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Crossing thecÄ1 barrier in 2D Lorentzian quantum gravity
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In an extension of earlier work we investigate the behavior of two-dimensional~2D! Lorentzian quantum
gravity under coupling to a conformal field theory withc.1. This is done by analyzing numerically a system
of eight Ising models~corresponding toc54) coupled to dynamically triangulated Lorentzian geometries. It is
known that a single Ising model couples weakly to Lorentzian quantum gravity, in the sense that the Hausdorff
dimension of the ensemble of two-geometries is two~as in pure Lorentzian quantum gravity! and the matter
behavior is governed by the Onsager exponents. By increasing the amount of matter to eight Ising models, we
find that the geometry of the combined system has undergone a phase transition. The new phase is character-
ized by an anomalous scaling of spatial length relative to proper time at large distances, and as a consequence
the Hausdorff dimension is now three. In spite of this qualitative change in the geometric sector, and a very
strong interaction between matter and geometry, the critical exponents of the Ising model retain their Onsager
values. This provides evidence for the conjecture that the KPZ values of the critical exponents in 2D Euclidean
quantum gravity are entirely due to the presence of baby universes. Lastly, we summarize the lessons learned
so far from 2D Lorentzian quantum gravity.

PACS number~s!: 04.60.Gw, 04.20.Gz, 04.60.Kz, 04.60.Nc
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I. INTRODUCTION

It may come as a surprise to practitioners of tw
dimensional~2D! gravity that there is more than one way
constructing a viable quantum theory by path-integral me
ods, and that there is indeed ‘‘life beyond Liouville gravity
The new, alternative theory of 2D quantum gravity in que
tion was first constructed as the continuum limit of an e
actly soluble model of dynamically triangulated tw
geometries@1#, which could be interpreted as representi
Lorentziangeometries with a causal structure and a prefer
time direction. It has recently been shown that there i
whole universality class of such Lorentzian models, some
which are obtained by adding a curvature term to the gra
action or by using building blocks different from triangles
the construction of geometries@2#.

An investigation of Lorentzian gravity coupled to Isin
spins led to the conclusion that in spite of strong fluctuatio
of the underlying geometries, the critical matter behavior
the coupled system is governed by the Onsager exponent@3#
~which one also finds for the Ising model on a fixed, regu
lattice!. This immediately raises the following questions:
we continue to add matter to the system, do we eventu
observe a qualitative change in the behavior of geom
and/or matter? Is there an analogue of thec51 barrier of
Liouville quantum gravity beyond which the combine
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gravity-matter system degenerates? We address these an
lated issues below, by studying numerically eight Ising mo
els ~corresponding to ac54 conformal field theory! coupled
to Lorentzian quantum gravity.

In order to set the stage for our present investigation,
us recall some salient features of the Lorentzian grav
model @1,4#. One idea behind the formulation of such
model is to take the Lorentzian structure seriously within
path-integral approach and in this way bridge the gap
tween the canonical quantization and the~Euclidean! path-
integral formulation of gravity. The Lorentzian aspects of t
model are two-fold: compared with the Euclidean case,
state sum is taken over a restricted class of triangulated t
geometries, namely, those which are generated by evolvi
one-dimensional spatial slice and allow for the introducti
of a causal structure. Secondly, the Lorentzian propagato
obtained by a suitable analytic continuation in the coupl
constant. During time evolution, we do not permit the spa
slice to split into several components~i.e., change its topol-
ogy!, because the resulting space-time geometry would
be compatible with our discrete notion of causality.~In a
continuum picture, the local lightcone structure associa
with a Lorentzian metric must necessarily become dege
ate at such branching points.! This is exactly the situation
described by usual canonical~quantum! gravity.

In the pure gravity model, the loop-loop correlator a
various geometric properties can be calculated exactly
compared to Euclidean 2D quantum gravity, as given
Liouville gravity or 2D quantum gravity defined by dynam
cal triangulations or matrix models. The two models turn o
to be inequivalent. For example, the Hausdorff dimension
©2000 The American Physical Society10-1
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the Lorentzian quantum geometry isdH52, indicating a
much smoother behavior than that of the Euclidean c
wheredH54. The difference between the fractal structur
of Lorentzian and Euclidean quantum gravity can be tra
to the absence or presence of so-called baby universes. T
are outgrowths of the geometry taking the form
branchings-over-branchings, which are known to domin
the typical geometry contributing to the Euclidean state su
Such branchings and associated topology changes with
spect to the preferred spatial slicing are absent from the
tories contributing to the Lorentzian state sum.

Baby universes, i.e., discrete evolution moves resulting
spatial topology changes may be reintroduced by hand in
Lorentzian formulation~if one is willing to give up causal-
ity!. This corresponds to ‘‘switching on’’ an additional ter
in the differential equation for the propagator, in such a w
that the scaling limit must be modified in order to produ
well-defined continuum physics.

A further difference between 2D Lorentzian and Eucl
ean gravity is revealed by coupling them to conformal m
ter. In the Euclidean case this is governed by the fam
KPZ ~Knizhnik-Polyakov-Zamolodchikov! scaling relations.
They describe how the critical exponents of a conformal fi
theory change when it is coupled to Euclidean quantum g
ity, and how the entropy exponentgstr for two-geometries
~the so-called string susceptibility! changes due to their cou
pling to the conformal matter fields.

In 2D Lorentzian gravity, the continuum limit of th
quantum geometry was found to beunchangedunder cou-
pling to a c5 1

2 conformal field theory, in the form of an
Ising model at its critical point.1 The Hausdorff dimension
remains equal to two, and an appropriately rescaled distr
tion of spatial volumes coincides with the distribution fou
in pure Lorentzian gravity. In addition, the values of t
critical exponents of the Ising model agree with those of
Ising model on a regular lattice. In other words, coupling
Ising model to Lorentzian gravity does not affect the nat
of its ~second-order! phase transition. Summarizing, one m
say that the coupling betweenc5 1

2 conformal matter and
geometry in Lorentzian quantum gravity is weak.

To avoid a frequent misunderstanding, we must emp
size that this isnot a trivial consequence of the fact thatdH
52 in Lorentzian quantum gravity. Although a flat spac
time implies dH52 for the Hausdorff dimension, the con
verse is by no means true. In fact, the geometrydoesfluctu-
ate strongly in Lorentzian gravity, as was demonstrated
@1,3#. There are other examples to illustrate that the Ha
dorff dimension is only a very rough measure of geome
Consider 2DEuclideanquantum gravity coupled to confor
mal field theories withc.1: in these models the geomet
fluctuates so wildly that the two-dimensional surfaces
torn apart and degenerate into so-called branched polym
which again havedH52, the same as for smooth surfaces

An important conclusion one can draw from the resu
obtained in@3# is that the strong coupling between Euclide

1The critical point of the Ising model we refer to is the critic
point of the combined Ising-gravity system. See Ref.@3# for details.
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quantum gravity and conformal matter is directly caused
the presence of baby universes. Various qualitative ar
ments have been put forward in the past to support this id
which is of course not new. However, one never had a mo
which prohibited the creation of baby universes, and wh
could be used to verify explicitly that the coupling betwe
geometry and matter in this case is weak. The obser
weak-coupling behavior in the Lorentzian model opens
the intriguing possibility that one might be able to cross t
c51 barrier in Lorentzian 2D quantum gravity coupled
matter. This is the issue we will study numerically in th
remainder of this article, by coupling eight Ising models
Lorentzian quantum gravity, corresponding at the critic
point of the combined system to ac54 conformal field
theory.

II. COUPLING GRAVITY TO MULTIPLE ISING SPINS

In our previous work@1# we have defined the two-loop
function of Lorentzian 2D gravity as the state sum

G~l,t !5 (
TPTt

e2lNT, ~1!

where the summation is over all triangulationsT of cylindri-
cal topology with t time-slices,NT counts the number o
triangles in the triangulationT, andl is the bare cosmologi-
cal constant. Since we are primarily interested in the b
behavior of the gravity-Ising system, we use periodic bou
ary conditions by identifying the top and bottom spat
slices of the cylindrical histories contributing to the state s
~1!. Clearly this is not going to affect the local properties
the model. A geometry characterized by a toroidal triangu
tion T of volumeNT containsNT time-like links,NT/2 space-
like links, NT/2 vertices and 3NT/2 nearest-neighbor pairs.

The partition function ofn Ising models coupled to 2D
Lorentzian quantum gravity is given by

G~l,t,b!5 (
TPTt

e2lNTZT
n~b!, ~2!

whereT is now a triangulation with toroidal topology. Th
partition function for a single Ising model on the triangul
tion T is denoted byZT(b), where the spins are located
the vertices ofT andb is the inverse temperature of the Isin
model.

On a fixed lattice there are no interactions among thn
Ising spin copies if the partition function is simply taken
the n-fold product ofZ(b) for a single Ising model. In the
presence of gravity, given by the definition~2!, the situation
is different. Although the spin partition functionZT

n(b) still
factorizes for any givenT, this is no longer the case after th
sum overT has been performed. The different spin copies
effectively interacting via the triangulations~or in a con-
tinuum language: via the geometry!; the weight of each tri-
angulation is a function of all then Ising models.

It is straightforward to perform computer simulations
the combined gravity-matter system given by~2! ~see@3# for
details!. The only nontrivial aspect of the Monte Carlo sim
0-2
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CROSSING THEc51 BARRIER IN 2D LORENTZIAN . . . PHYSICAL REVIEW D61 044010
lation is the updating of geometry, and for this the proced
used in@3# can readily be generalized to the extended s
system of~2!. All results discussed in the following hav
been obtained at the critical couplingb of the combined
gravity-matter system~2!, with n58, i.e., with central charge
c54. Our motivation for choosingc54 comes from our
experience with Euclidean quantum gravity coupled to m
ter fields. In that case the phase transition atc51 is not very
clearly visible in simulations. Only forc>4 can the change
in geometry be detected easily. We have therefore chose
work with eight Ising spins in Lorentzian quantum gravit
to have bothc sufficiently large to detect potential effects o
the geometry, but still small enough to make computer sim
lations feasible within a limited amount of time.

III. NUMERICAL RESULTS

We have performed our simulations on dynamically tria
gulated surfaces of torus topology withNT triangles~corre-
sponding toN5NT/2 vertices! andt time slices. For reason
that will become apparent in the following we have us
geometric configurations with different ratios of tempo
length t versus average spatial extent, satisfyingN5t2/t
with t51, 2, 3, and 4. The choicet51, previously used in
@3#, corresponds to a square lattice~with opposite sides iden
tified!, while for t.1 one obtains tori elongated in thet
direction. The system sizesN used in the simulations at var
ous values oft are listed in Table I. The geometry is updat
using the move described in@3#, and for each geometry up
date~corresponding to approximatelyN accepted moves! the
Ising spins are updated with the Swendsen-Wang algorit
The focus of our attention is on the multiple Ising mod

with c54, although for comparison some data forc50,1
2

will also be reported.
The first step of the numerical simulation consists in d

termining the critical values (lc ,bc) of the cosmological
and the matter coupling constants. For the pure gra
model (c50), the cosmological constantlc5 ln 2 is known
exactly @1#. For a single Ising model (c5 1

2 ), we know
from our previous simulations that (lc ,bc)
5„0.742(5),0.2521(1)… @3#, where the normalization forlc
is such thatlc5 ln 2 at b5`. For the case of eight Ising
models, using finite-size scaling as in@3#, for system sizes
N51K – 8K and t51,3 we have obtained (lc ,bc)
5„1.081(5),0.2480(4)…. As expected, this result is insens
tive to the value oft. Having established the critical value

TABLE I. System sizes in terms of the numberN of vertices
used in simulations att[t2/N51,2,3,4.

t51 t52 t53 t54

1024 1058 1200 1156
2025 2048 2352 2116
4096 4232 4800 4624
8100 8192 9408 8464
16384 19200
32400 36963
04401
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we investigate finite-size scaling of the system at (lc ,bc).
The statistics vary, for example, we performed 1.883106

sweeps for theN519200 system and 0.63106 sweeps for
the N536963 system. The data are binned for errors.

We apply finite-size scaling to a variety of observables,
order to extract universal properties which characterize b
the quantum geometry and the matter interacting with it. T
first of them involves a measurement of the distributi
SV( l ) of spatial volumes~cf. @3#!, that is, the lengthsl of
slices at constant timet. For sufficiently large lengthsl and
space-time volumesN, one expects a finite-size scaling rel
tion of the form

SVN~ l !5FS~ l /NT
1/dh!, ~3!

for some functionFS . If such a relation holds, it defines
relative dimensionality of space@characterized by the aver
age lengtĥ l&# and ~proper! time since from

NT;t•^ l &⇒t;NT
121/dh, ^ l &;NT

1/dh. ~4!

By relating the geodesic distancet in time direction to the
total volume, we can define a global or cosmological Ha
dorff dimensiondH of space-time through

t;NT
1/dH⇒dH5

dh

dh21
. ~5!

This definition is motivated by a similar notion in Euclidea
quantum gravity. In that case there is no distinction betwe
spatial and time directions, and one can extract the glo
Hausdorff dimension by measuring the volumes of spher
shells at geodesic distancer ~the analogue of the geodes
time t above! from a given point.~Note that a ‘‘shell’’ need
not be a connected curve.! In a discretized context this
amounts to counting the numbernN(r ) of vertices at geode-
sic ~link! distancer. For this quantity one expects a scalin
behavior@5,6# of the type

nN~r !5NT
121/dHF1~x!, x5

r

NT
1/dH

, ~6!

which has been verified for the case of 2D Euclidean qu
tum gravity. Equation~6! is a typical example of a finite-size
scaling relation. It tells us how a radial or proper time coo
dinate has to scale with space-time volume in order to ob
a nontrivial continuum limit (N→`, r→`). In this sense
dH describes long-range properties of the system, which
our rationale for calling it thecosmologicalHausdorff di-
mension. It does not necessarily tell us about the sh
distance behavior of space-time, for example, how the v
ume of a spherical shell behaves at small radiusr !NT

1/dH

~but still with r much larger than the lattice spacing, to avo
lattice artifacts!. At such distances one expects the shell v
ume to grow with a power law

nN~r !;r dh21, ~7!
0-3
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wheredh is now a ‘‘short-distance’’ fractal dimension@7#.
There is noa priori reason fordh to coincide with the cos-
mological Hausdorff dimension. However, in models of si
plicial Euclidean quantum gravity we have always observ
dh5dH , such that~6! was valid for allr ~much larger than
the lattice spacing!. This points to a unique fractal structur
of space-time, withF1(x)5xdh21 for x!1. Nevertheless
there also exist related models withdhÞdH @8#. We will see
below that Lorentzian gravity coupled to a sufficiently lar
amount of matter provides another example of this kind.

For illustrative purposes we have generated 3D visual
tions of the two-dimensional dynamically triangulated geo
etries produced during the simulations. ForLorentziange-
ometries this can easily be done: as a consequence o
causality requirement each 2D history consists of an orde
sequence of 1D spatial slices of constant time. Each s
slice is embedded isometrically in three-dimensional
space and then the vertices of neighboring slices are
nected. Different colors indicate clusters of spin-up and sp
down states. For the case of multiple Ising models, one
them is chosen arbitrarily to determine the surface colori
We have cut open the toroidal geometries along one of t
spatial slices, so that in the pictures they appear as cylin
~with top and bottom slices to be identified!. The visualiza-
tions are well suited for comparing the qualitative behav
of the geometric and spin degrees of freedom as well as t
interaction, for different values of the conformal chargec.
Animations of some of the simulations can be found in@9#.

A. Lorentzian quantum gravity with cÏ1Õ2

To put our current results into context, let us recall t
situation for pure Lorentzian gravity (c50) and for Lorent-
zian gravity coupled to one critical Ising model (c5 1

2 ). In
that case, independent measurements ofSVN( l ) and nN(t)
both yielddh5dH52, corroborating the existence of a un
versal fractal dimensiond52, which moreover coincides
with the naively expected continuum value. In addition,
have found the Onsager exponents for the case of a si
Ising model coupled to Lorentzian gravity. The fact that bo
the fractal dimensions and the critical matter exponents
tain their ‘‘canonical’’ values is in sharp contrast with th
situation in 2D dynamically triangulatedEuclideanquantum
gravity.

For later comparison with the case of eight Ising mod
coupled to Lorentzian gravity, we show in Fig. 1 two typic
configurations of the pure-gravity system forN58100, t
51, and for N59408, t53, generated during the Mont
Carlo simulations. Apart from an overall rescaling, thet
51 geometry looks qualitatively similar to itst53 counter-
part. This observation can be made into a quantitative st
ment by showing that the distributionSVN( l ) is independent
of t, as indeed we have done. From the point of view of
space-time geometry, the situation is similar forc5 1

2

coupled to Lorentzian gravity. We illustrate this by two typ
cal configurations, depicted in Fig. 2. Also in this case
have checked that the distributionSVN( l ) is independent of
the relative temporal extensiont of space-time.
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B. Properties of the quantum geometry forcÄ4

1. The length distribution SVN„ l … and the dimension
of proper time

In the same manner as discussed above, we can ex
some large-scale characteristics of the quantum geometr
the c54 system coupled to Lorentzian gravity by studyin
the scaling properties of the distributionSVN( l ) of one-
dimensional spatial slices of volumel. It turns out that for
c54 one has to simulate systems witht>3 to observe a
clear scaling behavior. As illustrated by Fig. 3, the syst
exhibits a tendency for developing a large number of v
short spatial slices, with length of the order of the cutoff. T
length distributionSVN( l ) has a peak at smalll, whose
height increases withN, but whose position has a very wea
dependence on the system size. Since the volume is
fixed, there are strong finite-size effects which artificia
prohibit the system from forming such a peak wheneveN
andt are simultaneously small. This is obvious from the da
taken for thet51 system~Fig. 3!. In that case the peak
appears clearly only for a system with more than 8100 v
tices. Such finite-size effects are absent for thet53 system.

These properties are well illustrated by Figs. 4 and
which show some typical geometries atc54. They should be

FIG. 1. Typical configurations forc50, with volumes N
58100 (t51) andN59408 (t53). The spin configurations are
those of ab50 system.
0-4
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CROSSING THEc51 BARRIER IN 2D LORENTZIAN . . . PHYSICAL REVIEW D61 044010
compared to our previous Figs. 1 and 2 forc<1/2. Figure 4
contains space-time configurations att51, for three differ-
ent volumesN. Their tendency to separate into two distin
regions increases withN ~remember that the time directio
has been chosen periodic!. This is a typical finite-N behavior
associated with a phase transition, in this case, of the ge
etry. Likewise, for increasingt ~and constant volume! it be-
comes easier to form long and thin ‘‘necks,’’ along whic
the spatial volumesl stay close to the cut-off size~see Fig.
5!. Note in particular the space-time history with the larg
volume (N536963), where the separation of space-time i
two different phases is very pronounced, underscoring at
same time the effect of increasingN. This figure also illus-
trates the fact that in the limit asN→`, the neck region will
carry a vanishing space-time volume.

It happens only rarely that the extended region show
tendency to break up into smaller parts. Generally speak
the fluctuations in its shape constitute the slowest mode
the simulation. Occasionally we observe a~much! smaller
extended region splitting off from the main one. Howev
our statistics was insufficient to establish whether for largt
there is an underlying pattern governing the size and
quency of these events. For our present purposes, this e
can be safely ignored, since the number and size of s
secondary space-time regions was small.

FIG. 2. Typical configurations forc5
1
2 , with volumes N

58100 (t51) andN59408 (t53).
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Let us now quantify the scenario just outlined by a stu
of the scaling properties ofSVN( l ). As expected, the length
distributionsSVN( l ) show no sign of scaling for smalll. For
large l, however, a scaling relation of type~3! is well satis-
fied, as illustrated by the plots in Fig. 6.

The optimal values fordh are contained in Table II. There
is a clear tendency fordh→3/2 ast becomes large. From
Fig. 6 we can read off at which value of the parametex
5 l /NT

dh the scaling sets in. This happens forx>c, wherec
'0.5, or ~settingdh53/2) for lengths

l>cNT
2/3. ~8!

As mentioned above, the neck region does not contrib
significantly to the volume for largeN. We have measured
that the volumeVext of the extended phase@now defined as
the scaling region ofSV( l )# is asymptotically proportional to
the total volumeV([NT) of the surface. Lettext denote the
temporal extension of this extended region andl ext the typi-
cal length of a spatial slice in that region~such thattext• l ext
5Vext}N). If we assume for the sake of definiteness th
indeeddh53/2, it follows from ~5! and ~4! that

dim Vext5
3

2
dim l ext. ~9!

From this we immediately deduce the relations

FIG. 3. The appearance of spatial slices of very short length
c54, and fort51 ~top! andt53 ~bottom!.
0-5
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dim l ext52 dim text, ~10!

dim V53dim text, ~11!

and that the cosmological Hausdorff dimension is given
dH53.

Our main conclusion is that the coupling of eight Isin
models to Lorentzian gravity produces a phase transition
which some universal properties of the geometry
changed. At large distances, proper time and spatial len
develop anomalous dimensions relative to each other an
the space-time volume, as expressed by Eqs.~10! and ~11!.

2. The shell volume nN„r … and the short-distance dimension dh

Next we discuss the measurement of the one-dimensi
volumesnN(r ) of spherical shells at distancer. It turns out
that for c54 Lorentzian gravity plus matter, these functio
do not exhibit the universal scaling properties found el

FIG. 4. Typical configurations forc54, t51 and volumesN
51024, 8100 and 32400.
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where in models of two-dimensional gravity@5,6,8#. ~That a
universal behavior at all length scales is unlikely is alrea
illustrated by the separation of typical configurations into
thin and an extended region apparent in Fig. 5.! As discussed
at the beginning of this section, this is no reason for conce
it simply reflects the fact that the underlying quantum geo
etry is more complex. We will identify several well-define
scaling regions and encounter the more general situa
where the short-distance and the cosmological Hausdorff
mensions are different.

FIG. 5. Typical configurations forc54, with volumes N
58192 (t52), N536963 (t53), andN58464 (t54).
0-6
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FIG. 6. The distributionsSV( l ) for the c54, t51, 2, 3, and 4
systems.
04401
As can be seen in Fig. 7, the short-distance behavio
nN(r ) is independent ofN and can be fitted nicely tonN(r )
;r dh21, with dh'2 ~which coincides with the value found
for c5 1

2 and also happens to be the ‘‘canonical’’ dimensi
expected from classical considerations!. The best fit gives
dh52.1(2).

Going out to length scales of the orderr;N1/3, we see a
different scaling behavior. Here~6! is valid with a cosmo-
logical Hausdorff dimensiondH53, in accordance with the
value extracted from the measurements of the length di
bution SVN( l ). Finite-size scaling in this region, compute
from the scaling of the peaks ofnN(r ) ~Fig. 8!, yields dH
53.07(9).

Finally, at very larger near the tail of the distribution, we
found that the value ofnN(r ) is almost independent ofN,
indicating a dominance of configurations withdH51. Re-
calling the typical shape of configurations atc54 ~Fig. 5!,
this suggests the following interpretation. Each measurem
of nN(r ) involves the choice of a reference point, fro
which the geodesic distancesr are measured. Since almo
no space-time volume is contained in the thin necks,
randomly chosen reference point will typically be locat
somewhere in the extended region. However, moving o
wards from such a bulk point in spherical shells will for larg
r eventually bring us back to the neck region, which in t
large-N limit has a length proportional toAN ~simply be-
causeN}t2). Once the spherical shells have reached
neck region, the volume functionnN(r ) will just measure a
one-dimensional structure.

C. Matter behavior in the extended phase

We have seen above how a Lorentzian geometry sepa
into two distinct regions under the coupling to eight Isin
models. Since the thin, stalklike region is effectively on

TABLE II. The optimal values of the exponentdh for best scal-
ing of SV( l ) fitting ~3!.

t51 t52 t53 t54

1.70~3! 1.65~5! 1.54~3! 1.50~3!

FIG. 7. Small-distance scaling of the correlation functionnN(r )
for the c54 system.
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dimensional, a nontrivial matter behavior can be expec
only in the remaining, spatially extended space-time reg
The computation of the matter exponents in this phase
subtle and requires some care. At the critical matter coup
bc we have measured the same set of observables as in
previous simulations@3#. Together with their expected finite
size scaling behavior they are

x5N~^m2&2^umu&2!;Ng/ndH ~susceptibility!, ~12!

D lnumu5NS ^e&2
^eumu&
^umu& D;N1/ndH S D lnumu[

d lnumu
db D ,

~13!

D ln m25NS ^e&2
^em2&

^m2& D;N1/ndH S D ln m2[
d ln m2

db D ,

~14!

whereg andn are the critical exponents of the susceptibil
and of the divergent spin-spin correlation length.

Initially we checked that for the case of a single Isi
model, extending the geometries in the temporal direct
~i.e., taking t.1) does not affect the Onsager expone
found in @3#. The results are tabulated in Table III, and
not differ significantly from our previous results.

If one repeats this analysis naively forc54, without tak-
ing into account geometric properties, no consistent sca
behavior is found. For example, we find Onsager expone
for t51, but these change whent is increased. Although the
spins in the ‘‘thin’’ phase cannot be critical, and contribu
little to the space-time volume, the ‘‘transition’’ region
where the spatial lengthl changes from cut-off length tol’s
satisfying~8!, apparently spoils the measurements, and th
are considerable finite-size effects. The situation does
improve when the volumeVext is used instead of the tota
volume in the finite-size scaling.

It seems that the only way to study the critical mat
behavior for the case of eight Ising models is to isolate
plicitly the contributions from the spins on the extended p
of the Lorentzian geometry. For this we adopt the followi
procedure: for each configuration we measure the energE
and magnetizationM on all vertices belonging to spatia
slices whose length is greater than a cut-offl 0(N)
5ctN

1/dh, and on all links contained in such slices or co

FIG. 8. Scaling of the peaks of the correlation functionnN(r )
for the c54 system.
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necting two of them. The constantsct anddh are determined
from the scaling regions of the length distributionsSVN( l ),
with ct'0.5, as discussed in connection with Eq.~8!. De-
note the numbers of such vertices and links byN8 andNL8 .
We then compute the averagese5E/NL8 andm5M /N8, and
measure the expectation values^N8& and ^NL8&.

Looking at the Monte Carlo time histories, we obser
that wheneverN8Þ0, e and m fluctuate stably around thei
mean values~even when the vertex numberN8 is close to 0!,
whereasE andM vary slowly but considerably together wit
N8. We can thus safely ignore the~relatively few! configu-
rations withN850. We have also computed the volumeV8
[Vext contributing to the scaling region ofSV( l ) and per-
formed finite-size scaling of the observables computed fr
the modified energy and magnetization averagese and m.
The results of this final analysis are summarized in Table
We have used a variety of different definitions of the syst
size, to demonstrate that the critical matter exponents
tracted from finite-size scaling do not depend on them.
conclude that the critical matter behavior of our model
eight Ising spins, on the part of space-time that possess
nontrivial spatial extension, is governed by the Onsager
ponents, and therefore lies in the same universality clas
the model containing only a single copy of Ising spins.

IV. DISCUSSION

In order to provide an interpretation for some of our r
sults on 2D Lorentzian gravity coupled to multiple Isin
spins, we first need to recall some characteristic geome

TABLE III. Matter exponents for thec5
1
2 , t53 model.

Observable Exponent

x g

ndH

0.84~1!

D lnumu 1

ndH

0.552~5!

D ln m2 1

ndH

0.550~4!

TABLE IV. Critical matter exponents for thec54, t53 model.
We compare scalings with respect to different definitions of sys
size.

Observable Exponent
Onsager

value
V8

scaling
^N8&

scaling
^NL8&

scaling

x g

ndH

0.875 0.85~1! 0.86~1! 0.85~1!

D lnumu 1

ndH

0.5 0.520~5! 0.520~2! 0.48~1!

D ln m2 1

ndH

0.5 0.511~5! 0.512~4! 0.48~1!
0-8
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CROSSING THEc51 BARRIER IN 2D LORENTZIAN . . . PHYSICAL REVIEW D61 044010
features of 2D Euclidean gravity. Consider the on
dimensional spherical ‘‘shell’’ consisting of all points sep
rated from a given reference point2 by a geodesic distancer.
This curve will in general be multiply connected. Letr( l ,r )
denote the number of connected shell components of lenl
at distancer. It is a remarkable and universal result in 2
Euclidean quantum gravity thatr and l have a relative
anomalous scaling of the form

l}r 2. ~15!

For pure 2D Euclidean quantum gravity this was first prov
analytically in@10#, where in the limit of infinite space-time
volumer was found to be

r~ l ,r !}
1

r 2 ~c1z25/21c1z21/21c3z1/2!e2z, z5 l /r 2.

~16!

It was later checked numerically@8,11# for various valuesc
,1 of the central charge that in the infinite-volume limit th
length distributionr 2r( l ,r ) is only a function of the variable
z5 l /r 2. In addition, forz.1 the functional dependence onc
turns out to be rather weak. For a finite space-time volumeN,
it was found thatr 2r( l ,r ) can be approximated well by

r 2r~ l ,r !} f ~z,l /N2/dH!. ~17!

We can use this relation to calculate the expectation
ues of integer powers of the lengthl,3

^ l n& r ,N[(
l

l nr~ l ,r ! ——→
N large

N2n/dHFn~r /N1/dH!, n.1,

~18!

where the functionsFn behave like@8#

Fn~x!;x2n for x,1. ~19!

For smallr !N1/dH we thus obtain

^ l n& r ,N;r 2n for n.1, ~20!

which is in accordance with relation~15!, whereas for ‘‘cos-
mological’’ distancesr;N1/dH one finds

^ l n& r ,N;N2n/dH for n.1. ~21!

2When talking about ‘‘reference points,’’ we always have in mi
averages, calculated in the statistical ensemble of 2D Euclid
geometries, with each geometry weighted by the exponential o
classical action.

3For n51 Eq. ~18! is not valid and one obtains instead

^l&r}rdH21H~r/N1/dH!, H~0!.0,
where the Hausdorff dimensiondH is a function of the centra
chargec of the conformal matter theory coupled to 2D Euclide
quantum gravity. This contribution comes entirely from small lo
lengthsl !r 2, and is suppressed in the higher moments ofl.
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It should be emphasized again that Eqs.~19! and ~20! seem
to be universally true for 2D Euclidean quantum grav
theories withc,1 and require no cut-off in the continuum
limit. To our knowledge they are the only nontrivial relation
in 2D Euclidean quantum gravity independent of the cen
chargec.

For Lorentzian gravity coupled to ac54 conformal field
theory we saw above that the geometry had undergon
phase transition compared toc50 andc5 1

2 . In those cases
a continuum limit could only be obtained if time and spa
had identical scaling dimensions, diml 5dim t. Under the
natural identification of Lorentzian proper timet with the
geodesic distancer of the Euclidean formulas, this should b
contrasted with diml 52 dimr , which follows immediately
from relation~15!. The analogue of relation~21! for Lorent-

zian gravity withc50,1
2 is given by

^ l n& t,N5Nn/dH, dH52, n.0. ~22!

More precisely, Eq.~22! can be computed exactly forc50
and is deduced forc5 1

2 by numerical comparison of the
length distributions. However, the scaling relation we o
served forc54 was not~22!, but ~21! ~for n.0). The sur-
prising conclusion is that with increasing central chargec the
geometry undergoes a transition from a state character
by ~22!, to one satisfying~21!, which is a generic property o
Euclideanquantum gravity withc,1.

What causes this transition as more and more matte
added to the model? As discussed in@12,13#, matter has a
tendency to ‘‘squeeze off’’ parts of space-time. In 2D E
clidean quantum gravity this pinching can take place a
where and results in an ever-increasing number of baby
verses. Eventually, for c.1, the fractal geometry
degenerates into branched polymers, which can simply
viewed as a conglomerate of baby universes of the size of
cutoff.

In the Lorentzian case by construction no baby univer
can be formed. The only possible way for matter to sque
the geometry is to pinch constant-time slices to their minim
allowed spatial lengthl 51. This effect is very obvious in the
Monte Carlo simulations and becomes more pronounced
the central charge is increased. In going toc54 the influence
of the matter has become so strong that a genuine p
transition has taken place. Onlyt2/3 of the t spatial slices
~which typically occur together in a single extended regio!
have an extension beyond the cut-off scale. On the o
hand their average spatial extension behaves liket4/3. The
remaining spatial slices have been pinched to the cut
scale. On the fraction of slices with a macroscopic extens
one can then define a scaling limit, which at large distan
is characterized by a Hausdorff dimensiondH53. Likewise
the relative dimensions of space and time are changed f
their naive canonical values diml 5dim r , derived from
~22!, to dim l 52 dimr , dictated by~21!.

From our experience with Euclidean quantum gravity, t
behavior may seem unexpected. In that case, a large in
ence of the matter on the geometry is always accompa
by a large back reaction of the geometry on the matter, in
sense that the critical matter and gravity exponents alw

an
ts
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change simultaneously.@An exception to this is the relation
~21!, which is valid for all c,1 and therefore contains n
information about the conformal field theory and its coupli
to geometry.# The Lorentzian gravity model behaves diffe
ently: the matter strongly affects the geometry~changing
bulk properties like the Hausdorff dimension and the relat
scaling between time and spatial directions!, but these appar
ently drastic changes are still not sufficient to alter any of
universal matter properties. Even when eight Ising mod
are coupled to Lorentzian gravity, the critical matter exp
nents still retain their Onsager values.

This situation provides further support for the viewpo
advanced in our previous work@1,3# that the critical gravity
and matter behavior of the Euclidean models is entirely
termined by the presence of baby universes. In light of
new results, the argument may be put as follows. So fa
has been unclear whether the change in the critical expon
of conformal field theories when coupled to Euclidean qu
tum gravity was due to the strong back reaction of the
ometry on the matter or to the baby universes that w
presenta priori. Lorentzian gravity with eight Ising spin
provides an example where undeniably the interaction of
matter and gravity sectors is strong. Nevertheless the cri
Ising exponents remain unchanged. This strongly sugg
that in the Euclidean case it is really the baby univer
which are responsible for the observed changes in the
versal properties of the matter.

While we have not undertaken a systematic search for
exact value ofc where the phase transition in geometry tak
place, it is tempting to conjecture that it occurs atccrit51.
Independent of the exact value ofccrit , we have identified a
weak analogue of thec51 barrier also in Lorentzian gravity
From the point of view of matter, nothing dramatic happe
when the barrier is crossed. However, the behavior of
quantum geometry undergoes a qualitative change and
shares some features with the nonsingular part of the q
tum geometries described by 2D Euclidean gravity coup
to matter withc,1. This highlights the universal nature o
the relationl}r 2 and motivates the search for a simple u
derlying explanation, which may have a status similar to t
of dH52 for Brownian motions.

V. OUTLOOK

In closing, let us step back to examine the potential lar
implications of all we have learned so far about tw
dimensional Lorentzian quantum gravity. Our original a
was to find a nonperturbative path-integral formulation
quantum gravity. Previous attempts in this direction h
largely been confined to the sector ofEuclideanspace-time
metrics. Since for general metrics there is no straightforw
analogue of the Wick rotation, a path integral over Loren
ian geometries is likely to require a more radical modific
tion ~compared with the Euclidean theory! than a mere ana
lytic continuation of the action.

We chose to make the path integral Lorentzian by req
ing each individualspace-time geometry contributing to th
state sum to carry a causal structure associated with a Lo
zian geometry. In order to make the construction well d
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fined, a regularization is necessary, and we used the me
of dynamical triangulations~where geometric manifolds ar
represented as gluings ofd-dimensional simplices!, which
had previously been employed successfully in a Euclid
context. An ideal testing ground for such a proposal is gr
ity in dimensiond52, whose Euclidean sector~‘‘Liouville
gravity’’ ! has been studied extensively by a variety of me
ods. We performed the Lorentzian state sum exactly, ov
set of dynamically triangulated 2-geometries satisfying
~discrete analogue! of causality, and taking a continuum
limit.

Maybe surprisingly, the resulting continuum theo
turned out to be a new,bona fidetheory of 2D quantum
gravity fundamentally different from~Euclidean! Liouville
gravity. As already mentioned in the Introduction, it d
scribes an ensemble of strongly fluctuating geometries, w
local curvature degrees of freedom. Nevertheless, the ge
etry is less fractal than its Euclidean counterpart, and the
fore closer to our intuitive, classical notions of smooth g
ometry.

The existence of at least two different quantum gravit
constructed by rigorous path-integral methods in 2D rai
the question of ‘‘which one is theright theory?’’ There is no
ultimate answer to this, since two-dimensional gravity~never
mind its signature! does not describe any phenomena of t
real world. Aficionados of Liouville gravity might object by
saying that the Lorentzian version of quantum geometry w
surely the less interesting, with not enough ‘‘happenin
compared with the Euclidean case where, for example,
Hausdorff dimensiondH changes with the matter conten
However, even if this were the case, it would not disqual
Lorentzian gravity from being a good candidate for a qua
tum gravity theory, since we do not know what the geome
of ‘‘real’’ quantum gravity looks like at the Planck scale. S
far there is little evidence to suggest nonsmoothness of
space-time geometry up to the grand unified scale, wh
itself after all is only a few orders of magnitude remov
from the Planck scale.

At any rate, our present investigation shows that also
two-dimensional Lorentzian gravity things ‘‘do happen
There is a strong interaction if one couples a sufficie
amount of matter to Lorentzian geometry, affecting the u
versal properties of the combined system. In fact, one
argue that the resulting structure of quantum geometry
richer than that of the corresponding Euclidean model w
matter, since its fractal structure~measured by the Hausdor
dimension! acquires a scale dependence. Moreover, the
teraction in Lorentzian gravity is strong, but—unlike in E
clidean gravity—not too strong in the sense of leading to
complete degeneration of the carrier geometry.

In a similar vein, evidence is accumulating that the stru
ture of Euclidean quantum gravity with and without matter
governed entirely by the presence of baby universes~branch-
ing configurations not present in the Lorentzian version
cause of their incompatibility with causality!. There is noth-
ing wrong with this: statistical mechanical models
Euclidean gravity provide examples of generally covaria
systems which are highly interesting in their own right. Wh
they might teach us about quantum gravity proper is mu
0-10
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less clear, since related~and from a classical point of view
highly degenerate! branched-polymer configurations an
their associated fractal structure play a central role in Euc
ean gravity in higher dimensions too. There they seem
affect the theory in an undesirable way, making it difficult
obtain an interesting continuum limit of the statistical mod
of Euclidean quantum gravity in dimensiond.2.

There is then a conclusion to be drawn for our event
goal, the quantization of the physical theory of gravity
four space-time dimensions, whose character we know to
Lorentzian. Judging from our experience in two dimensio
the Lorentzian and Euclidean theories~if they both exist and
are unique! may not be as closely related as is sometim
hoped for, invoking the example of standard, nongener
.
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covariant quantum field theory. Our research has highligh
the importance of imposing causality~and thereby suppress
ing spatial topology changes! in the path integral over geom
etries. It remains to be seen which effect an analogous
scription has for quantum gravity theories in high
dimensions.
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