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Perturbations
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Perturbations 2

Quasi-normal modes (QNMs) describe small perturbations of a black hole.

e A black hole is a thermodynamical system whose (Hawking) temperature
and entropy are given in terms of its global characteristics (total mass,
charge and angular momentum).

QNMs obtained by solving a wave equation for small fluctuations subject to the
conditions that the flux be

e ingoing at the horizon and
e outgoing at asymptotic infinity.
= discrete spectrum of complex frequencies.
e imaginary part determines the decay time of the small fluctuations

1
Sw = —
-
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Perturbations 3

AdS,; Schwarzschild black holes

metric

2 2
>__ (T 2# 2 dr 2
2 »d—3

choose units so that AdS radius R = 1.
horizon radius and Hawking temperature, respectively,

_ K (d—1)rd 4+ K(d - 3)
p=r7M1+—]|, Tp=
ry 4mry
mass and entropy, respectively,
d 3 d—2
= (d — 2)(K + r? )—VOZ(Z d-2), S= s
167G K 4G

e /X = O: flat horizon R%—2
e /X = +1: spherical horizon S¢—2

e /X = —1: hyperbolic horizon H¢=2/I" (topological b.h.)
[": discrete group of isometries
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Perturbations 4

harmonics on >y ;_»>:
(V2+ k)T =0
e /X = 0, kis momentum
o K = 41,
K2 =1(l+d—3)—6
o K =1,

¢ is dicrete for non-trivial I
0 = 0, 1, 2 for scalar, vector, or tensor perturbations, respectively.
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Perturbations 5

AdS/CFT correspondence:

= QNMs for AdS b.h. expected to correspond to perturbations of dual CFT.

establishment of correspondence hindered by difficulties in solving wave eq.
e In 3d: Hypergeometric equation .-, solvable

[Cardoso, Lemos; Birmingham, Sachs, Solodukhin]
e |In 5d: Heun equation .-, unsolvable.
e Numerical results in 4d, 5d and 7d

[Horowitz, Hubeny; Starinets; Konoplya]

George Siopsis Milos - September 2009



Perturbations 6

Asymptotic form of QNMs of AdS black holes
Approximation to the wave equation valid in the high frequency regime.

e In 3d: exact equation.

e In 5d: Heun eq. — Hypergeometric eq., as in low frequency regime.
— analytical expression for asymptotic form of QNM frequencies
— in agreement with numerical results.
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Perturbations 7

AdS;
wave equation

1 2 2 1
Or (7“3 (1 — T—g) 87~¢> — i 3152(1) + —8§¢ — m2¢

R2r r r2 — r% r2
Solution:
(wt—pa) h
— t(wi—px — ' h
P=e V), v=-3

where W satisfies
/ - -~ —~
2y —1) (v - DV) +32y¥ + P y(y - DV + 22 (y - DV =0
in the interval 0 < y < 1, and

CURQ . w ~ pR p
27“h - 47TTH’ p=

W =
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Perturbations 8

Two independent solutions obtained by examining the behavior near the hori-
zon (y — 1),

Wi~ (1 —y)F
W :outgoing; W_ :ingoing.
Different set obtained by studying behavior at large r (y — 0).

1 1 -
W~ oyl ,hizaiavy+m2

In massless case (m = 0): hy =1landh_ =0

.. one of the solutions contains logarithms.
For QNMs, we are interested in the analytic solution

W(y) =yl — ) (1+i(@+p),14+i(@—p);2;y)
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Perturbations

Near the horizon (y — 1): mixture of ingoing and outgoing waves
[.- standard Hypergeometric function identities]

W~ A(L—y) @ 4+ B(1 — )@

M (2i0)

M1+ i@+ p)Hr (1 +i(o—p))
M (—2iw)
M(1—u(&o+p)r(1—i(o—-p))

W linear combination of W and W_ .
WV =AV_+ BV
For QNMs: W purely ingoing at horizon, so set

B=0

Solutions (QNM frequencies):

G=4p—in| , n=1,2...

discrete set of complex frequencies with Sw < 0.
NB: we obtained two sets of frequencies, with opposite Rw.

George Siopsis

Milos - September 2009



Perturbations 10

AdSs
For a large black hole, scalar wave equation with m = 0O
1 5 R* R® op
T—38fr(’f' f(T) 3r(1>) — 7~2 f(r)((?t CD — T—Q V (D — O
4
~ r
fry=1--4%

Solution:
P = WPy (y)
change coordinate r to v,

<
|
ﬁ‘ﬁ
NN

Wave equation:

/ &‘)2 ~)
02 = 1) (562 - D) + (502 -5 2= D) w=o
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Perturbations

11

Two solutions by examining behavior near the horizon (y — 1),

Different set by studying behavior at large r
(y — o0)

W~y Ry =0,-2
so one of the solutions contains logarithms.
For QNMs, we are interested in analytic solution
W~ y_2 as y — o0

By considering the other (unphysical) singularity at y = —1,
= another set of solutions

W~ (y+ 1)F9/% near y = —1
Write wavefunction as

W(y) = (y— 1)y + 1) (y)
= Two sets of modes with same @, but opposite Rw.
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Perturbations 12

F'(y) satisfies the Heun equation

1 £ 1
y(yz—l)F”+{<3—z 5 @)yQ—Z 5 @y—l}F’

—~ .~ —~ A2
5, W . . W P
(= F1— — 1)——=% F=0
{2< 2 T z)y (i F )4 4}

Solve in a region in the complex y-plane containing |y| > 1
(includes physical regime r > ry,)

For large @&: constant terms in Polynomial coefficients of F/ and F' small com-
pared with other terms

.. they may be dropped.
.. wave eqg. may be approximated by Hypergeometric equation

41 4+ 1 5/
(y2—1)F”—I—{<3—22 @)y—ZQ Q}F’-%(i%:pl_i) F=0

in asymptotic limit of large frequencies w.

Analytic solution:

Fo(z) = oFi(ag,a—;c; (y+1)/2) , ax =1-510+1 , c¢=34+30
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Perturbations 13

For proper behavior at y — oo, demand that F' be a Polynomial.

ay =-n, n=172,...
. F'is a Polynomial of order n, so as y — oo,
Foy oy %
W~ y—i@/4y:|:@/4y—a_|_ ~ 2
as expected.
*. QNM frequencies

Y — op(41 — i)

L =
A’y

[Musiri, Siopsis]
in agreement with numerical results.
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Perturbations 14

Monodromy argument

If the function has no singularities other than y = =1, the contour around
y = +1 may be unobstructedly deformed into the contour around y = —1,

MAI)M(-1) =1
Since
M(1) = emw/2 , M(—1) = e Fimw/2
and using S < 0, we deduce
O =2n(xl —1)
same as before.
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Perturbations

15

Gravitational perturbations
K =+1

» derive analytical expressions including first-order corrections.

» results in good agreement with results of numerical analysis.
radial wave equation

d2w

B dr2

in terms of the tortoise coordinate defined by
dr« 1

dr f(r)’

potential V' from Master Equation [ishibashi and Kodama]

+ Vr(r)]W = w2V |

For tensor, vector and scalar perturbations, we obtain, respectively,
[Natario and Schiappa]
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Perturbations 16

£/ -I-rczi - 3) I (d—2)(d—-4)f(r) n (d — 2)]”(7")}

Vi) = £ { - 2

W(r) = f(r) {E(E +7,,CQZ —%) + - 2)(jr; DI 2?“(1;”_(7“;)}

-2
Vs(r) = ‘2(;) [e(z +d-3)-([d—-2)+ (d 1:d(fi3_ Q)M]
{d(d —1)?(d—2)*p* 6(d—1)(d—-2)*(d-4)[(L+d—-3) - (d—-2)]p
x R2,y2d—8 N R2pd—5
(d—4)(d—-6)[((t+d—3)—(d—2)]?r*  2(d—1)%(d—2)*u3
+ R2 + r3d—9
4(d — 1)(d—2)(2d?> —11d+ 18)[¢((4 +d — 3) — (d — 2)]u?
+ r2d—6
(d—1)?(d—2)*(d=4)(d—-6)p> 6(d—2)(d-6)[{({+d—3)—(d—2)]*n
+ r2d—6 B rd—3

6(d—1)(d-2)°(d=4)[e(¢+d—3) — (d—2)]u
rd—3

+a4ll(t+d—-3) - (d—-2)P +d(d -2l +d—-3) — (d— 2)]2}
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Perturbations 17

Near the black hole singularity (r ~ 0),

1 Av a1 (d — 3)? 4+ d—3)
V4 = — —7r, 7 cee A1 = )
T 42 i —2(d — 2)ul™= * "7 2(2d - 5) T2
3 Ay o1 d>—-8d+ 13 ¢({+d—3)
W = — T« 2 ces =
v 4r2 + [_Q(d_z)u]rf + v 2(2d — 15) d— 2
and
1 A — 4
‘/S - = 2 + = Tk o !
4z [—2(d — 2)u]+2
where

_ (2d®—24d>+94d—116) (&> —T7d+14)[(({+d—3) — (d — 2)]
o 4(2d — 5)(d — 2) (d—1)(d - 2)2

We may summarize the behavior of the potential near the origin by

As

=¥

j> -1

471,%

1
V = 4+ Ar, 24+ ...

where 5 = 0O (2) for scalar and tensor (vector) perturbations.
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Perturbations 18

for large r,

2 1 oo dr
Jo T o b, =
A(rye — Tx) o f(r)

where joo = d—1,d— 3 and d — 5 for tensor, vector and scalar perturbations,
respectively.

After rescaling the tortoise coordinate (z = wrx), wave equation

V =

d—

3
(HO -+ w_mHl) vV = 0,

where

SH

—1

T&“

Ho

_d? [j%2-1
 dz2 42

By treating H as a perturbation, we may expand the wave function

—1] , Hi1=—-Az

_d=3
W(z) =WVo(z)+w 2W(2)+...
and solve wave eq. perturbatively.
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Perturbations 19

The zeroth-order wave equation,
HoWo(2) =0,
may be solved in terms of Bessel functions,
Wo(z) = A1vz J%(Z) + AQ\/EN%(Z)~

For large z, it behaves as
2 .
Wo(z) ~ \ﬁ [Al cos(z — ay) + A sin(z — a+)] ,
7T
(A1 — iAg)e el f —Z(A] + iA)e e
V2T V2T

where ar = 7(1 £j).
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Perturbations 20

large z (r — o0)
wavefunction ought to vanish .. acceptable solution

W(ry) = Bylw(re — 7s) Tise (w(re = )

NB: W — 0 as r« — 7+, as desired.
Asymptotically, it behaves as

W (rs) ~ \/%B cos [w(rs —7«) + 0] , B = %(1 + Jjoo)

match this to asymptotic behavior in the vicinity of the black-hole singularity
along the Stokes line Sz = S(wrx) =0

= constraint on the coefficients A1, Ao,
Ajtan(wrs — B8 —a4) — Ap = 0.
Impose boundary condition at the horizon
W(z)~e? |, z— —o0,

=> second constraint
analytically continue wavefunction near the origin to negative values of =.
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Perturbations 21

» rotation of 2 by —7 corresponds to a rotation by ——" near the origin in
the complex r-plane.

using
J(e772) = eI, (2), Ny(e "2)=e"YN, — 2icosnv J,(z)
for z < 0, the wavefunction changes to
Wo(z) = e mU+D/2, /7 {[Al (14 eiﬂj)Az} Ji(—z) + Are'™ N (—z)}
2 2

whose asymptotic behavior is given by

W~ Nors [Al — (1 4 2e )AQ} e 4 Nor [A{ —iAp] e

= second constraint
A1 —i(1 +26/™) A5 =0
constraints compatible provided

1 —i(1 4+ 2e77)

‘ tan(wry — 8 — ag) —1 =0

George Siopsis Milos - September 2009



Perturbations

22

.. quasi-normal frequencies

— v . ) _
wr*zZ(Q—l—]—I—]oo)—tan 1

1
1 4 2eimt

+ nm

[Natario and Schiappa]
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Perturbations 23

First-order corrections
[Musiri, Ness and Siopsis]

To first order, the wave equation becomes
HoWi1 +H1Wo=0
The solution is
\/ZJ%(ZI)Hl\Uo(Z/)
4%

V2 N%(z’)Hl\Uo(z’)
w

Wi(2) = VZNL(2) /Ozdz’ VEA() /Ozdz’

W = 2/r is the Wronskian.
.. wavefunction up to first order

W(z) = {A1[l — b(2)] — Aza2(2)} V2J,(2) + {A2[1 + b(2)] + A1a1(2)} V2Ni(2)
where

a1(z) = 7%Aw%/ dz' z’_ﬁjg(z/)J%(z’)
0

az(z) = %4w§_2/ dz' z’_ﬁNé(z/)N%(z’)
0

b(z) = %Aw%/ dz' z’_ﬁJ%(z’)N%(z’)
0

A depends on the type of perturbation.
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Perturbations 24

asymptotically

2
W(z) ~ \/: [A] cos(z — ag) + ASsin(z — ay )],

7T

where
Al =[1-b]A1 —apAs , A5 =[14blAr+a14,
and we introduced the notation
a1 =ai(o0) , ap=uan(oco) , b=>5b(c0).
First constraint modified to
Al tan(wrs — B —ay) — A5 =0

[(1 —E) tan(wF* —6—oz_|_) —C_Ll]Al — [1 —|—E—|—C_LQ tan(wﬁk —6—0&+)]A2 =0
For second constraint,

— approach the horizon
— rotate by —m in the z-plane
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Perturbations 25

a1(e7z) = " ﬂe_“”al(Z)
. _d—3 ) ..
ar(e"2) = e I3 |¢imigs(2) — 4 cos? %]al(z)—Qi(l—l—e“U)b(z)
. . d—3 - .
b(e 2) = ¢ Td2 b(z)—i(1+e—mﬂ)a1(z)}

inthe limit z — —oo,

W(z) ~ —ie_ijﬂ/zBl cos(—z —ay) — ieijﬂ/QBQ sin(—z — ay )
where
Bi = A1 — Are ™iz[b—i(1 4 e ™)aq]

d-3

— Ape i

et™ g, — 4 cos? %al —2i(1 4 et™ )E]

—i(1 4 €™) [Az + Aoe B [b — i(1 4 e ™)ay] + Are e ™ a,
By = A+ Ase ™ [b—i(1 4 e ™)a1] + Are e ay
*. second constraint
[1 — e ™= (i@ + b)] A1 — [i(1 + 26™) 4+ e ™= ((1 + €™)ay + e™az — ib)] A2 = 0
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Perturbations

26

compatibility of the two first-order constraints,

14+b+axtan(wrs — B —ay) i(1+ 2e™) + e_”_((l + e™)ay + e as — ib) ' _

(1 -d)tan(wrs — B — at) — a1 1—e ™ ﬁ(zal—I—b)
= first-order expression for quasi-normal frequencies,

e = (244 ) + N2 4
4 217

1 - . —ird=3— _ _ird=3_ _ _imd=3_
8 {6Zb —2ie” "d2b—9a; +e "d2a; +az —e md_zw}

where
_ _ 7mA[(nm —i r(d%)r(l 2(d 2))
T T(za) M2GEL) (L + 5555)
ar = [1—|—2cotggj—:3cotg< +Z—2>]al
b = —Cotﬁ(d_:g)al
2(d—2)

_d=3
» first-order correction is ~ O(n d-2).
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Perturbations 27

4d

compare with numerical results [Cardoso, Konoplya and Lemos]

set the AdS radius R = 1: radius of horizon rx related to black hole mass u
by

2u = 7“13{ +rg
f(r) has two more (complex) roots, r_ and its complex conjugate, where

1/3
_ _in/3 >, 1 _ _in/3 >, 1
r-=e¢€ (\/u —I—27 u) e (\/u —|-27—I—u)

The integration constant in the tortoise coordinate is

1/3

*

oo dr r r_ r r*

o F() 1"y

’F* —

TN — 55
37“_—|—1 T 37“*_ —|—1 T
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Perturbations 28

Scalar perturbations

19% T T T |<>| T A '\A) A<> -2_345 T T T T T T T T

Bvio )y (SAVAVAVAVAVAVAVAVAVAVAVE 235} A
1.9t 000 - - OO0

1gal o0 : -2.355} Q<><><><><><><><><><><> -
L8r 1 -2.36 .
1.73r 19 Z 2,365} -
1-162- . -2.37¢ ]
155 o | -2.375_ 1 1 1 1 1 1 1 1 |
156724 6 g, A0 12714 16 1820 23854 6 8 10 12 14 16 18 20

S Awy,

Fig. 1: rgy = 1 and £ = 2: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

2 ASTHE) [7 e e+ -1
1672 2un > o
only the first-order correction is /-dependent.

W = (”‘F%)W-I-%InQ—I—e”/

In the limit of large horizon radius (rgy ~ (2u)1/3 > 1),

__m(1+14v3)
- 3\/§TH
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Perturbations 29

Numerically for £ = 2,

0.508 + 0.293i
“n — (1.299 — 2.250i)n + 0.573 — 0.419i + + !

rH T%{\/ﬁ

which compares well with the result of numerical analysis,

<ﬂ> ~ (1.299 — 2.25i)n + 0.581 — 0.41i
T"H /) numerical
including both leading order and offset.

For an intermediate black hole, ri = 1, we obtain

0.654 4+ 0.4582
NG

In Fig. 1 we compare with data from numerical analysis. We plot the gap

wn = (1.969 — 2.350i)n 4+ 0.752 — 0.370i +

Awnp = wn — wp_1
because the offset does not always agree with numerical results.
» numerical estimates of the offset ought to be improved.
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Perturbations 30

For a small black hole, rgy = 0.2, we obtain

1.093 + 0.561+

wn = (1.695 — 0.571i)n + 0.487 — 0.0441i +
NG

to be compared with the result of numerical analysis,

(wWn)numerical =~ (1.61 — 0.6i)n 4+ 2.7 — 0.374
The two estimates of the offset disagree with each other.
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31

Tensor perturbations

1.97
1.969
1.968
1.967
1.966
1.965
1.964

T

T

T T T T T

¢

%

1.9635~—% 8 1'3@2 14 16 18

20

-2.35
-2.36
-2.37
-2.38
-2.39

2.4

T

&A01214161820

Fig. 2: rgy = 1 and £ = 0: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

1 ) :
WnTy = (n + Z) 7r—|—% In2+4¢/
Numerically for large ryz and £ = 0O,
Wn

TH

(3)

1672

2un

= (1.299 — 2.250i)n + 0.573 — 0.419; +

Ar =

300+ 1)+ 1
6

0.102 + 0.05861

7“]2{\/5

George Siopsis
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Perturbations 32

For an intermediate black hole, ri = 1, we obtain

0.131 4+ 0.09162
NG

in good agreement with the result of numerical analysis (Fig. 2), including the
offset.

For a small black hole, ri = 0.2, we obtain

wn = (1.969 — 2.350i)n + 0.752 — 0.370i +

0.489 4+ 0.251¢
NG

wn = (1.695 — 0.571i)n + 2.182 — 0.615i +

175 T T T T T _056 T . Y ' : <>
1.7t NNNINININI 058 0000V VVV
I R VAR VAR,
1.65} <><><> ] (5062— O ]
1or 0 0.64}
1,55} ] oesl
1.57 : .0.68}
145 ; L L L L _07 1 ] 1 | |
0 2 4.6 8 10 12 02 4,46 8 10 12

Fig. 3: ry = 0.2 and ¢ = 0: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).
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Vector perturbations

I_ k
WnTs = (n-l—%)ﬂ-l-—ln 2+ ”‘”/4“4\28; )\m Ay = E(E"I' 1)

198 T T T T T T T T -234

56/ 50000TTOTTTO 2360 (000000000000
1o8] O<><><> ] -2.38 1 o .
1,94} : AT “
193_ ] '2.42_ N
1.92} : 2.44 1 1
1.91} ] 2.46} |
1ot | -2.48} 4 .
1.895— 510 1514 767 254

6 8 %&Lg 14 16 18 20 Q\AO 1214 16 18 20

Fig. 4. rgy = 1 and ¢ = 2: zeroth (horizontal line) and first order (curved line) analytical (eq. ()) compared with
numerical data (diamonds).

Numerically for large r and £ = 2,

8.19 + 6.29i
“n — (1.299 — 2.250i)n + 0.573 — 0.419i + + 6.29¢

T 7“12_1\/5
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Perturbations 34

to be compared with the result of numerical analysis,

Wn

<_> ~ (1.299 — 2.25{)n + 0.58 — 0.42i
TH/ numerical

For an intermediate black hole, ri = 1, we obtain

0.741 + 0.519:

wn = (1.969 — 2.350i)n + 0.752 — 0.370i +
NG

and for a small black hole, ri = 0.2, we obtain

1.239 4+ 0.63577
NG

estimates of the offset agree for large r g but diverge as ryg — 0.

wn = (1.695 — 0.571)n + 0.487 — 0.0441i +
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1.75—— -0.56 ———————————

1.7F VAN q -0.58

1.65} 5 O 000 V] 0.6 o O o A

el 0 j 0.62} 5 O -

e e _ 0.64f O 0 ¢ -

1.45} ] -0.661 1
23 45,6 78 91011 23 4 5%, 7 8 91011

Fig. 5: rgy = 0.2 and ¢ = 2: zeroth (horizontal line) and first order (curved line) analytical (eq. ()) compared with
numerical data (diamonds).
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Perturbations 36

Electromagnetic perturbations
electromagnetic potential

Near the origin,

j2—1+£(£—|—1)r*_3/2+
472 >/ —ap

where 5 = 1 - vanishing potential to zeroth order!
» need to include first-order corrections for QNMs.

VEm =

QNMs
o Z. 1 o e+ 1)
w'r*—mr—zlnn—l-Q—Z,ln(2(14—’6)«4‘\/""*)v A= 2\/—4u

» correction behaves as In n.
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130.6 ———————————— 2245 —
130 ] 225! -
129.5¢ . 225 5t ]
129+ 50009 -226} <><><><><><><><>_
1285} 500 : 226 51 o9 -
128} 5O Y : 207} o© _
1275F 0 ] 22750 -
127 ] 228 -
126556 8 QA2 14 16 18 20 228556 8 1, A2, 14 16 18 20

Fig. 6: r; = 100 and ¢ = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

For a large black hole, we obtain the spectrum

Awn  3v3(1—1iV3) (1 i 0.179 + 0.1034

+ > = 1.299-2.25:— +. ..

n

Y

TH 4 Ann
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2 T T T T T T T T T -2_34 T T T T T T T T T

! A B BETOTT0- 2.36} 560 O
1.95 QQQOO\/Q\/\/\/\/Q\/QV 558l OQQQQOQ\/Q\/QQQ\/ _
1.9" <><> ] _2.4_ <><> ]
1.85F O T -3_2421— & -
117'2: : 24610 -
' 2.48} :
1.7-<> . 25| i}
19502746 § (0121416 18 20 292075 4 6 81012141618 20

Wn, S AAWn

Fig. 7: rp = 1 and ¢ = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

For an intermediate black hole, rg = 1,

wp = (1.969 — 2.3507)n — (0.187 + 0.15677) Inn + ...
and for a small black hole, rg = 0.2,

wn = (1.695 — 0.571i)n — (0.045 + 0.135i) Inn + . ..
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1.7 T T T T - T -056 T T T T T T T
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Fig. 8: ry = 0.2 and ¢ = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

All first-order analytical results are in good agreement with numerical results.
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Hydrodynamics
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AdS/CFT correspondence and hydrodynamics
[Policastro, Son and Starinets]
correspondence between N/ = 4 SYM in the large N limit and type-IIB string
theory in AdSs x S°.
» in strong coupling limit of field theory, string theory is reduced to classi-

cal supergravity, which allows one to calculate all field-theory correlation
functions.

— nontrivial prediction of gauge theory/gravity correspondence

entropy of N' = 4 SYM theory in the limit of large 't Hooft coupling is precisely
3/4 the value in zero coupling limit.

long-distance, low-frequency behavior of any interacting theory at finite tem-
perature must be described by fluid mechanics (hydrodynamics).

universality: hydrodynamics implies very precise constraints on correlation func-
tions of conserved currents and stress-energy tensor:

» correlators fixed once a few transport coefficients are known.
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Vector perturbations
[G. S., hep-th/0702079]

introduce the coordinate

wave equation

o d—4 - d—4 - A -2 W
(A= 23 f(w) (v V) + Rw =2?w , o=
TH
where prime denotes differentiation with respect to v and
- f(r) 2 1-—
f(u) = 7“2 =1 — us+s <u— T%u>
_ _ : (d-1)(d—-2)(1+ 3
Wu(w) = - = f(w) {E2 S (OF ( >u}
r2 4 2
where [,2 = {+d=3)
i

First consider large black hole limit ;7 — oo keeping & and L fixed (small).
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Factoring out the behavior at the horizon (u = 1)

W= (1—u) "TIF(u)
the wave equation simplifies to

i / —
AF" 4+ BoF' +C; ; F =0

where
A = —(d—3)%uis(1 —uis)
L1 s o wis(l — uis
d—1 1—u
. d—2)[d—4—3(d—2)urs] _-
’ 4
&}2 @2 ’u,ri;i—_i38 ]_—u%)
T d—1 d_32
T e VR
- 3) [d—4—(2d—5)u;—3]u;%3_(d_3)2 i WS —uD)
d—1 1—u d—1 (1—u)?
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solve perturbatively:
(Ho+H1)F =0
where
HoF = AF" 4 BoF' 4+ CooF
H1F = (B —Bo)F' + (Cyz —Coo)F
Expanding the wavefunction perturbatively,

F=Fy+F+...
at zeroth order we have

HolFpo =20
whose acceptable solution is
d—2
Fy = u2(d-3)
d—2
regular at horizon (v = 1) and boundary (u = 0, or¥V ~ r 2 — 0 as

r — 00).

George Siopsis Milos - September 2009



Hydrodynamics 45

Wronskian
. 1
W = a—4 d—1
3(1 — ud—3)
Another linearly independent solution
_ w
Fo=Fy | —
0] 0 Fg

unacceptable .- diverges at both horizon (Fy ~ In(1 — u) for v ~ 1) and

d—4 d—4
boundary (Fg ~u 20-3) foru ~ 0,0or ¥ ~r 2 — ocoasr — 00).

At first order we have
Holr = —H1Fo
whose solution may be written as

F1—Fo/
E2
0

The limits of the inner integral may be adjusted at will

/Fo'/'leo

.~ this amounts to adding an arbitrary amount of the unacceptable solution.

George Siopsis Milos - September 2009



Hydrodynamics 46

To ensure regularity at the horizon, choose one of the limits at u = 1
» integrand is regular at the horizon, by design.
at the boundary (u = 0),

_ 1 FoH1 Fp
F1 = F| -+ regular terms
! OJo AW .
The coefficient of the singularity ought to vanish,
P FoHaFy _
o AW

= constraint on the parameters (dispersion relation)

aoiz — z'ach — a2@2 =0
After some algebra, we arrive at

d—3
= —-——, = d — 3
0Ty
The coefficient as

e may also be found explicitly for each dimension d,
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e it cannot be written as a function of d in closed form.
e it does not contribute to the dispersion relation at lowest order.
e E.g., ford = 4,5, we obtain, respectively

L2 R d—3 L2
) , W1 R —1 -+ 2
d—1 a d—1

In terms of frequency w and quantum number /,

€(€—|—d 3) w1 d—3 L+ d-3)
, — & —1 +
(d— 1ry r ao (d—1)r%
The smaller of the two, wq,

woz

e is inversely proportional to the radius of the horizon,
e is not included in the asymptotic spectrum.
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The other solution, w1,
e IS a crude estimate of the first overtone in the asymptotic spectrum.

e shares important features with asymptotic spectrum:
— 1t is proportional to rg;
— dependence on ¢ is O(1/7%,).
The approximation may be improved by including higher-order terms

» Inclusion of higher orders also increases the degree of the polynomial in
the dispersion relation whose roots then yield approximate values of more

QNMs.
» this method reproduces the asymptotic spectrum albeit not in an efficient
way.
Include finite size effects:
— use perturbation (assuming 1 /r is small) and replace H by

1
H1=H1+ 5Hy
"H
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where
HHF — AHF” —|— BHF, —|—CHF

Ay = —=2(d—3)%u?(1 —uw)
1_ d—1
By = —(d-—3)u [(d—3)(2—3u)—(d—1)1 ?_lum]
— U d-3
Chw = d_—2[d—4—(2d—5)u—(d—1) 1_?11&5_;]
2 1 — wues

Interestingly, zeroth order wavefunction Fy is eigenfunction of H gy,

HpFo = —(d—2)Fp
.. first-order finite-size effect is simple shift of angular momentum

22 172

-
H
.. QNMs of lowest frequency are modified to
Ll+d—-3)—(d—2)
—1
(d—1Dry

wo —

+0(1/r%)

George Siopsis

Milos - September 2009



Hydrodynamics 50

For d = 4,5, we have respectively,

(- E+2) (e +1)2-4
' 37“]_] ’ ’ 47“[__[

wo —

in agreement with
[Cardoso, Konoplya and Lemos; Friess, Gubser, Michalogiorgakis and Pufu]

= maximum lifetime

41
Tmax = 7TH

e Flat horizon (K = 0):

k2 e 1

wo = —1 = diffusion constant D =

(d — 1)7"_|_ 47TTH

e Hyperbolic horizon (K = —1):
_1)\2
ey 167

wo = —1 , T — < Ty
(d—1)ry wol ~ (d—1)2

NB: For d = 5, these modes live longer (important for plasma behavior).
[Alsup and GS]

George Siopsis Milos - September 2009



Hydrodynamics

51

Scalar perturbations
WA/ replaced by
3 -2
G = {2 [m+ (1+i2) u]
4 T

2
X {d(d—2)(1+i2) u%—6(d—2)(d—4)m(1+i2)u3—3
T ')"H

H

3
+(d — 4)(d — 6)m2u" 75 4+ (d — 2)2 (1 + iz) u?
"

2
+2(2d? —11d + 18)m (1 + %) u?
T

H
2
(d—4)(d—-6)(1+ =+
+ > ( H) u? — 3(d—2)(d — 6)m? (1—|—ri2>u
H H
6(d—2)(d— 4y (1+ ) 7
— 5 L+ 2(d - 1)(d - 2)m> 4+ d(d — 2)—-
’I“H T
~ _ A+d—3)—(d—2) _ 2(4+d—2)(¢-1)
where /. = 2 @D (d—2)2,  (d-1)(d-2)r2

}
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In the large black hole limit r; — oo with m fixed, potential simplifies

d—

‘75(0)(,“) — {d(d — 2)’1,1,% —6(d —2)(d — 4)mus
m + u

[&]

+(d—4)(d—6)m2u T + (d — 2)%u°

4+2(2d? — 11d + 18)mu? — 3(d — 2)(d — 6)m?u + 2(d — 1)(d — 2)m3}

» additional singularity due to double pole of scalar potential at u = —m.

» desirable to factor out the behavior not only at the horizon, but also at the
boundary and the pole of the scalar potential,
d—4

.o 212(d-3)
W= (1-u) 12

—~

m -+ u
.. wave equation
AF" 4+ BoF'+C5F =0
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where
A = —(d—3)2u%(1—u%)
By = —(d—3)us(1—um) [d 4 Q(Ad—3)]
Uu m—+ u
—(d—3)[d—4—(2d—5)u2i—é]u3i—2—2(d 3)2 Zwlud311—uﬁ)
— — U
s o [ (d=2)(d—-4) (d-3)(d—-4)  2(d-3)?
-1 SRR e=1 1—u§) d— 4 d—3
_[{d—4—(2d—5)u:~z}u3—|—2(d 3) 1 1w ][2u _ﬁ%—l—u]
B _ s, [d 4—(2d 5)’U,d 3] 5_ B 5 100 u2dd38(1_ud 3)
(d=3)—— T (=3 T —a w2
‘75(0) (U’) o &}2 2 &}2 u%(l — u%)
e T Y aTy awp

Define zeroth-order wave equation HgFy = O, where
HoF = AF" 4 BoF'
Acceptable zeroth-order solution
Fo(u) =1
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» plainly regular at all singular points (v = 0, 1, —m).
» corresponds to a wavefunction vanishing at the boundary
(W ~ r_d_74 as r — o0).
Wronskian
~ 2
W= QZL i U)d—_l
wd=3 (1 — ud-3)

Unacceptable solution: Fy = [ W

e can be written in terms of hypergeometric functions.

e for d > 6, has a singularity at the boundary, Fy ~ u_gll:—g for u =~ 0,
Or\UNrdE—6—>ooaS’r—>oo.

e for d = 5, acceptable wavefunction ~ r—1/2; unacceptable ~ r=1/2Inr

e for d = 4, roles of Fy and F{; reversed; results still valid.

e [ is also singular (logarithmically) at the horizon (u = 1).
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Working as in the case of vector modes, we arrive at the first-order constraint

1 C — 5
o AW
H1Fo = (Bg — Bo) Fy + CaFo = Cg
.. dispersion relation
ap — ajtw — 3_2&}2 =0
After some algebra, we obtain
d—114+(d—2)m d—3 1 .
ag = , a] = , ax=—1140
O T 1+ m)2 L7 (14 m)2 2= 5 11+ 0m)
For small m, the quadratic equation has solutions
d—3 d—1
OF ~ —i Ry —
related to each other by & = —&, ™

» general symmetry of the spectrum.
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Finite size effects at first order amount to a shift of the coefficient ag in the
dispersion relation

1
ag — aQ —I— —QaH
TH

after some tedious but straightforward algebra, we obtain

an =~ {1+00m))

The modified dispersion relation yields the modes

in terms of the quantum number Z,
((0+d—3)—(d—2) i\/€(€+d—3)
(d—1)(d—2)ry d— 2
in agreement with numerical results

wE ~ —i(d - 3)

[Friess, Gubser, Michalogiorgakis and Pufu]
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e imaginary part inversely proportional to rg7, as in vector case
e finite real part independent of rg

= maximum lifetime
d— 2

Tmax = A’y

(d—3)d

k , d—3

— 1 k2
d— 2 (d—1)(d—2)ry

w = =+

= speed of sound v =

(CFT!) and diffusion constant D = 4=3 47T}TH'

1
Vd—2
o K = —1,

2 4 (d=3)2 2 4 (d=1)° 1)
wziJE + (5532 (d-3)[e? + ) W-2)

, T <
d—2 (d—1)(d— 2)7«+ TS Wd=3)(d—-1)2
NB: For d = 5, K = —1 scalar modes live longer than any other modes

(important for plasma behavior).
[Alsup and GS]
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Tensor perturbations

Unlike the other two cases, asymptotic spectrum is entire spectrum.
In large bh limit, wave equation

2d—8

—(d—3)2(uis — )V’ — (d—3)[(d — Buis — (2d — 5)u2]W’

+{E2+d(d—2) (d—2)? w2 }w — 0

1
4 1 — u+s

2
U -3

For zeroth-ordereq.,set L =0 =&
— two solutions are (W = F{ at zeroth order)

d—2 d—2

FO(’U,) = u20@-3 Fb(’u,) = u 263 |Nn (1 _ u;l_—;)

Neither behaves nicely at both ends (u = 0, 1)

.. both are unacceptable.

*. impossible to build a perturbation theory to calculate small frequencies.
in agreement with numerical results and in accordance with the
AdS/CFT correspondence

» there is no ansatz that can be built from tensor spherical harmonics T;;

satisfying the linearized hydrodynamic eqgs because of the conservation
and tracelessness properties of T; ;.
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Hydrodynamics on the AdS boundary

» calculate the hydrodynamics in the linearized regime of a d— 1 dimensional
fluid with dissipative effects.

metric
dsg = —dt* +dX7 4 5
hydrodynamic equations
CFT = TH =0, e=(d—-2p, (=0
In rest frame u* = (1,0, 0, 0), const. pressure pg; with perturbations
ut = (1,u") , p=rpo+dp
apply hydrodynamic equations
(d—2)p+ (d—1)poViu' = 0

: . . : . d—=4 . :

(d — 1)podu’ + 86p —n | VIV u’ + K(d — 3)u’ + d—28@(vjuj) = 0

where we used R;; = K (d — 3)g;;
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Vector perturbations — ansatz

Sp=0, u'=Cype “V!
V*: vector harmonic
hydrodynamic equations =-

—iw(d = 1)po +n [k — K(d—3)| =0

Using
n nsS _4mn rg

T =(d-2)"

PO sM SK—I—’I“?I_

with w from gravity dual, we obtain for large r_,

1

s 4r

[Policastro, Son and Starinets]
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Scalar perturbations — ansatz

u = Age 9'S |, 6p = Bge ™!S
S: scalar harmonic
hydrodynamic equations =-

(d — 2)iwBg + (d — 1)pok2Ag = 0
Bg + Ag [—iw(d — 1)po—2(d—3)Kn + 2nk2d — 3] =0

Sd—2
.. determinant must vanish

(d — 2)iw (d — 1)pok3
1 —iw(d—1)po — 2(d — 3) Kn 4 2nk2 =3

along the same lines as for vector perturbations, we arrive at

=0

77_1

s 4w

» same as vector QNMs!
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Conformal soliton flow

K =+1

the holographic image on Minkowski space of the global AdSs-Schwarzschild
black hole is a spherical shell of plasma first contracting and then expanding.

» conformal map from S%=2 x R to (d — 1)-dim Minkowski space
[Friess, Gubser, Michalogiorgakis, Pufu]

d = 5| QNMs = properties of plasma

°
vp 1 ew4—40w2—|—72 . TW
5 6w w3 — 4w

— vy = (CO0s2¢) at 0 = 5 (mid-rapidity), average with respect to energy
density at late times

(y2— 2)
- )= (222 (eccentricity at time ¢t = 0).

Numerically, %2 = 0.37, cf. with result from RHIC data, -2 ~ 0.323
[PHENIX Collaboration, arXiv:nucl-ex/0608033]
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e thermalization time

1 1
=~ ~0.08 fm/c , Theak = 300 MeV

cf. with RHIC result = ~ 0.6 fm/c
[Arnold, Lenaghan, Moore, Yaffe, Phys. Rev. Lett. 94 (2005) 072302]

Not in agreement, but encouragingly small

» perturbative QCD yields + & 2.5 fm/c.
[Baier, Mueller, Schiff, Son; Molnar, Gyulassy]

K=-1

e needs work for conformal map H¢=2/I" x R — (d — 1)—dim Minkowski
space.

e important case .- these modes live the longest.
[Alsup and Siopsis]
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Phase transitions
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Black Holes with Scalar Hair

K=0,d=4

scalar W of mass m2 = —2 (above Breitenlohner-Freedman (BF) bound) and
charge q (large - probe limit - set ¢ = 1) and electrostatic potential ® in black
hole background

2
= —f(’r)dt2 ( ) 2dz2 f(r) = 22k
Horizon and Hawking temperature
3r
— (o N1/3 p=>2"*
ry = (2u)7, o

assuming spherical symmetry, Einstein-Maxwell egs. =

/ 2
w4 (f )w’+($> w+3w=o
T J

f f
2
" + 2o 2V — 0
r f

[Hartnoll, Herzog and Horowitz]
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As r — oo,

(1) (2) (1)
w="Y +w2 +...,c|>=<1>(0>+¢—+...
T T

r

where one of the W(?) = 0 (; = 1, 2) for stability, ®(0) is the chemical poten-
tial and ®(1) = —p (charge density).
Below a critical temperature T a condensate forms,

of an operator of dimension A = 1.
At T = Tp, we may set W = 0 in eq. for ® and deduce (®(ry4) = 0)

1 1
P=pl——-=
7‘_|_ r

Eq. for W turns into an eigenvalue problem =-

To ~ 0.226,/p, 0.118,/p
depending on B.C.
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EM perturbation:

/ 2 2
AW+—A+«E 2W)A:O

f 2 f
B.C.: ingoing at horizon, A ~ f~/(47T) and at boundary (r — oo),
(1)
A=A0 A7 L
T
Ohm’s law = conductivity
A1)
7(W) = A
ForT > Tp, W =0, .. A ~ ™7 (ry: tortoise coordinate) .°,
o(w) =1

George Siopsis Milos - September 2009



Phase transitions 68

At low T, for (O1) # 0, we have

(O1)
V2

Since 7. — 0, we obtain A ~ €', where ' = \/w (01)2.

WV =~

o forw < (Oq1), Reo = 0 = superconductor with a gap!

George Siopsis Milos - September 2009



Phase transitions 69

K=-1,d=24

[Koutsoumbas, Papantonopoulos and GS]

scalar W of mass m2 = —2 (above Breitenlohner-Freedman (BF) bound) and
charge g conformally coupled in potential
8rG
V(v) = ——|v*

Exact solution (MTZ black hole)

dr?
fvrz(r)

W) =0 p=0
ArGr 4+ ro

[Martinez, Troncoso and Zanelli]

2
ds® = —farrz(r)dt® + +rédo® , furz =717 - <1+7;f’> ,

temperature, entropy and mass, respectively

TZ%(T_F—%), SMTZ:%(QT—I—_l)a MMTZ:Z:'Z(T—I__]-).

» law of thermodynamics dM = T'dS holds.
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At M = 0, MTZ coincides with TBH,

d 2
dsRgs = —(r? — 1)dt? + —— + r2do?
r<—1
enhanced scaling symmetry (pure AdS) at critical temperature
T — 1
0= 2T
phase transition
ol
AF = Prpy — Fyrz = ——— m3(T = To)> + ...,
8t

.. 3rd order phase transition between MTZ and TBH at 1.

» Checked perturbative stability of MTZ for T' < Ty (M < 0).
[Koutsoumbas, Papantonopoulos and GS]
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The Dual Superconductor

» the condensation of the scalar field has a geometrical origin and is due
entirely to its coupling to gravity.
heat capacities in normal and superconducting phases, respectively,as T" — 0

o o
Cn =~ T, Cs=—1T,
" 3./3G 7 o@

0.18

0.16

Both condensates are present,

0.12 |

37T 2 0.1 r
@ = T2 — T
< 1 > 2G ( O ) 0.08 -
37-‘_ 2 2 0.06 -
<02> — 2 (TO — T ) 0.04 T

0.02 |

TIT_0
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EM perturbations
1st-order perturbation theory =-

2 2

A = —zwr* ‘I‘ zwr*/ dr \UQ(T )e—QZwT* _ q_.e—iwr* /T d?“/\lfz(’l“/) .
21w T4
conductivity to 1st-order in g2
— —1 -1 0 —21WTx
olw) = iwAC0) W /r+ dr=(r)e
superfluid density from
Re[o(w)] ~ msd(w) , Im[o(w)] ~ 22, w—o0.
w
o0 3 2 2 3 2
ns=q2/ drw?(r) = 1 '0 =a(Tp—-T)°, a= 4
Ty AnG ry + 7o 4G
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near’l’ = O,
T
q/vVG 1 3 5
) 1.025+0.007 | 1.524+0.03 | 1.78 £ 0.03

normal, non-superconducting, component of DC conductivity

Ny = J@O Re [o(w)] .

©.@)
INnn, = 2q2/ drw2(r)ry .
T4

At low T,
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Cl/\/a Ynumerical | Yanalytical | ®numerical | ®analytical
0.1 0.0020 0.0024 0.0225 0.024
0.5 0.0538 0.0597 0.552 0.589
1.0 0.187 0.239 2.196 2.356
2.0 0.684 0.955 8.678 9.425
3.0 1.325 2.15 20.35 21.21
5.0 2.522 5.97 52.90 58.90
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Re[sigma]
Re[sigma]

04

o1f

. 0 I I I I I
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
omega omega

The real part of the conductivity vs w for ¢/+/G = 2 (left) and ¢/+/G = 5 (right) and T' = 0.0032, 0.032, 0.064.
The lowest curve corresponds to the lowest temperature.

0.18 T T T T T 0.6

03

omega*Im[sigma]
omega*Im[sigma]

I 1 = .
0 0.5 1 15 2 25 3
omega

The imaginary part of the conductivity multiplied by w vs w for q/v/G = 2 (left) and ¢/v/G = 5 (right) and
T = 0.0032,0.032,0.064. The uppermost curve corresponds to the lowest temperature.
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CONCLUSIONS

e Quasi-normal modes are a powerful tool in understanding hydrodynamic
behavior of gauge theory fluid at strong coupling

e Quark-gluon plasma understood in terms of gravitational perturbations of
a dual black hole

e Superconductors understood in terms of electromagnetic perturbations of
dual hairy black holes

e Physical role of high overtones not clear
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