero cosmological
constant, we get for the Higgs mass parameters the relation m¥, = mip(l+ @) 1= 1,2,
where my, is the gravitino mass. Obviously, the initial conditions of the two higgs fields depend
crucially on the modular weights gi2 which are in general not equal to each other. Assuming
large initia] values for the Yukawa couplings Az ~ O(1), we show in Fig.1 the two higgs mass -
parameters as a function of the scale logyo M. It can be seen that mf;, turns negative at a scale
My ~ 10% — 2 x 10%GeV, depending on the choice of the two modular weights. This scale is
not far from the conventional unification scale My. All other soft squared mass parameters are
positive at that scale. From these figures we conclude that the IGS symmetry can break down
radiatively naturally, provided that the two modular weights are different in order to create a
hierarchy for the two higgs mass parameters at Meer- )

A way to avoid an unacceptable Peccei-Quinn symmetry in the MSSM, is to introduce a
mixing term pHq Ha (8, 3] where the mass parameter y should be of the order of the electroweak
scale. Nevertheless, the introduction of an explicit p-term in the theory generates a new
hierarchy problem. since one has to introduce a mew scale in the theory. In the context of
the N = 1 effective supergravity theories it is possible to obtain an induced higgs mixing term
9. 10] due to the effects of a hidden sector.

We evaluate. in a general framework of supergravity theory with generic stringy features,
the H,H, mixing term in the scalar potential. Using (2) and (5), the (leading part of the)
coefficient of the HiH» term is given by[l1]

ma/2 {1 - q‘ - ReT(dT b 8T>}Ms1m(T T\ i (8)
where § = il 3 peam (T T) = H12 L aq, and c=e < Pmagy (9)
g ) 5 ) sim U4 = P = V12, ~ 372 }
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is the case of a class of

waamy
e 5 conshant
122 nsians

spressiiig_the SubsCIip®

Now, if we consider the case where g (we are s 3
whilst M(T,T) has 2 sczling property under the T and T derivatives [9], which makes the

derivative terms in (8) to vanis

h, the formula takes the simple form

(1- 8 u+ ma2M) (

umptions we can see from (10) that there
esence of the higgs mixing term A in the Kghler function does
namely when g1 +¢2 = 2. In fact, this

the low energy potential,
string models obtained in the (2,2) compactifications of the heterotic

re, that under the above ass

superstring.
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