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We have simulated a simple model of crystalline membranes, using Monte Carlo
methods, on lattice sizes up to 1282. We verify the existence of a crumpling
transition and show that, although no bare elastic constants are introduced, it
nevertheless has a stable flat phase. We measure the critical properties of this
flat phase and find a good agreement with theoretical predictions. In particular
we find for the roughness exponent ζ = 0.64(2) and a negative Poisson ratio for a
crystalline membrane, σ ≈ −0.32.

1 Introduction

Tethered or crystalline membranes, i.e. two-dimensional solid surfaces embed-
ded in 3 dimensions, are of great theoretical interest as they exhibit a non-
trivial phase structure; a transition between a crumpled and a flat phase. This
is all the more interesting as the existence of a two-dimensional system with a
continuous symmetry and a long-ranged order appears to violate the Mermin-
Wagner theorem. This ordering is made possible by thermal fluctuations that
infinitely enhance the bending rigidy of the membrane at long wavelengths,
thus stabilizing the surface.

There are both biological and inorganic examples of crystalline membranes:
the spectrin skeleton of red blood cells 1; thin sheets of graphite-oxide in aque-
ous suspension 2; and the rag-like structure found in MoS2

3.
To describe a (continuous) elastic surface, embedded in 3 dimensions, we

use the Landau-Ginsburg-Wilson effective Hamiltonian
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, (1)

where ~φα = ∂α~r is the order field and ~r(σ) ∈ R3. If the surface is sufficiently
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Figure 1: Left: The Monge representation of a crystalline membrane. Right: A snapshot of
the surface in the flat phase (κ = 1.1) for L = 46.

.

flat Heff simplifies and can be written (in the Monge gauge, see Fig. 1) as

Heff =
1

2

∫

d2σ
[

κ (∂2h)2 + 2µu2

αβ + λu2

γγ

]

(2)

where uαβ = 1

2
(∂αuβ + ∂βuα + ∂αh∂βh) is the strain tensor, κ is the bending

rigidity and µ, λ are the Lamé or elastic constants.

The model Eq. (2) has been investigated using ǫ-expansion 4 (AL) where
it was found that the whole flat phase is critical, governed by an IR stable
fixed point at infinite bending rigidity. In particular, the coupling constants
acquire anomalous scaling dimensions: κR(q) ∼ q−η and µR(q) ∼ λR(q) ∼ qηu .
The exponents η and ηu are related through scaling relations, together with the
roughness exponent ζ which governs the scaling of the height-height correlation
function; ηu = 2 − 2η and ζ = (2 − η)/2. In addition to the ǫ-expansion
this model has been studied in a large-d expansion 5, and by solving a set
of self-consistent equations for the scaling exponents 6 (SCSA). The resulting
exponents are compared to numerical simulations in Table 1.

2 Numerical simulations

For numerical investigations we need an appropriate discretization of a crys-
talline membrane. Conventionally this is done by a regular triangular lattice,
with fixed connectivity, and a Hamiltonian containing two terms: a pair po-
tential and a bending energy term. The former can be modelled as tethers be-
tween hard spheres or by introducing a repulsive potential between the nodes.
Here we use much simpler approach, a Gaussian potential between neighboring
nodes. The bending energy term is introduced explicitly as a ferromagnetic
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interaction between normals on neighboring triangles:

H =
1

2

∑

<ij>

(~ri − ~rj)
2 +

κ

2

∑

<ab>

(1− ~na · ~nb) (3)

where ~ri is the position of node i and ~na is a normal to triangle a. Notice
that the tethering potential has vanishing equilibrium length, hence no explicit
elastic constants are introduced. For the surface to have a stable flat phase
they must therefore be dynamically generated. Also, Eq. (4) defines a phantom

surfaces, i.e. without self-avoidance. For the flat phase this is expected to be
irrelevant, albeit the nature (existence) of the crumpling transition may depend
on this.

We have simulated this model using Monte Carlo methods. As we are
mostly interested in the flat phase, we choose to simulate a surface with free
boundaries. This simplifies considerably the analysis of various observables
such as correlation functions. We use lattice sizes ranging from 256 to 16394
nodes and update them with a local Metropolis algorithm. We performed
5 × 107 to 108 sweeps per volume and coupling — typically this gave 150 to
1000 independent configurations. For details of the simulations see 7.

3 Results

3.1 The crumpling transition

We have verified the existence of a crumpling transition in the model by mea-
suring the specific heat at different values of the bending energy κ (Fig. 2).
It displays a divergent peak at κc ≈ 0.79 — preliminary estimate of the
critical exponents yields α ≈ 0.4, indicating a 2nd order phase transition.
To probe the nature of the two phases we looked at the radius of gyration,
R2

g = 〈
∑

i ~ri · ~rj〉/N , which measures the linear extend of the surface. Its scal-

ing with system size, Rg ∼ N1/dH , defines the Hausdorff dimension dH . We
find dH = 2.1(1) in the flat phase (as expected), while Rg grows logarithmically
with volume in the crumpled phase.

3.2 The flat phase

To investigating the critical behavior of the flat phase we have measure the
height and phonon fluctuations and the normal-normal correlation function —
those give us ζ, ηu and η, respectively.

To measure the height fluctuations 〈h2〉 we need an estimate of the width
of the surfaces. This is provided by the minimal eigenvalue of the shape tensor
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Figure 2: Left: The specific heat. Right: The normal-normal correlation function in the flat
phase.

Sαβ = 〈
∑

σ rα(σ)rβ(σ)〉c, (α, β = 1, 2, 3). The height fluctuation scale as
〈h2〉 ∼ L2ζ . At bending energy κ = 1.1 we find ζ = 0.64(2) (Table 1). Previous
numerical simulations on similar models, have found values in the range 0.5 –
0.7 (see 7 for a comprehensive list).

The phonon fluctuations (the strain tensor) measures the deviation of the
membrane from a rigid surface. We estimated those deviations by projecting
the surface onto a flat plane, and comparing the projected node position to
their rest value. It is trivial to show that 〈|~u|〉 ∼ Lηu . Our measurements give
ηu = 0.50(1), implying η ≈ 0.75.

Finally the normal-normal correlation function. In the flat phase we expect
it to have a non-zero asymptote, 〈~nσ · ~no〉 ∼ C + c/rη, implying a long-range
order in the surface. Here r is a geodesic distance between the center o and node
σ. Since we use free boundaries, the surface is not translationally invariant and
we only measure the correlations from the center. This is shown in Fig. 2 for
κ = 1.1. Our best fit to the data implies η ≈ 0.62.

3.3 The Poisson ratio

In addition to the anomalous scaling of the coupling constants, one of the most
dramatic effect of fluctuations on a crystalline membrane is the prediction of
a negative Poisson ratio σ. The Poisson ratio measures the in-plane transverse
response of the surface when it is stretched in the longitudinal direction. For
conventional matter, which shrinks in the transverse direction, it is defined
to be positive. Analytical calculations predict for a crystalline membrane:
σ = −1/3 (SCSA 6) or σ = −1/5 (AL 4). The unusual sign of σ is due to
entropic suppression of the height fluctuations when stress is applied 8.
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Table 1: Theoretical predictions and numerical results for the exponents governing the crit-
ical behavior of the flat phase.

ζ ηu ν = 2/dH η
AL 13/25 or 0.52 2/25 or 0.08 1 24/25 or 0.96

Large-d 2/3 2/3 1 2/3
SCSA 0.590 0.358 1 0.821
MC 0.64(2) 0.50(1) 0.95(5) 0.62

The Poisson ratio can be defined in terms of correlation functions at zero
external stress using linear response theory 9:

σ = −
〈uxxuyy〉c
〈u2

yy〉c
= −

〈gxxgyy〉c
〈g2yy〉c

(4)

where gij = ∂i~r∂j~r is the induced metric (uij = gij − δij). Our best estimate
of the Poisson ratio, for κ = 1.1 and N = 1282, is σ = −0.32(2), in good
agreement with the predictions from6. Earlier numerical simulations10, on the
other hand, found σ = −0.15(1). Although it is hard to compare directly those
simulations with ours, due to different simulations methods and discretization,
this is a significant discrepancy. A possible explanation is that very small
lattice are used in10 — certainly we see big finite size effects in our simulations.
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