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Perturbations
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Perturbations 2

Quasi-normal modes (QNMs) describe small perturbations of a black hole.

• A black hole is a thermodynamical system whose (Hawking) temperature
and entropy are given in terms of its global characteristics (total mass,
charge and angular momentum).

QNMs obtained by solving a wave equation for small fluctuations subject to the
conditions that the flux be

• ingoing at the horizon and

• outgoing at asymptotic infinity.

⇒ discrete spectrum of complex frequencies.

• imaginary part determines the decay time of the small fluctuations

=ω =
1

τ
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Perturbations 3

AdSd Schwarzschild black holes
metric

ds2 = −
(

r2

R2
+ K − 2µ

rd−3

)
dt2 +

dr2

r2

R2 + K − 2µ
rd−3

+ r2dΣ2
K,d−2

choose units so that AdS radius R = 1.
horizon radius and Hawking temperature, respectively,

2µ = rd−1
+


1 +

K

r2+


 , TH =

(d− 1)r2+ + K(d− 3)

4πr+

mass and entropy, respectively,

M = (d− 2)(K + r2+)
rd−3
+

16πG
V ol(ΣK,d−2) , S =

rd−2
+

4G
V ol(ΣK,d−2)

• K = 0: flat horizon Rd−2

• K = +1: spherical horizon Sd−2

• K = −1: hyperbolic horizon Hd−2/Γ (topological b.h.)
Γ: discrete group of isometries
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Perturbations 4

harmonics on ΣK,d−2:
(
∇2 + k2

)
T = 0

• K = 0, k is momentum

• K = +1,

k2 = l(l + d− 3)− δ

• K = −1,

k2 = ξ2 +
(

d− 3

2

)2
+ δ

ξ is dicrete for non-trivial Γ

δ = 0,1,2 for scalar, vector, or tensor perturbations, respectively.
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Perturbations 5

AdS/CFT correspondence:

⇒ QNMs for AdS b.h. expected to correspond to perturbations of dual CFT.

establishment of correspondence hindered by difficulties in solving wave eq.

• In 3d: Hypergeometric equation ∴ solvable

[Cardoso, Lemos; Birmingham, Sachs, Solodukhin]

• In 5d: Heun equation ∴ unsolvable.

• Numerical results in 4d, 5d and 7d

[Horowitz, Hubeny; Starinets; Konoplya]
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Perturbations 6

Asymptotic form of QNMs of AdS black holes
Approximation to the wave equation valid in the high frequency regime.

• In 3d: exact equation.

• In 5d: Heun eq. → Hypergeometric eq., as in low frequency regime.
– analytical expression for asymptotic form of QNM frequencies
– in agreement with numerical results.
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Perturbations 7

AdS3

wave equation

1

R2 r
∂r

(
r3

(
1− r2h

r2

)
∂rΦ

)
− R2

r2 − r2h
∂2

t Φ +
1

r2
∂2

xΦ = m2Φ

Solution:

Φ = ei(ωt−px)Ψ(y), y =
r2h
r2

where Ψ satisfies

y2(y − 1)
(
(y − 1)Ψ′)′ + ω̂2 yΨ + p̂2 y(y − 1)Ψ + 1

4m̂2 (y − 1)Ψ = 0

in the interval 0 < y < 1, and

ω̂ =
ωR2

2rh
=

ω

4πTH
, p̂ =

pR

2rh
=

p

4πRTH
, m̂ = mR
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Perturbations 8

Two independent solutions obtained by examining the behavior near the hori-
zon (y → 1),

Ψ± ∼ (1− y)±iω̂

Ψ+ : outgoing; Ψ− : ingoing.
Different set obtained by studying behavior at large r (y → 0).

Ψ ∼ yh± , h± =
1

2
± 1

2

√
1 + m̂2

In massless case (m = 0): h+ = 1 and h− = 0

∴ one of the solutions contains logarithms.

For QNMs, we are interested in the analytic solution

Ψ(y) = y(1− y)iω̂
2F1(1 + i(ω̂ + p̂),1 + i(ω̂ − p̂); 2; y)
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Perturbations 9

Near the horizon (y → 1): mixture of ingoing and outgoing waves
[∵ standard Hypergeometric function identities]

Ψ ∼ A(1− y)−iω̂ + B(1− y)iω̂

A =
Γ(2iω̂)

Γ(1 + i(ω̂ + p̂))Γ(1 + i(ω̂ − p̂))

B =
Γ(−2iω̂)

Γ(1− i(ω̂ + p̂))Γ(1− i(ω̂ − p̂))

Ψ linear combination of Ψ+ and Ψ− ∴
Ψ = AΨ− + BΨ+

For QNMs: Ψ purely ingoing at horizon, so set

B = 0

Solutions (QNM frequencies):

ω̂ = ±p̂− in , n = 1,2, . . .

discrete set of complex frequencies with =ω̂ < 0.
NB: we obtained two sets of frequencies, with opposite <ω̂.
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AdS5

For a large black hole, scalar wave equation with m = 0

1

r3
∂r(r

5 f(r) ∂rΦ)− R4

r2 f(r)
∂2

t Φ− R2

r2
~∇2Φ = 0

f̂(r) = 1− r4h
r4

Solution:

Φ = ei(ωt−~p·~x)Ψ(r)

change coordinate r to y,

y =
r2

r2h

Wave equation:

(y2 − 1)
(
y(y2 − 1)Ψ′)′ +

(
ω̂2

4
y2 − p̂2

4
(y2 − 1)

)
Ψ = 0
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Perturbations 11

Two solutions by examining behavior near the horizon (y → 1),

Ψ± ∼ (y − 1)±iω̂/4

Different set by studying behavior at large r
(y →∞)

Ψ ∼ yh± , h± = 0,−2

so one of the solutions contains logarithms.
For QNMs, we are interested in analytic solution

Ψ ∼ y−2 as y →∞
By considering the other (unphysical) singularity at y = −1,
⇒ another set of solutions

Ψ ∼ (y + 1)±ω̂/4 near y = −1

Write wavefunction as

Ψ(y) = (y − 1)−iω̂/4(y + 1)±ω̂/4F (y)

⇒ Two sets of modes with same =ω̂, but opposite <ω̂.
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F (y) satisfies the Heun equation

y(y2 − 1)F ′′ +
{(

3− i± 1

2
ω̂

)
y2 − i± 1

2
ω̂y − 1

}
F ′

+

{
ω̂

2

(
±iω̂

4
∓ 1− i

)
y − (i∓ 1)

ω̂

4
− p̂2

4

}
F = 0

Solve in a region in the complex y-plane containing |y| ≥ 1
(includes physical regime r > rh)
For large ω̂: constant terms in Polynomial coefficients of F ′ and F small com-
pared with other terms

∴ they may be dropped.

∴ wave eq. may be approximated by Hypergeometric equation

(y2−1)F ′′+
{(

3− i± 1

2
ω̂

)
y − i± 1

2
ω̂

}
F ′+ω̂

2

(
±iω̂

4
∓ 1− i

)
F = 0

in asymptotic limit of large frequencies ω̂.

Analytic solution:

F0(x) = 2F1(a+, a−; c; (y+1)/2) , a± = 1− i±1
4 ω̂±1 , c = 3

2± 1
2 ω̂
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Perturbations 13

For proper behavior at y →∞, demand that F be a Polynomial.

∴
a+ = −n , n = 1,2, . . .

∴ F is a Polynomial of order n, so as y →∞,

F ∼ yn ∼ y−a+

Ψ ∼ y−iω̂/4y±ω̂/4y−a+ ∼ y−2

as expected.

∴ QNM frequencies

ω̂ =
ω

4πTH
= 2n(±1− i)

[Musiri, Siopsis]
in agreement with numerical results.
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Monodromy argument
If the function has no singularities other than y = ±1, the contour around
y = +1 may be unobstructedly deformed into the contour around y = −1,

M(1)M(−1) = 1

Since

M(1) = eπω̂/2 , M(−1) = e∓iπω̂/2

and using =ω̂ < 0, we deduce

ω̂ = 2n(±1− i)

same as before.
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Gravitational perturbations

K = +1

I derive analytical expressions including first-order corrections.
I results in good agreement with results of numerical analysis.
radial wave equation

−d2Ψ

dr2∗
+ V [r(r∗)]Ψ = ω2Ψ ,

in terms of the tortoise coordinate defined by

dr∗
dr

=
1

f(r)
.

potential V from Master Equation [Ishibashi and Kodama]

For tensor, vector and scalar perturbations, we obtain, respectively,
[Natário and Schiappa]
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VT(r) = f(r)

{
`(` + d− 3)

r2
+

(d− 2)(d− 4)f(r)

4r2
+

(d− 2)f ′(r)
2r

}

VV(r) = f(r)

{
`(` + d− 3)

r2
+

(d− 2)(d− 4)f(r)

4r2
− rf ′′′(r)

2(d− 3)

}

VS(r) =
f(r)

4r2

[
`(` + d− 3)− (d− 2) +

(d− 1)(d− 2)µ

rd−3

]−2

×
{

d(d− 1)2(d− 2)3µ2

R2r2d−8
− 6(d− 1)(d− 2)2(d− 4)[`(` + d− 3)− (d− 2)]µ

R2rd−5

+
(d− 4)(d− 6)[`(` + d− 3)− (d− 2)]2r2

R2
+

2(d− 1)2(d− 2)4µ3

r3d−9

+
4(d− 1)(d− 2)(2d2 − 11d + 18)[`(` + d− 3)− (d− 2)]µ2

r2d−6

+
(d− 1)2(d− 2)2(d− 4)(d− 6)µ2

r2d−6
− 6(d− 2)(d− 6)[`(` + d− 3)− (d− 2)]2µ

rd−3

−6(d− 1)(d− 2)2(d− 4)[`(` + d− 3)− (d− 2)]µ

rd−3

+4[`(` + d− 3)− (d− 2)]3 + d(d− 2)[`(` + d− 3)− (d− 2)]2

}
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Near the black hole singularity (r ∼ 0),

VT = − 1

4r2∗
+

AT

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2∗ + . . . , AT =
(d− 3)2

2(2d− 5)
+

`(` + d− 3)

d− 2
,

VV =
3

4r2∗
+

AV

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2∗ + . . . , AV =
d2 − 8d + 13

2(2d− 15)
+

`(` + d− 3)

d− 2

and

VS = − 1

4r2∗
+

AS

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2∗ + . . . ,

where

AS =
(2d3 − 24d2 + 94d− 116)

4(2d− 5)(d− 2)
+

(d2 − 7d + 14)[`(` + d− 3)− (d− 2)]

(d− 1)(d− 2)2

We may summarize the behavior of the potential near the origin by

V =
j2 − 1

4r2∗
+A r

−d−1
d−2∗ + . . .

where j = 0 (2) for scalar and tensor (vector) perturbations.
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Perturbations 18

for large r,

V =
j2∞ − 1

4(r∗ − r̄∗)2
+ . . . , r̄∗ =

∫ ∞
0

dr

f(r)

where j∞ = d−1, d−3 and d−5 for tensor, vector and scalar perturbations,
respectively.
After rescaling the tortoise coordinate (z = ωr∗), wave equation

(
H0 + ω

−d−3
d−2 H1

)
Ψ = 0,

where

H0 =
d2

dz2
−

[
j2 − 1

4z2
− 1

]
, H1 = −A z

−d−1
d−2.

By treating H1 as a perturbation, we may expand the wave function

Ψ(z) = Ψ0(z) + ω
−d−3

d−2 Ψ1(z) + . . .

and solve wave eq. perturbatively.
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Perturbations 19

The zeroth-order wave equation,

H0Ψ0(z) = 0,

may be solved in terms of Bessel functions,

Ψ0(z) = A1
√

z J j
2
(z) + A2

√
z N j

2
(z).

For large z, it behaves as

Ψ0(z) ∼
√

2

π

[
A1 cos(z − α+) + A2 sin(z − α+)

]
,

=
1√
2π

(A1 − iA2)e
−iα+eiz +

1√
2π

(A1 + iA2)e
+iα+e−iz

where α± = π
4(1± j).
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Perturbations 20

large z (r →∞)
wavefunction ought to vanish ∴ acceptable solution

Ψ(r∗) = B
√

ω(r∗ − r̄∗) Jj∞
2

(ω(r∗ − r̄∗))

NB: Ψ → 0 as r∗ → r̄∗, as desired.
Asymptotically, it behaves as

Ψ(r∗) ∼
√

2

π
B cos [ω(r∗ − r̄∗) + β] , β =

π

4
(1 + j∞)

match this to asymptotic behavior in the vicinity of the black-hole singularity
along the Stokes line =z = =(ωr∗) = 0

⇒ constraint on the coefficients A1, A2,

A1 tan(ωr̄∗ − β − α+)−A2 = 0.

impose boundary condition at the horizon

Ψ(z) ∼ eiz , z → −∞ ,

⇒ second constraint
analytically continue wavefunction near the origin to negative values of z.
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I rotation of z by −π corresponds to a rotation by − π
d−2 near the origin in

the complex r-plane.

using

Jν(e
−iπz) = e−iπνJν(z) , Nν(e

−iπz) = eiπνNν − 2i cosπν Jν(z)

for z < 0, the wavefunction changes to

Ψ0(z) = e−iπ(j+1)/2√−z

{[
A1 − i(1 + eiπj)A2

]
J j

2
(−z) + A2eiπj N j

2
(−z)

}

whose asymptotic behavior is given by

Ψ ∼ e−iπ(j+1)/2
√

2π

[
A1 − i(1 + 2ejπi)A2

]
e−iz+

e−iπ(j+1)/2
√

2π
[A1 − iA2] eiz

⇒ second constraint

A1 − i(1 + 2ejπi)A2 = 0

constraints compatible provided
∣∣∣∣∣

1 −i(1 + 2ejπi)
tan(ωr̄∗ − β − α+) −1

∣∣∣∣∣ = 0
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∴ quasi-normal frequencies

ωr̄∗ =
π

4
(2 + j + j∞)− tan−1 i

1 + 2ejπi
+ nπ

[Natário and Schiappa]
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First-order corrections
[Musiri, Ness and Siopsis]

To first order, the wave equation becomes

H0Ψ1 +H1Ψ0 = 0

The solution is

Ψ1(z) =
√

z N j

2
(z)

∫ z

0
dz′
√

z′ J j

2
(z′)H1Ψ0(z′)

W −√z J j

2
(z)

∫ z

0
dz′
√

z′N j

2
(z′)H1Ψ0(z′)

W
W = 2/π is the Wronskian.
∴ wavefunction up to first order

Ψ(z) = {A1[1− b(z)]−A2a2(z)}
√

zJ j

2
(z) + {A2[1 + b(z)] + A1a1(z)}

√
zN j

2
(z)

where

a1(z) =
πA
2

ω−
d−3

d−2

∫ z

0
dz′ z′−

1

d−2J j

2
(z′)J j

2
(z′)

a2(z) =
πA
2

ω−
d−3

d−2

∫ z

0
dz′ z′−

1

d−2N j

2
(z′)N j

2
(z′)

b(z) =
πA
2

ω−
d−3

d−2

∫ z

0
dz′ z′−

1

d−2J j

2
(z′)N j

2
(z′)

A depends on the type of perturbation.
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asymptotically

Ψ(z) ∼
√

2

π
[A′1 cos(z − α+) + A′2 sin(z − α+)] ,

where

A′1 = [1− b̄]A1 − ā2A2 , A′2 = [1 + b̄]A2 + ā1A1

and we introduced the notation

ā1 = a1(∞) , ā2 = a2(∞) , b̄ = b(∞) .

First constraint modified to

A′1 tan(ωr̄∗ − β − α+)−A′2 = 0

∴
[(1− b̄) tan(ωr̄∗−β−α+)− ā1]A1−[1+ b̄+ ā2 tan(ωr̄∗−β−α+)]A2 = 0

For second constraint,
↪→ approach the horizon
↪→ rotate by −π in the z-plane
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a1(e
−iπz) = e

−iπd−3
d−2e−iπja1(z) ,

a2(e
−iπz) = e

−iπd−3
d−2

[
eiπja2(z)− 4cos2

πj

2
a1(z)− 2i(1 + eiπj)b(z)

]
,

b(e−iπz) = e
−iπd−3

d−2
[
b(z)− i(1 + e−iπj)a1(z)

]

∴ in the limit z → −∞,

Ψ(z) ∼ −ie−ijπ/2B1 cos(−z − α+)− ieijπ/2B2 sin(−z − α+)

where

B1 = A1 −A1e
−iπ d−3

d−2 [̄b− i(1 + e−iπj)ā1]

−A2e
−iπ d−3

d−2

[
e+iπjā2 − 4cos2

πj

2
ā1 − 2i(1 + e+iπj)̄b

]

−i(1 + eiπj)
[
A2 + A2e

−iπ d−3

d−2 [̄b− i(1 + e−iπj)ā1] + A1e
−iπ d−3

d−2e−iπjā1

]

B2 = A2 + A2e
−iπ d−3

d−2 [̄b− i(1 + e−iπj)ā1] + A1e
−iπ d−3

d−2e−iπjā1

∴ second constraint

[1− e−iπ d−3

d−2(iā1 + b̄)]A1 − [i(1 + 2eiπj) + e−iπ d−3

d−2((1 + eiπj)ā1 + eiπjā2 − īb)]A2 = 0
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compatibility of the two first-order constraints,
∣∣∣∣

1 + b̄ + ā2 tan(ωr̄∗ − β − α+) i(1 + 2eiπj) + e−iπ d−3

d−2((1 + eiπj)ā1 + eiπjā2 − īb)

(1− b̄) tan(ωr̄∗ − β − α+)− ā1 1− e−iπ d−3

d−2(iā1 + b̄)

∣∣∣∣ = 0

⇒ first-order expression for quasi-normal frequencies,

ωr̄∗ =
π

4
(2 + j + j∞) +

1

2i
ln 2 + nπ

−1

8

{
6īb− 2ie

−iπd−3
d−2 b̄− 9ā1 + e

−iπd−3
d−2 ā1 + ā2 − e

−iπd−3
d−2 ā2

}

where

ā1 =
πA
4

(
nπ

2r̄∗

)− d−3

d−2 Γ( 1
d−2

)Γ( j
2
+ d−3

2(d−2)
)

Γ2( d−1
2(d−2)

)Γ( j
2
+ d−1

2(d−2)
)

ā2 =

[
1 + 2cot

π(d− 3)

2(d− 2)
cot

π

2

(
−j +

d− 3

d− 2

)]
ā1

b̄ = − cot
π(d− 3)

2(d− 2)
ā1

I first-order correction is ∼ O(n−
d−3
d−2).
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4d
compare with numerical results [Cardoso, Konoplya and Lemos]

set the AdS radius R = 1: radius of horizon rH related to black hole mass µ
by

2µ = r3H + rH

f(r) has two more (complex) roots, r− and its complex conjugate, where

r− = eiπ/3




√
µ2 +

1

27
− µ




1/3

− e−iπ/3




√
µ2 +

1

27
+ µ




1/3

The integration constant in the tortoise coordinate is

r̄∗ =
∫ ∞
0

dr

f(r)
= − r−

3r2− + 1
ln

r−
rH

− r∗−
3r∗2− + 1

ln
r∗−
rH
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Scalar perturbations
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Fig. 1: rH = 1 and ` = 2: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

ωnr̄∗ =
(
n +

1

4

)
π +

i

2
ln 2 + eiπ/4ASΓ

4(1
4)

16π2

√
r̄∗

2µn
, AS =

`(` + 1)− 1

6

only the first-order correction is `-dependent.

In the limit of large horizon radius (rH ≈ (2µ)1/3 À 1),

r̄∗ ≈ π(1 + i
√

3)

3
√

3rH
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Numerically for ` = 2,

ωn

rH
= (1.299− 2.250i)n + 0.573− 0.419i +

0.508 + 0.293i

r2H
√

n

which compares well with the result of numerical analysis,
(

ωn

rH

)

numerical
≈ (1.299− 2.25i)n + 0.581− 0.41i

including both leading order and offset.
For an intermediate black hole, rH = 1, we obtain

ωn = (1.969− 2.350i)n + 0.752− 0.370i +
0.654 + 0.458i√

n

In Fig. 1 we compare with data from numerical analysis. We plot the gap

∆ωn = ωn − ωn−1

because the offset does not always agree with numerical results.
I numerical estimates of the offset ought to be improved.
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For a small black hole, rH = 0.2, we obtain

ωn = (1.695− 0.571i)n + 0.487− 0.0441i +
1.093 + 0.561i√

n

to be compared with the result of numerical analysis,

(ωn)numerical ≈ (1.61− 0.6i)n + 2.7− 0.37i

The two estimates of the offset disagree with each other.
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Tensor perturbations

1.963
1.964
1.965
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0 2 4 6 8 10 12 14 16 18 20=∆ωn

♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

Fig. 2: rH = 1 and ` = 0: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

ωnr̄∗ =
(
n +

1

4

)
π+

i

2
ln 2+eiπ/4ATΓ

4(1
4)

16π2

√
r̄∗

2µn
, AT =

3`(` + 1) + 1

6

Numerically for large rH and ` = 0,

ωn

rH
= (1.299− 2.250i)n + 0.573− 0.419i +

0.102 + 0.0586i

r2H
√

n
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For an intermediate black hole, rH = 1, we obtain

ωn = (1.969− 2.350i)n + 0.752− 0.370i +
0.131 + 0.0916i√

n

in good agreement with the result of numerical analysis (Fig. 2), including the
offset.
For a small black hole, rH = 0.2, we obtain

ωn = (1.695− 0.571i)n + 2.182− 0.615i +
0.489 + 0.251i√

n

1.45
1.5

1.55
1.6

1.65
1.7

1.75

0 2 4 6 8 10 12<∆ωn

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

-0.7
-0.68
-0.66
-0.64
-0.62

-0.6
-0.58
-0.56

0 2 4 6 8 10 12=∆ωn

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

Fig. 3: rH = 0.2 and ` = 0: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).
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Vector perturbations

ωnr̄∗ =
(
n +

1

4

)
π+

i

2
ln 2+eiπ/4AVΓ

4(1
4)

48π2

√
r̄∗

2µn
, AV =

`(` + 1)

2
+

3

14
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2 4 6 8 10 12 14 16 18 20<∆ωn
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-2.44
-2.42

-2.4
-2.38
-2.36
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0 2 4 6 8 10 12 14 16 18 20=∆ωn

♦

♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

Fig. 4: rH = 1 and ` = 2: zeroth (horizontal line) and first order (curved line) analytical (eq. ()) compared with
numerical data (diamonds).

Numerically for large rH and ` = 2,

ωn

rH
= (1.299− 2.250i)n + 0.573− 0.419i +

8.19 + 6.29i

r2H
√

n
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to be compared with the result of numerical analysis,
(

ωn

rH

)

numerical
≈ (1.299− 2.25i)n + 0.58− 0.42i

For an intermediate black hole, rH = 1, we obtain

ωn = (1.969− 2.350i)n + 0.752− 0.370i +
0.741 + 0.519i√

n

and for a small black hole, rH = 0.2, we obtain

ωn = (1.695− 0.571i)n + 0.487− 0.0441i +
1.239 + 0.6357i√

n

estimates of the offset agree for large rH but diverge as rH → 0.
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Fig. 5: rH = 0.2 and ` = 2: zeroth (horizontal line) and first order (curved line) analytical (eq. ()) compared with
numerical data (diamonds).
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Electromagnetic perturbations
electromagnetic potential

VEM =
`(` + 1)

r2
f(r).

Near the origin,

VEM =
j2 − 1

4r2∗
+

`(` + 1)r
−3/2
∗

2
√−4µ

+ . . . ,

where j = 1 - vanishing potential to zeroth order!
I need to include first-order corrections for QNMs.
QNMs

ωr̄∗ = nπ − i

4
lnn +

1

2i
ln

(
2(1 + i)A√r̄∗

)
, A =

`(` + 1)

2
√−4µ

I correction behaves as lnn.
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126.5
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Fig. 6: rH = 100 and ` = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

For a large black hole, we obtain the spectrum

∆ωn

rH
≈ 3

√
3(1− i

√
3)

4

(
1− i

4πn
+ . . .

)
= 1.299−2.25i−0.179 + 0.103i

n
+. . .
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Fig. 7: rH = 1 and ` = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

For an intermediate black hole, rH = 1,

ωn = (1.969− 2.350i)n− (0.187 + 0.1567i) lnn + . . .

and for a small black hole, rH = 0.2,

ωn = (1.695− 0.571i)n− (0.045 + 0.135i) lnn + . . .

George Siopsis Milos - September 2009



Perturbations 39
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Fig. 8: rH = 0.2 and ` = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

All first-order analytical results are in good agreement with numerical results.
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Hydrodynamics

George Siopsis Milos - September 2009



Hydrodynamics 41

AdS/CFT correspondence and hydrodynamics
[Policastro, Son and Starinets]

correspondence between N = 4 SYM in the large N limit and type-IIB string
theory in AdS5 × S5.

I in strong coupling limit of field theory, string theory is reduced to classi-
cal supergravity, which allows one to calculate all field-theory correlation
functions.
↪→ nontrivial prediction of gauge theory/gravity correspondence

entropy of N = 4 SYM theory in the limit of large ’t Hooft coupling is precisely
3/4 the value in zero coupling limit.
long-distance, low-frequency behavior of any interacting theory at finite tem-
perature must be described by fluid mechanics (hydrodynamics).
universality: hydrodynamics implies very precise constraints on correlation func-
tions of conserved currents and stress-energy tensor:
I correlators fixed once a few transport coefficients are known.
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Vector perturbations
[G. S., hep-th/0702079]

introduce the coordinate

u =
(

rH

r

)d−3

wave equation

−(d− 3)2u
d−4
d−3 f̂(u)

(
u

d−4
d−3 f̂(u)Ψ′

)′
+ V̂V(u)Ψ = ω̂2Ψ , ω̂ =

ω

rH

where prime denotes differentiation with respect to u and

f̂(u) ≡ f(r)

r2
= 1− u

2

d−3

(
u− 1− u

r2
H

)

V̂V(u) ≡ VV

r2
H

= f̂(u)



L̂2 +

(d− 2)(d− 4)

4
u−

2

d−3 f̂(u)−
(d− 1)(d− 2)

(
1 + 1

r2
H

)

2
u





where L̂2 = `(`+d−3)
r2H

First consider large black hole limit rH → ∞ keeping ω̂ and L̂ fixed (small).
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Factoring out the behavior at the horizon (u = 1)

Ψ = (1− u)−i ω̂
d−1F (u)

the wave equation simplifies to

AF ′′ + Bω̂F ′ + Cω̂,L̂F = 0

where

A = −(d− 3)2u
2d−8

d−3 (1− u
d−1

d−3)

Bω̂ = −(d− 3)[d− 4− (2d− 5)u
d−1

d−3]u
d−5

d−3 − 2(d− 3)2 iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

1− u

Cω̂,L̂ = L̂2 +
(d− 2)[d− 4− 3(d− 2)u

d−1

d−3]

4
u−

2

d−3

− ω̂2

1− u
d−1

d−3

+ (d− 3)2 ω̂2

(d− 1)2

u
2d−8

d−3 (1− u
d−1

d−3)

(1− u)2

−(d− 3)
iω̂

d− 1

[d− 4− (2d− 5)u
d−1

d−3]u
d−5

d−3

1− u
− (d− 3)2 iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

(1− u)2
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solve perturbatively:

(H0 +H1)F = 0

where

H0F ≡ AF ′′ + B0F ′ + C0,0F

H1F ≡ (Bω̂ − B0)F
′ + (Cω̂,L̂ − C0,0)F

Expanding the wavefunction perturbatively,

F = F0 + F1 + . . .

at zeroth order we have

H0F0 = 0

whose acceptable solution is

F0 = u
d−2

2(d−3)

regular at horizon (u = 1) and boundary (u = 0, or Ψ ∼ r−
d−2
2 → 0 as

r →∞).
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Wronskian

W =
1

u
d−4
d−3(1− u

d−1
d−3)

Another linearly independent solution

F̌0 = F0

∫ W
F2
0

unacceptable ∵ diverges at both horizon (F̌0 ∼ ln(1 − u) for u ≈ 1) and

boundary (F̌0 ∼ u
− d−4

2(d−3) for u ≈ 0, or Ψ ∼ r
d−4
2 →∞ as r →∞).

At first order we have

H0F1 = −H1F0

whose solution may be written as

F1 = F0

∫ W
F2
0

∫
F0H1F0

AW
The limits of the inner integral may be adjusted at will

∵ this amounts to adding an arbitrary amount of the unacceptable solution.
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To ensure regularity at the horizon, choose one of the limits at u = 1

I integrand is regular at the horizon, by design.

at the boundary (u = 0),

F1 = F̌0

∫ 1

0

F0H1F0

AW + regular terms

The coefficient of the singularity ought to vanish,
∫ 1

0

F0H1F0

AW = 0

⇒ constraint on the parameters (dispersion relation)

a0L̂2 − ia1ω̂ − a2ω̂2 = 0

After some algebra, we arrive at

a0 =
d− 3

d− 1
, a1 = d− 3

The coefficient a2

• may also be found explicitly for each dimension d,
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• it cannot be written as a function of d in closed form.

• it does not contribute to the dispersion relation at lowest order.

• E.g., for d = 4,5, we obtain, respectively

a2 =
65

108
− 1

3
ln 3 ,

5

6
− 1

2
ln 2

quadratic in ω̂ eq. has two solutions,

ω̂0 ≈ −i
L̂2

d− 1
, ω̂1 ≈ −i

d− 3

a2
+ i

L̂2

d− 1

In terms of frequency ω and quantum number `,

ω0 ≈ −i
`(` + d− 3)

(d− 1)rH
,

ω1

rH
≈ −i

d− 3

a2
+ i

`(` + d− 3)

(d− 1)r2H

The smaller of the two, ω0,

• is inversely proportional to the radius of the horizon,

• is not included in the asymptotic spectrum.
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The other solution, ω1,

• is a crude estimate of the first overtone in the asymptotic spectrum.

• shares important features with asymptotic spectrum:
– it is proportional to rH

– dependence on ` is O(1/r2H).

The approximation may be improved by including higher-order terms

I Inclusion of higher orders also increases the degree of the polynomial in
the dispersion relation whose roots then yield approximate values of more
QNMs.

I this method reproduces the asymptotic spectrum albeit not in an efficient
way.

Include finite size effects:
↪→ use perturbation (assuming 1/rH is small) and replace H1 by

H′1 = H1 +
1

r2H
HH
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where

HHF ≡ AHF ′′ + BHF ′ + CHF

AH = −2(d− 3)2u2(1− u)

BH = −(d− 3)u

[
(d− 3)(2− 3u)− (d− 1)

1− u

1− u
d−1

d−3

u
d−1

d−3

]

CH =
d− 2

2

[
d− 4− (2d− 5)u− (d− 1)

1− u

1− u
d−1

d−3

u
d−1

d−3

]

Interestingly, zeroth order wavefunction F0 is eigenfunction of HH ,

HHF0 = −(d− 2)F0

∴ first-order finite-size effect is simple shift of angular momentum

L̂2 → L̂2 − d− 2

r2H

∴ QNMs of lowest frequency are modified to

ω0 = −i
`(` + d− 3)− (d− 2)

(d− 1)rH
+ O(1/r2H)
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For d = 4,5, we have respectively,

ω0 = −i
(`− 1)(` + 2)

3rH
, −i

(` + 1)2 − 4

4rH

in agreement with numerical results
[Cardoso, Konoplya and Lemos; Friess, Gubser, Michalogiorgakis and Pufu]

⇒ maximum lifetime

τmax =
4π

d
TH

• Flat horizon (K = 0):

ω0 = −i
k2

(d− 1)r+
⇒ diffusion constant D =

1

4πTH

• Hyperbolic horizon (K = −1):

ω0 = −i
ξ2 + (d−1)2

4

(d− 1)r+
, τ =

1

|ω0|
<

16π

(d− 1)2
TH

NB: For d = 5, these modes live longer (important for plasma behavior).
[Alsup and GS]
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Scalar perturbations
V̂V replaced by

V̂S(u) =
f̂(u)

4

[
m̂ +

(
1 +

1

r2
H

)
u

]−2

×
{

d(d− 2)

(
1 +

1

r2
H

)2

u
2d−8

d−3 − 6(d− 2)(d− 4)m̂

(
1 +

1

r2
H

)
u

d−5

d−3

+(d− 4)(d− 6)m̂2u−
2

d−3 + (d− 2)2

(
1 +

1

r2
H

)3

u3

+2(2d2 − 11d + 18)m̂

(
1 +

1

r2
H

)2

u2

+
(d− 4)(d− 6)

(
1 + 1

r2
H

)2

r2
H

u2 − 3(d− 2)(d− 6)m̂2

(
1 +

1

r2
H

)
u

−
6(d− 2)(d− 4)m̂

(
1 + 1

r2
H

)

r2
H

u + 2(d− 1)(d− 2)m̂3 + d(d− 2)
m̂2

r2
H

}

where m̂ = 2`(`+d−3)−(d−2)
(d−1)(d−2)r2H

= 2(`+d−2)(`−1)
(d−1)(d−2)r2H

George Siopsis Milos - September 2009



Hydrodynamics 52

In the large black hole limit rH →∞ with m̂ fixed, potential simplifies

V̂ (0)
S (u) =

1− u
d−1

d−3

4(m̂ + u)2

{
d(d− 2)u

2d−8

d−3 − 6(d− 2)(d− 4)m̂u
d−5

d−3

+(d− 4)(d− 6)m̂2u−
2

d−3 + (d− 2)2u3

+2(2d2 − 11d + 18)m̂u2 − 3(d− 2)(d− 6)m̂2u + 2(d− 1)(d− 2)m̂3

}

I additional singularity due to double pole of scalar potential at u = −m̂.

I desirable to factor out the behavior not only at the horizon, but also at the
boundary and the pole of the scalar potential,

Ψ = (1− u)−i ω̂
d−1

u
d−4

2(d−3)

m̂ + u
F (u)

∴ wave equation

AF ′′ + Bω̂F ′ + Cω̂F = 0
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where
A = −(d− 3)2u

2d−8

d−3 (1− u
d−1

d−3)

Bω̂ = −(d− 3)u
2d−8

d−3 (1− u
d−1

d−3)

[
d− 4

u
− 2(d− 3)

m̂ + u

]

−(d− 3)[d− 4− (2d− 5)u
d−1

d−3]u
d−5

d−3 − 2(d− 3)2 iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

1− u

Cω̂ = −u
2d−8

d−3 (1− u
d−1

d−3)

[
−(d− 2)(d− 4)

4u2
− (d− 3)(d− 4)

u(m̂ + u)
+

2(d− 3)2

(m̂ + u)2

]

−
[{

d− 4− (2d− 5)u
d−1

d−3

}
u

d−5

d−3 + 2(d− 3)
iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

1− u

] [
d− 4

2u
− d− 3

m̂ + u

]

−(d− 3)
iω̂

d− 1

[d− 4− (2d− 5)u
d−1

d−3]u
d−5

d−3

1− u
− (d− 3)2 iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

(1− u)2

+
V̂ (0)

S (u)− ω̂2

1− u
d−1

d−3

+ (d− 3)2 ω̂2

(d− 1)2

u
2d−8

d−3 (1− u
d−1

d−3)

(1− u)2

Define zeroth-order wave equation H0F0 = 0, where

H0F ≡ AF ′′ + B0F ′

Acceptable zeroth-order solution

F0(u) = 1
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I plainly regular at all singular points (u = 0,1,−m̂).

I corresponds to a wavefunction vanishing at the boundary

(Ψ ∼ r−
d−4
2 as r →∞).

Wronskian

W =
(m̂ + u)2

u
2d−8
d−3 (1− u

d−1
d−3)

Unacceptable solution: F̌0 =
∫ W

• can be written in terms of hypergeometric functions.

• for d ≥ 6, has a singularity at the boundary, F̌0 ∼ u
−d−5

d−3 for u ≈ 0,

or Ψ ∼ r
d−6
2 →∞ as r →∞.

• for d = 5, acceptable wavefunction ∼ r−1/2; unacceptable ∼ r−1/2 ln r

• for d = 4, roles of F0 and F̌0 reversed; results still valid.

• F̌0 is also singular (logarithmically) at the horizon (u = 1).
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Working as in the case of vector modes, we arrive at the first-order constraint
∫ 1

0

Cω̂

AW = 0

∵ H1F0 ≡ (Bω̂ − B0)F
′
0 + Cω̂F0 = Cω̂

∴ dispersion relation

a0 − a1iω̂ − a2ω̂2 = 0

After some algebra, we obtain

a0 =
d− 1

2

1 + (d− 2)m̂

(1 + m̂)2
, a1 =

d− 3

(1 + m̂)2
, a2 =

1

m̂
{1 + O(m̂)}

For small m̂, the quadratic equation has solutions

ω̂±0 ≈ −i
d− 3

2
m̂±

√
d− 1

2
m̂

related to each other by ω̂+
0 = −ω̂−∗0

I general symmetry of the spectrum.
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Finite size effects at first order amount to a shift of the coefficient a0 in the
dispersion relation

a0 → a0 +
1

r2H
aH

after some tedious but straightforward algebra, we obtain

aH =
1

m̂
{1 + O(m̂)}

The modified dispersion relation yields the modes

ω̂±0 ≈ −i
d− 3

2
m̂±

√
d− 1

2
m̂ + 1

in terms of the quantum number `,

ω±0 ≈ −i(d− 3)
`(` + d− 3)− (d− 2)

(d− 1)(d− 2)rH
±

√
`(` + d− 3)

d− 2

in agreement with numerical results
[Friess, Gubser, Michalogiorgakis and Pufu]
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• imaginary part inversely proportional to rH , as in vector case

• finite real part independent of rH

⇒ maximum lifetime

τmax =
d− 2

(d− 3)d
4πTH

• K = 0,

ω = ± k√
d− 2

− i
d− 3

(d− 1)(d− 2)r+
k2

⇒ speed of sound v = 1√
d−2

(CFT!) and diffusion constant D = d−3
d−2

1
4πTH

.

• K = −1,

ω = ±
√√√√ξ2 + (d−3

2 )2

d− 2
−i

(d− 3)[ξ2 + (d−1)2

4 ]

(d− 1)(d− 2)r+
, τ <

4(d− 2)

(d− 3)(d− 1)2
4πTH

NB: For d = 5, K = −1 scalar modes live longer than any other modes
(important for plasma behavior).

[Alsup and GS]
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Tensor perturbations
Unlike the other two cases, asymptotic spectrum is entire spectrum.
In large bh limit, wave equation

−(d− 3)2(u
2d−8

d−3 − u3)Ψ′′ − (d− 3)[(d− 4)u
d−5

d−3 − (2d− 5)u2]Ψ′

+

{
L̂2 +

d(d− 2)

4
u−

2

d−3 +
(d− 2)2

4
u− ω̂2

1− u
d−1

d−3

}
Ψ = 0

For zeroth-order eq., set L̂ = 0 = ω̂

↪→ two solutions are (Ψ = F0 at zeroth order)

F0(u) = u
d−2

2(d−3) , F̌0(u) = u−
d−2

2(d−3) ln
(
1− u

d−1

d−3

)

Neither behaves nicely at both ends (u = 0,1)

∴ both are unacceptable.

∴ impossible to build a perturbation theory to calculate small frequencies.

in agreement with numerical results and in accordance with the
AdS/CFT correspondence

I there is no ansatz that can be built from tensor spherical harmonics Tij
satisfying the linearized hydrodynamic eqs because of the conservation
and tracelessness properties of Tij.
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Hydrodynamics on the AdS boundary

I calculate the hydrodynamics in the linearized regime of a d−1 dimensional
fluid with dissipative effects.

metric

ds2∂ = −dt2 + dΣ2
K,d−2

hydrodynamic equations

∇µTµν = 0

CFT ⇒ Tµ
µ = 0 , ε = (d− 2)p , ζ = 0

In rest frame uµ = (1,0,0,0), const. pressure p0; with perturbations

uµ = (1, ui) , p = p0 + δp

apply hydrodynamic equations

(d− 2)∂tδp + (d− 1)p0∇iu
i = 0

(d− 1)p0∂tu
i + ∂iδp− η

[
∇j∇ju

i + K(d− 3)ui +
d− 4

d− 2
∂i(∇ju

j)
]

= 0

where we used Rij = K(d− 3)gij
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Vector perturbations – ansatz

δp = 0 , ui = CV e−iωtVi

Vi: vector harmonic
hydrodynamic equations ⇒

−iω(d− 1)p0 + η
[
k2
V −K(d− 3)

]
= 0

Using
η

p0
= (d− 2)

η

s

S

M
=

4πη

s

r+

K + r2+

with ω from gravity dual, we obtain for large r+,

η

s
=

1

4π

[Policastro, Son and Starinets]
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Scalar perturbations – ansatz

ui = ASe−iωt∂iS , δp = BSe−iωtS
S: scalar harmonic
hydrodynamic equations ⇒

(d− 2)iωBS + (d− 1)p0k2
SAS = 0

BS +AS

[
−iω(d− 1)p0 − 2(d− 3)Kη + 2ηk2

S
d− 3

d− 2

]
= 0

∴ determinant must vanish
∣∣∣∣∣
(d− 2)iω (d− 1)p0k2

S
1 −iω(d− 1)p0 − 2(d− 3)Kη + 2ηk2

S
d−3
d−2

∣∣∣∣∣ = 0

along the same lines as for vector perturbations, we arrive at

η

s
=

1

4π

I same as vector QNMs!
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Conformal soliton flow
K = +1

the holographic image on Minkowski space of the global AdS5-Schwarzschild
black hole is a spherical shell of plasma first contracting and then expanding.

I conformal map from Sd−2 × R to (d− 1)-dim Minkowski space
[Friess, Gubser, Michalogiorgakis, Pufu]

d = 5 QNMs ⇒ properties of plasma

•
v2

δ
=

1

6π
Re

ω4 − 40ω2 + 72

ω3 − 4ω
sin

πω

2

– v2 = 〈cos 2φ〉 at θ = π
2 (mid-rapidity), average with respect to energy

density at late times

– δ = 〈y2−x2〉
〈y2+x2〉 (eccentricity at time t = 0).

Numerically, v2
δ = 0.37, cf. with result from RHIC data, v2

δ ≈ 0.323
[PHENIX Collaboration, arXiv:nucl-ex/0608033]
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• thermalization time

τ =
1

2|Imω| ≈
1

8.6Tpeak
≈ 0.08 fm/c , Tpeak = 300 MeV

cf. with RHIC result τ ∼ 0.6 fm/c
[Arnold, Lenaghan, Moore, Yaffe, Phys. Rev. Lett. 94 (2005) 072302]

Not in agreement, but encouragingly small
I perturbative QCD yields τ >∼ 2.5 fm/c.

[Baier, Mueller, Schiff, Son; Molnar, Gyulassy]

K = −1

• needs work for conformal map Hd−2/Γ × R 7→ (d − 1)−dim Minkowski
space.

• important case ∵ these modes live the longest.
[Alsup and Siopsis]
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Phase transitions
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Black Holes with Scalar Hair
K = 0 , d = 4

scalar Ψ of mass m2 = −2 (above Breitenlohner-Freedman (BF) bound) and
charge q (large - probe limit - set q = 1) and electrostatic potential Φ in black
hole background

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2d~x2 , f(r) = r2 − 2µ

r

Horizon and Hawking temperature

r+ = (2µ)1/3 , T =
3r+
4π

assuming spherical symmetry, Einstein-Maxwell eqs. ⇒

Ψ′′ +
(

f ′

f
+

2

r

)
Ψ′ +

(
Φ

f

)2

Ψ +
2

f
Ψ = 0

Φ′′ + 2

r
Φ′ − 2Ψ2

f
Φ = 0

[Hartnoll, Herzog and Horowitz]
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As r →∞,

Ψ =
Ψ(1)

r
+

Ψ(2)

r2
+ . . . , Φ = Φ(0) +

Φ(1)

r
+ . . .

where one of the Ψ(i) = 0 (i = 1,2) for stability, Φ(0) is the chemical poten-
tial and Φ(1) = −ρ (charge density).
Below a critical temperature T0 a condensate forms,

〈Oi〉 =
√

2Ψ(i)

of an operator of dimension ∆ = i.
At T = T0, we may set Ψ = 0 in eq. for Φ and deduce (Φ(r+) = 0)

Φ = ρ

(
1

r+
− 1

r

)

Eq. for Ψ turns into an eigenvalue problem ⇒
T0 ≈ 0.226

√
ρ , 0.118

√
ρ

depending on B.C.
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EM perturbation:

A′′ + f ′

f
A′ +

(
ω2

f2
− 2Ψ2

f

)
A = 0

B.C.: ingoing at horizon, A ∼ f−iω/(4πT ), and at boundary (r →∞),

A = A(0) +
A(1)

r
+ . . .

Ohm’s law ⇒ conductivity

σ(ω) =
A(1)

iωA(0)

For T ≥ T0, Ψ = 0, ∴ A ∼ eiωr∗ (r∗: tortoise coordinate) ∴
σ(ω) = 1
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At low T , for 〈O1〉 6= 0, we have

Ψ ≈ 〈O1〉√
2 r

Since r+ → 0, we obtain A ∼ eiω′r∗, where ω′ =
√

ω2 − 〈O1〉2.

∴ for ω < 〈O1〉, Reσ = 0⇒ superconductor with a gap!
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K = −1 , d = 4
[Koutsoumbas, Papantonopoulos and GS]

scalar Ψ of mass m2 = −2 (above Breitenlohner-Freedman (BF) bound) and
charge q conformally coupled in potential

V (Ψ) =
8πG

3
|Ψ|4

Exact solution (MTZ black hole)

ds2 = −fMTZ(r)dt2 +
dr2

fMTZ(r)
+ r2dσ2 , fMTZ = r2−

(
1 +

r0
r

)2

,

Ψ(r) ≡ −
√

3

4πG

r0
r + r0

, Φ = 0

[Martinez, Troncoso and Zanelli]

temperature, entropy and mass, respectively

T =
1

π

(
r+ − 1

2

)
, SMTZ =

σ

4G

(
2r+ − 1

)
, MMTZ =

σr+
4πG

(
r+ − 1

)
.

I law of thermodynamics dM = TdS holds.
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At M = 0, MTZ coincides with TBH,

ds2AdS = −(r2 − 1)dt2 +
dr2

r2 − 1
+ r2dσ2

enhanced scaling symmetry (pure AdS) at critical temperature

T0 =
1

2π

phase transition

∆F = FTBH − FMTZ = − σl

8πG
π3l3(T − T0)

3 + . . . ,

∴ 3rd order phase transition between MTZ and TBH at T0.
I Checked perturbative stability of MTZ for T < T0 (M < 0).

[Koutsoumbas, Papantonopoulos and GS]
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The Dual Superconductor

I the condensation of the scalar field has a geometrical origin and is due
entirely to its coupling to gravity.

heat capacities in normal and superconducting phases, respectively, as T → 0

Cn ≈ πσ

3
√

3G
T , Cs ≈ πσ

2G
T ,

Both condensates are present,

〈O1〉 =

√
3π3

2G
(T2

0 − T2) ,

〈O2〉 =

√
3π7

2G
(T2

0 − T2)2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.2  0.4  0.6  0.8  1
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EM perturbations
1st-order perturbation theory ⇒

A = e−iωr∗ +
q2

2iω
eiωr∗

∫ r

r+
dr′Ψ2(r′)e−2iωr∗ − q2

2iω
e−iωr∗

∫ r

r+
dr′Ψ2(r′) .

conductivity to 1st-order in q2

σ(ω) =
A(1)

iωA(0)
= 1− q2

iω

∫ ∞
r+

drΨ2(r)e−2iωr∗ .

superfluid density from

Re [σ(ω)] ∼ πnsδ(ω) , Im [σ(ω)] ∼ ns

ω
, ω → 0 .

∴

ns = q2
∫ ∞
r+

drΨ2(r) =
3q2

4πG

r20
r+ + r0

= α (T0 − T )2 , α =
3πq2

4G
.
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near T = 0,

ns(0)− ns(T ) ≈ α

π
T δ , δ = 1

q/
√

G 1 3 5
δ 1.025± 0.007 1.52± 0.03 1.78± 0.03

normal, non-superconducting, component of DC conductivity

nn = lim
ω→0

Re [σ(ω)] .

∴
lnnn = 2q2

∫ ∞
r+

drΨ2(r)r∗ .

At low T ,

nn ∼ T γ , γ =
3q2

4πG
.
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q/
√

G γnumerical γanalytical αnumerical αanalytical
0.1 0.0020 0.0024 0.0225 0.024
0.5 0.0538 0.0597 0.552 0.589
1.0 0.187 0.239 2.196 2.356
2.0 0.684 0.955 8.678 9.425
3.0 1.325 2.15 20.35 21.21
5.0 2.522 5.97 52.90 58.90
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CONCLUSIONS

• Quasi-normal modes are a powerful tool in understanding hydrodynamic
behavior of gauge theory fluid at strong coupling

• Quark-gluon plasma understood in terms of gravitational perturbations of
a dual black hole

• Superconductors understood in terms of electromagnetic perturbations of
dual hairy black holes

• Physical role of high overtones not clear
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